JP2003174734A - Hybrid secondary battery - Google Patents

Hybrid secondary battery

Info

Publication number
JP2003174734A
JP2003174734A JP2001372350A JP2001372350A JP2003174734A JP 2003174734 A JP2003174734 A JP 2003174734A JP 2001372350 A JP2001372350 A JP 2001372350A JP 2001372350 A JP2001372350 A JP 2001372350A JP 2003174734 A JP2003174734 A JP 2003174734A
Authority
JP
Japan
Prior art keywords
secondary battery
battery
lead
lithium
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2001372350A
Other languages
Japanese (ja)
Inventor
Masahisa Okuda
昌久 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2001372350A priority Critical patent/JP2003174734A/en
Publication of JP2003174734A publication Critical patent/JP2003174734A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid secondary battery which has the secured acceptance performance and the superior output performance. <P>SOLUTION: A lead battery 1 (36 V-9 Ah) comprises 18 enclosed unit lead batteries which are connected in series to each other. A lithium secondary battery 2 comprises 10-11 lithium ion unit secondary batteries (3.6 V-2 Ah) which are connected in series to each other. The lead battery 1 and the lithium secondary battery 2 are connected in parallel to each other to constitute a hybrid secondary battery. The resistance of the lithium secondary battery 2 is smaller than the resistance of the lead battery 1 and, when the batteries are charged, a current applied to the lithium secondary battery 2 is larger than a current applied to the lead battery 1. By making the capacity of the lead battery 1 larger than the capacity of the lithium secondary battery 2, when the batteries are discharged, a current applied to the lead battery 1 is larger than a current applied to the lithium secondary battery 2. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ハイブリッド二次
電池に係り、特に、水溶液系二次電池と非水系二次電池
とを並列に接続したハイブリッド二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid secondary battery, and more particularly to a hybrid secondary battery in which an aqueous solution type secondary battery and a non-aqueous type secondary battery are connected in parallel.

【0002】[0002]

【従来の技術】従来、自動車には12V系鉛蓄電池を内
蔵した電源システム(14Vシステム)が用いられてき
た。該14Vシステムでは、12V系鉛蓄電池から自動
車のエンジンを始動する起動装置(スターターモータ)
に電流を供給(放電)し、エンジンが始動した後は、エ
ンジンの回転力によって作動する発電機から12V系鉛
蓄電池に電流が常時供給(充電)される。ところが、自
動車の減速時のエネルギーは、熱として消費されてい
た。
2. Description of the Related Art Conventionally, a power supply system (14V system) incorporating a 12V lead storage battery has been used in an automobile. In the 14V system, a starting device (starter motor) for starting an automobile engine from a 12V lead-acid battery
After the electric current is supplied (discharged) to the engine and the engine is started, the electric current is constantly supplied (charged) from the generator operated by the rotational force of the engine to the 12V lead-acid battery. However, the energy when the vehicle is decelerated was consumed as heat.

【0003】近年、12V系鉛蓄電池に代って、36V
系鉛蓄電池を搭載する新電源システム(42Vシステ
ム)が提案されている。該42Vシステムでは、自動車
のエンジンを始動する車輌起動装置として、高出力なモ
ータジェネレータを使用することが可能となった。この
ため、従来熱として消費されていた自動車の減速時にお
けるエネルギーは、モータジェネレータにより電気エネ
ルギーに変換され、回生エネルギーとして36V系鉛蓄
電池に供給(充電)される。また、停止状態からの加速
時には、36V系鉛蓄電池からの電気エネルギーでモー
タを回転させて走行することができる。走行中には、該
36V系鉛蓄電池は、自動車の減速時の回生エネルギー
を変換した電気エネルギーにより、電流を供給(充電)
される。従って新電源システムによれば、エネルギー効
率が高められ、自動車の燃費向上、排気ガスの排出量の
低減を図ることができる。
In recent years, instead of the 12V lead-acid battery, 36V
A new power supply system (42V system) equipped with a lead-acid battery has been proposed. In the 42V system, a high-power motor generator can be used as a vehicle starting device for starting the engine of an automobile. Therefore, the energy that is conventionally consumed as heat when the vehicle is decelerated is converted into electric energy by the motor generator and is supplied (charged) to the 36V lead acid battery as regenerative energy. Further, at the time of acceleration from the stopped state, it is possible to rotate the motor by electric energy from the 36V lead acid battery to run. While running, the 36V lead acid battery supplies (charges) a current with electric energy converted from regenerative energy during deceleration of the automobile.
To be done. Therefore, according to the new power supply system, the energy efficiency can be improved, the fuel efficiency of the automobile can be improved, and the exhaust gas emission amount can be reduced.

【0004】しかし、42Vシステムに使用されるモー
タジェネレータは、3〜4kWと高出力であり、回生時
の電流値は40〜80A(2〜4CA相当)に達する。
鉛蓄電池は、充電率が1CA以上の電流値になると、充
電時の副反応である水の分解反応が促進され、充電効率
が落ちて電池寿命に悪影響を及ぼす。このため、従来の
鉛蓄電池で、このような大電流充電を受け入れることは
難しい。そこで、大電流を受け入れる受け入れ性能のよ
いリチウムイオン二次電池とのハイブリッド二次電池が
考案されている。
However, the motor generator used in the 42V system has a high output of 3 to 4 kW, and the current value during regeneration reaches 40 to 80 A (equivalent to 2 to 4 CA).
When the charging rate of the lead storage battery reaches a current value of 1 CA or more, the decomposition reaction of water, which is a side reaction at the time of charging, is promoted, the charging efficiency drops, and the battery life is adversely affected. Therefore, it is difficult for the conventional lead-acid battery to accept such a large current charge. Therefore, a hybrid secondary battery with a lithium-ion secondary battery that accepts a large current and has good acceptance performance has been devised.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、リチウ
ムイオン二次電池を鉛蓄電池と組み合わせることにより
受け入れ性能を確保することはできるがコスト高にな
る。コスト高を抑えるためには、電源システムに用いら
れるリチウムイオン二次電池の容量を小さくすればよい
が、容量を小さくするとエンジン始動時などの放電率が
大きくなるという出力性能の面での問題が生じる。
However, by combining the lithium ion secondary battery with the lead storage battery, the receiving performance can be secured, but the cost becomes high. In order to keep the cost down, it is sufficient to reduce the capacity of the lithium-ion secondary battery used in the power supply system, but if the capacity is reduced, there is a problem in terms of output performance that the discharge rate at engine start and the like increases. Occurs.

【0006】本発明は、上記事案に鑑み、受け入れ性能
を確保すると共に出力性能に優れたハイブリッド二次電
池を提供することを課題とする。
[0006] In view of the above problems, it is an object of the present invention to provide a hybrid secondary battery that secures acceptance performance and is excellent in output performance.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、水溶液系二次電池と非水系二次電池とを
並列に接続したハイブリッド二次電池において、充電時
に前記非水系二次電池に流れる電流値が前記水溶液系二
次電池に流れる電流値より大きく、放電時に前記水溶液
系二次電池に流れる電流値が前記非水系二次電池に流れ
る電流値より大きいことを特徴とする。
In order to solve the above problems, the present invention relates to a hybrid secondary battery in which an aqueous solution type secondary battery and a non-aqueous type secondary battery are connected in parallel, and the non-aqueous type secondary battery is used during charging. The current value flowing in the secondary battery is larger than the current value flowing in the aqueous solution secondary battery, and the current value flowing in the aqueous solution secondary battery at the time of discharging is larger than the current value flowing in the non-aqueous secondary battery. .

【0008】本発明では、水溶液系二次電池と非水系二
次電池とが並列に接続されており、水溶液系二次電池の
抵抗より非水系二次電池の抵抗が小さいので、充電時に
非水系二次電池に流れる電流値を水溶液系二次電池に流
れる電流値より大きくすることができると共に、水溶液
系二次電池の容量を非水系二次電池の容量より大きくす
ることで、放電時に水溶液系二次電池に流れる電流値を
非水系二次電池に流れる電流値より大きくすることがで
きるので、受け入れ性能と出力性能に優れたハイブリッ
ド二次電池とすることができる。
According to the present invention, the aqueous secondary battery and the non-aqueous secondary battery are connected in parallel, and the resistance of the non-aqueous secondary battery is smaller than the resistance of the aqueous secondary battery. The current value flowing in the secondary battery can be made larger than the current value flowing in the aqueous secondary battery, and the capacity of the aqueous secondary battery can be made larger than that of the non-aqueous secondary battery, so that the aqueous solution at the time of discharge can be obtained. Since the value of the current flowing through the secondary battery can be made larger than the value of the current flowing through the non-aqueous secondary battery, a hybrid secondary battery having excellent receiving performance and output performance can be obtained.

【0009】この場合において、水溶液系二次電池は、
鉛蓄電池で構成されていることが好ましく、鉛蓄電池
は、18セルを直列に接続した36V系鉛蓄電池である
ことが更に好ましい。また、非水系二次電池は、リチウ
ム二次電池で構成されていることが好ましく、リチウム
二次電池は、10又は11セルを直列に接続した36V
系リチウムイオン二次電池であることが更に好ましい。
In this case, the aqueous solution type secondary battery is
The lead-acid battery is preferably a lead-acid battery, and the lead-acid battery is more preferably a 36V lead-acid battery in which 18 cells are connected in series. Further, the non-aqueous secondary battery is preferably composed of a lithium secondary battery, and the lithium secondary battery is 36 V in which 10 or 11 cells are connected in series.
A lithium-ion secondary battery is more preferable.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して、本発明が
適用されるハイブリッド二次電池の実施の形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a hybrid secondary battery to which the present invention is applied will be described below with reference to the drawings.

【0011】(構成) 〔ハイブリッド二次電池〕図1に示すように、本実施形
態のハイブリッド二次電池は、密閉型鉛蓄電池を18個
(18セル)直列に接続した鉛蓄電池1(36V−9A
h)と、3.6V−2Ahのリチウムイオン二次電池を
10又は11個(10又は11セル)直列に接続したリ
チウム二次電池2とが並列接続されて構成されている。
従って、鉛蓄電池1は、リチウム二次電池2より設計容
量で4.5倍程大きな容量を有している。鉛蓄電池1及
びリチウム二次電池2の正極端子は、一端がGNDに接
続されたモータージェネレータ3の他端及び一端がGN
Dに接続された起動装置(スタータモータ)等の負荷4
の他端に接続されている。また、鉛蓄電池1及びリチウ
ム二次電池2の負極端子はGNDに接続されている。
(Constitution) [Hybrid Secondary Battery] As shown in FIG. 1, the hybrid secondary battery of the present embodiment is a lead storage battery 1 (36V-) in which 18 sealed lead storage batteries (18 cells) are connected in series. 9A
h) and a lithium secondary battery 2 in which 10 or 11 (10 or 11 cells) lithium ion secondary batteries of 3.6V-2Ah are connected in series are configured to be connected in parallel.
Therefore, the lead storage battery 1 has a design capacity that is about 4.5 times larger than the lithium secondary battery 2. The positive electrode terminals of the lead storage battery 1 and the lithium secondary battery 2 have the other end and one end of the motor generator 3 whose one end is connected to GND.
Load 4 such as a starter (starter motor) connected to D
Is connected to the other end of. Further, the negative electrode terminals of the lead storage battery 1 and the lithium secondary battery 2 are connected to GND.

【0012】〔鉛蓄電池〕本実施形態に使用される鉛蓄
電池としては、いわゆる密閉型鉛蓄電池を例示すること
ができる。この電池は次のようにして準備される。正極
には二酸化鉛、負極には海綿状鉛を使用し、正、負極及
びガラス繊維セパレータを用いて、積層した極板群を作
製し、電槽内に挿入する。これに制御弁取付箇所を開放
した蓋をつけ、電解液である希硫酸を注入し、制御弁を
取付けて電池を密閉化する。
[Lead Storage Battery] As the lead storage battery used in the present embodiment, a so-called sealed lead storage battery can be exemplified. This battery is prepared as follows. Lead dioxide is used for the positive electrode and spongy lead is used for the negative electrode. A positive electrode group, a negative electrode and a glass fiber separator are used to prepare a laminated electrode plate group, which is inserted into a battery case. A lid with an open control valve attachment point is attached to this, dilute sulfuric acid as an electrolytic solution is injected, and a control valve is attached to seal the battery.

【0013】〔リチウムイオン二次電池〕本実施形態に
使用されるリチウムイオン二次電池としては、マンガン
系のリチウムイオン二次電池を例示することができる。
この電池は次のようにして準備される。正極にはリチウ
ムを含んだマンガン酸化物、負極には活物質である炭素
粉末が使用される。正、負極及びセパレータを用いて、
捲回式の電極体を作製し、円筒状電池缶に挿入する。エ
チレンカーボネート(EC)とジメチルカーボネート
(DMC)とジエチルカーボネート(DEC)との混合
有機溶媒に、6フッ化リン酸リチウム(LiPF)を
1モル/リットル溶解した電解液を電池缶内に注入し、
正極端子を兼ねる封口体にて密閉する。
[Lithium Ion Secondary Battery] As the lithium ion secondary battery used in the present embodiment, a manganese-based lithium ion secondary battery can be exemplified.
This battery is prepared as follows. Manganese oxide containing lithium is used for the positive electrode, and carbon powder that is an active material is used for the negative electrode. Using positive, negative and separator,
A wound electrode body is prepared and inserted into a cylindrical battery can. An electrolyte solution prepared by dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) in a mixed organic solvent of ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) was injected into the battery can. ,
Seal with a sealing body that also serves as the positive electrode terminal.

【0014】リチウム二次電池2は、その電池電圧を鉛
蓄電池1(36V)に合わせる場合には、リチウムイオ
ン二次電池を10個直列(3.6V×10)に接続し、
充電電圧を鉛蓄電池1(42V)に合わせる場合には、
リチウムイオン二次電池を11個直列(3.6V×1
1)に接続したものとなるが、回生時の充電電圧に合わ
せる方が望ましい。
When the battery voltage of the lithium secondary battery 2 is adjusted to that of the lead storage battery 1 (36 V), 10 lithium ion secondary batteries are connected in series (3.6 V × 10),
When adjusting the charging voltage to lead acid battery 1 (42V),
11 lithium-ion secondary batteries in series (3.6V x 1
It will be connected to 1), but it is preferable to match it to the charging voltage during regeneration.

【0015】(作用・効果)本実施形態のハイブリッド
二次電池では、鉛蓄電池1とリチウム二次電池2とが並
列に接続されており、鉛蓄電池1の内部抵抗よりリチウ
ム二次電池2の内部抵抗が小さいので、充電時にリチウ
ム二次電池2に流れる電流値を鉛蓄電池1に流れる電流
値より大きくすることができる。従って、鉛蓄電池1の
充電率を小さくできるので、水の分解反応に伴う回生エ
ネルギーの損失を抑制して受け入れ性能を確保できる。
また、鉛蓄電池1の容量(9Ah)をリチウム二次電池
2の容量(2Ah)より大きくすることで、放電時に鉛
蓄電池1に流れる電流値をリチウム二次電池2に流れる
電流値より大きくすることができるので、リチウム二次
電池2の放電率を小さくすることができ、リチウム二次
電池2の放電率が小さい分、出力性能に優れたハイブリ
ッド二次電池とすることができる。従って、エンジン始
動性能に優れたハイブリッド二次電池を得ることができ
る。
(Operation / Effect) In the hybrid secondary battery of the present embodiment, the lead storage battery 1 and the lithium secondary battery 2 are connected in parallel, and the internal resistance of the lead storage battery 1 causes the internal portion of the lithium secondary battery 2 to be different. Since the resistance is small, the current value flowing through the lithium secondary battery 2 during charging can be made larger than the current value flowing through the lead storage battery 1. Therefore, since the charge rate of the lead storage battery 1 can be reduced, the loss of regenerative energy due to the water decomposition reaction can be suppressed and the acceptance performance can be secured.
Further, by setting the capacity (9 Ah) of the lead storage battery 1 to be larger than the capacity (2 Ah) of the lithium secondary battery 2, the current value flowing in the lead storage battery 1 at the time of discharging is made larger than the current value flowing in the lithium secondary battery 2. Therefore, the discharge rate of the lithium secondary battery 2 can be reduced, and the discharge rate of the lithium secondary battery 2 is small, so that the hybrid secondary battery having excellent output performance can be obtained. Therefore, a hybrid secondary battery with excellent engine starting performance can be obtained.

【0016】更に、鉛蓄電池1とリチウム二次電池2と
が並列に接続されているので、自動車の減速時や停止状
態からの加速時に、発電機からの大電流(40〜80
A)を一旦リチウム二次電池2で受け入れ、受け入れた
電気エネルギーを、鉛蓄電池1に充電することもでき
る。
Further, since the lead storage battery 1 and the lithium secondary battery 2 are connected in parallel, a large current (40 to 80) from the generator is generated when the vehicle is decelerated or accelerated from a stopped state.
It is also possible to temporarily receive A) in the lithium secondary battery 2 and charge the lead storage battery 1 with the received electric energy.

【0017】[0017]

【実施例】次に、上述した本実施形態に従って作製した
実施例のハイブリッド二次電池について説明する。比較
のために作製した比較例の電池についても併記する。
EXAMPLE Next, a hybrid secondary battery of an example manufactured according to the above-described embodiment will be described. The batteries of Comparative Examples prepared for comparison are also shown.

【0018】(実施例1)下表1に示すように、実施例
1では、充電時にリチウムイオン二次電池を11個直列
(3.6V×11)に接続したリチウム二次電池2に流
れる電流値(Im)が鉛蓄電池1に流れる電流値(I
p)より大きく、放電時に鉛蓄電池1に流れる電流値
(Ip)がリチウム二次電池2に流れる電流値(Im)
より大きい電池を作製した。
(Example 1) As shown in Table 1 below, in Example 1, the current flowing through the lithium secondary battery 2 in which 11 lithium ion secondary batteries were connected in series (3.6 V × 11) during charging. The value (Im) is the current value (I
p), and the current value (Ip) flowing through the lead storage battery 1 during discharge is the current value (Im) flowing through the lithium secondary battery 2.
A larger battery was made.

【0019】[0019]

【表1】 [Table 1]

【0020】(比較例1)表1に示すように、比較例1
では、充放電時共にリチウム二次電池2に流れる電流値
(Im)が鉛蓄電池1に流れる電流値(Ip)より大き
くなるように、リチウム二次電池2の容量を鉛蓄電池1
の容量より大きくした以外は実施例1と同様に電池を作
製した。
Comparative Example 1 As shown in Table 1, Comparative Example 1
Then, the capacity of the lithium secondary battery 2 is set so that the current value (Im) flowing through the lithium secondary battery 2 during charging and discharging is larger than the current value (Ip) flowing through the lead storage battery 1.
A battery was made in the same manner as in Example 1 except that the capacity was made larger than the capacity.

【0021】<試験・評価>次に、上述した実施形態に
従って作製したハイブリッド二次電池を用いて、所定充
放電率(C)で充放電後、5秒目の電池電圧(5秒目電
池電圧)を測定する充放電試験を行った。なお、通常自
動車用などのハイブリッド二次電池の充放電時に求めら
れる電流値は、2.5CA〜8.5CA程度である。
<Test / Evaluation> Next, using the hybrid secondary battery manufactured according to the above-described embodiment, after charging / discharging at a predetermined charge / discharge rate (C), the battery voltage at 5 seconds (5 second battery voltage ) Was measured. The current value required for charging and discharging the hybrid secondary battery for automobiles is usually about 2.5 CA to 8.5 CA.

【0022】図2及び図3に、充放電試験の試験結果を
示す。図2に示すように、比較例1の電池では、充電率
が2Cを超えると、電池電圧が水溶液系二次電池から水
素発生が起こる43V以上となり、充電が不可能となっ
た。一方、実施例1の電池では、充電率5Cにおいても
電池電圧が43V以下であり、回生エネルギーを効率よ
く得ることができた。
2 and 3 show the test results of the charge / discharge test. As shown in FIG. 2, in the battery of Comparative Example 1, when the charging rate exceeded 2C, the battery voltage became 43 V or higher at which hydrogen was generated from the aqueous secondary battery, and charging was impossible. On the other hand, in the battery of Example 1, the battery voltage was 43 V or less even at the charging rate of 5 C, and the regenerative energy could be efficiently obtained.

【0023】また、図3に示すように、比較例1の電池
では、放電率が6Cを越えると、14Vシステムで求め
られているJIS規格の6Vに対応する42Vシステム
の18Vを確保できなかった。一方、実施例1の電池で
は、10Cにおいても18Vの電圧を確保できており、
エンジン始動性能を確保することができた。
Further, as shown in FIG. 3, in the battery of Comparative Example 1, when the discharge rate exceeded 6C, 18V of 42V system corresponding to 6V of JIS standard required for 14V system could not be secured. . On the other hand, in the battery of Example 1, a voltage of 18V can be secured even at 10C,
The engine starting performance was secured.

【0024】以上のように、充電時にリチウム二次電池
2に流れる電流値(Im)が鉛蓄電池1に流れる電流値
(Ip)より大きく、放電時に鉛蓄電池1に流れる電流
値(Ip)がリチウム二次電池2に流れる電流値(I
m)より大きい電池は、受け入れ性能が確保されると共
に、出力性能に優れた電池であることが分かった。
As described above, the current value (Im) flowing through the lithium secondary battery 2 during charging is larger than the current value (Ip) flowing through the lead storage battery 1, and the current value (Ip) flowing through the lead storage battery 1 during discharging is lithium. Current value flowing in the secondary battery 2 (I
It has been found that a battery larger than m) is a battery having excellent output performance while ensuring the receiving performance.

【0025】なお、本実施形態では、鉛蓄電池1の容量
を9Ah、リチウム二次電池2の容量を2Ahとした例
を示したが、これに限定されるものではなく、鉛蓄電池
1の容量はリチウムイオン二次電池の容量より大きけれ
ばよく、例えば3倍以上であることが好ましい。このよ
うに容量を設定することで、今後、36V系電池で作動
する機器の負荷に対応することが可能となる。
In the present embodiment, the lead storage battery 1 has a capacity of 9 Ah and the lithium secondary battery 2 has a capacity of 2 Ah. However, the capacity of the lead storage battery 1 is not limited to this. It is sufficient that the capacity is larger than that of the lithium ion secondary battery, and for example, it is preferably 3 times or more. By setting the capacity in this way, it becomes possible to cope with the load of equipment that operates on a 36V system battery in the future.

【0026】また、本実施形態では、水溶液系二次電池
として36V系密閉型鉛蓄電池1、非水系二次電池とし
て36V系リチウム二次電池2を例示したが、本発明は
これに限定されるものではない。従って、開放型の鉛蓄
電池やニッケル−水素電池等を用いる場合にも本発明の
適用は可能である。
Further, in the present embodiment, the 36V type sealed lead acid battery 1 and the 36V type lithium secondary battery 2 are exemplified as the aqueous solution type secondary battery and the non-aqueous type secondary battery, but the present invention is not limited thereto. Not a thing. Therefore, the present invention can be applied even when an open type lead storage battery, a nickel-hydrogen battery or the like is used.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
水溶液系二次電池と非水系二次電池とが並列に接続され
ており、水溶液系二次電池の抵抗より非水系二次電池の
抵抗が小さいので、充電時に非水系二次電池に流れる電
流値を水溶液系二次電池に流れる電流値より大きくでき
ると共に、水溶液系二次電池の容量を非水系二次電池の
容量より大きくすることで、放電時に水溶液系二次電池
に流れる電流値を非水系二次電池に流れる電流値より大
きくすることができるので、受け入れ性能を確保できる
と共に、出力性能に優れたハイブリッド二次電池とする
ことができる、という効果を得ることができる。
As described above, according to the present invention,
Since the resistance of the non-aqueous secondary battery is smaller than the resistance of the aqueous secondary battery because the aqueous secondary battery and the non-aqueous secondary battery are connected in parallel, the current value flowing through the non-aqueous secondary battery during charging. Can be made larger than the current value flowing in the aqueous solution type secondary battery, and the capacity of the aqueous solution type secondary battery is made larger than the capacity of the non-aqueous type secondary battery, so that the current value flowing in the aqueous solution type secondary battery at the time of discharge is Since the current value flowing through the secondary battery can be made larger, it is possible to obtain an effect that a receiving performance can be secured and a hybrid secondary battery having excellent output performance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用可能な実施形態のハイブリッド二
次電池の概略を示すブロック図である。
FIG. 1 is a block diagram schematically showing a hybrid secondary battery of an embodiment to which the present invention can be applied.

【図2】実施例1及び比較例1の各電池の5秒目電池電
圧と充電率との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the battery voltage at 5 seconds and the charging rate of each battery of Example 1 and Comparative Example 1.

【図3】実施例1及び比較例1の各電池の5秒目電池電
圧と放電率との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the battery voltage at 5 seconds and the discharge rate of each battery of Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 鉛蓄電池(水溶液系二次電池) 2 リチウム二次電池(非水系二次電池) 1 Lead-acid battery (aqueous secondary battery) 2 Lithium secondary battery (non-aqueous secondary battery)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水溶液系二次電池と非水系二次電池とを
並列に接続したハイブリッド二次電池において、充電時
に前記非水系二次電池に流れる電流値が前記水溶液系二
次電池に流れる電流値より大きく、放電時に前記水溶液
系二次電池に流れる電流値が前記非水系二次電池に流れ
る電流値より大きいことを特徴とするハイブリッド二次
電池。
1. In a hybrid secondary battery in which an aqueous solution type secondary battery and a non-aqueous type secondary battery are connected in parallel, a current value flowing through the non-aqueous type secondary battery during charging is a current flowing through the aqueous solution type secondary battery. A hybrid secondary battery, which is larger than a current value and a current value flowing through the aqueous solution-type secondary battery during discharge is larger than a current value flowing through the non-aqueous-system secondary battery.
【請求項2】 前記水溶液系二次電池は、鉛蓄電池で構
成されていることを特徴とする請求項1に記載のハイブ
リッド二次電池。
2. The hybrid secondary battery according to claim 1, wherein the aqueous secondary battery is a lead storage battery.
【請求項3】 前記鉛蓄電池は、18セルを直列に接続
した36V系鉛蓄電池であることを特徴とする請求項2
に記載のハイブリッド二次電池。
3. The lead storage battery is a 36V lead storage battery in which 18 cells are connected in series.
The hybrid secondary battery according to.
【請求項4】 前記非水系二次電池は、リチウム二次電
池で構成されていることを特徴とする請求項1に記載の
ハイブリッド二次電池。
4. The hybrid secondary battery according to claim 1, wherein the non-aqueous secondary battery is a lithium secondary battery.
【請求項5】 前記リチウム二次電池は、10又は11
セルを直列に接続した36V系リチウムイオン二次電池
であることを特徴とする請求項4に記載のハイブリッド
二次電池。
5. The lithium secondary battery is 10 or 11
The hybrid secondary battery according to claim 4, wherein the hybrid secondary battery is a 36V lithium-ion secondary battery in which cells are connected in series.
JP2001372350A 2001-12-06 2001-12-06 Hybrid secondary battery Abandoned JP2003174734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372350A JP2003174734A (en) 2001-12-06 2001-12-06 Hybrid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372350A JP2003174734A (en) 2001-12-06 2001-12-06 Hybrid secondary battery

Publications (1)

Publication Number Publication Date
JP2003174734A true JP2003174734A (en) 2003-06-20

Family

ID=19181261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372350A Abandoned JP2003174734A (en) 2001-12-06 2001-12-06 Hybrid secondary battery

Country Status (1)

Country Link
JP (1) JP2003174734A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007122882A (en) * 2005-10-24 2007-05-17 Nissan Motor Co Ltd Charge state balance recovery method of battery system
JP2010539635A (en) * 2007-03-30 2010-12-16 ザ レジェンツ オブ ザ ユニバーシティ オブ ミシガン Vehicle hybrid energy system
JP2011015516A (en) * 2009-07-01 2011-01-20 Denso Corp In-vehicle power supply device
CN102340041A (en) * 2010-07-16 2012-02-01 汉达精密电子(昆山)有限公司 Battery pack
CN102420345A (en) * 2011-11-03 2012-04-18 昆山高点绿能电容有限公司 Three-in-one hybrid energy-storing battery
WO2014142078A1 (en) * 2013-03-14 2014-09-18 株式会社 東芝 Battery system
WO2014162686A1 (en) 2013-04-03 2014-10-09 パナソニック株式会社 Battery system
WO2016080222A1 (en) * 2014-11-17 2016-05-26 株式会社村田製作所 On-vehicle battery, and on-vehicle power supply device
JPWO2014068900A1 (en) * 2012-10-29 2016-09-08 三洋電機株式会社 Power supply for vehicle
WO2021218814A1 (en) * 2020-04-30 2021-11-04 宁德时代新能源科技股份有限公司 Battery, apparatus, battery production method, and device
WO2022226748A1 (en) * 2021-04-26 2022-11-03 宁德时代新能源科技股份有限公司 Battery group, battery pack, electric apparatus, and manufacturing method and manufacturing device for battery group
US11901555B2 (en) 2021-07-30 2024-02-13 Contemporary Amperex Technology Co., Limited Battery module, battery pack, and electric apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007122882A (en) * 2005-10-24 2007-05-17 Nissan Motor Co Ltd Charge state balance recovery method of battery system
JP2010539635A (en) * 2007-03-30 2010-12-16 ザ レジェンツ オブ ザ ユニバーシティ オブ ミシガン Vehicle hybrid energy system
JP2011015516A (en) * 2009-07-01 2011-01-20 Denso Corp In-vehicle power supply device
CN102340041A (en) * 2010-07-16 2012-02-01 汉达精密电子(昆山)有限公司 Battery pack
CN102420345A (en) * 2011-11-03 2012-04-18 昆山高点绿能电容有限公司 Three-in-one hybrid energy-storing battery
JPWO2014068900A1 (en) * 2012-10-29 2016-09-08 三洋電機株式会社 Power supply for vehicle
JP6049856B2 (en) * 2013-03-14 2016-12-21 株式会社東芝 Battery system
US10741896B2 (en) 2013-03-14 2020-08-11 Kabushiki Kaisha Toshiba Battery system
WO2014142078A1 (en) * 2013-03-14 2014-09-18 株式会社 東芝 Battery system
JPWO2014142078A1 (en) * 2013-03-14 2017-02-16 株式会社東芝 Battery system
CN104956514A (en) * 2013-03-14 2015-09-30 株式会社东芝 Battery system
US9837834B2 (en) 2013-04-03 2017-12-05 Panasonic Intellectual Property Management Co., Ltd. Battery apparatus
WO2014162686A1 (en) 2013-04-03 2014-10-09 パナソニック株式会社 Battery system
JPWO2014162686A1 (en) * 2013-04-03 2017-02-16 パナソニックIpマネジメント株式会社 Battery system
JPWO2016080222A1 (en) * 2014-11-17 2017-07-20 株式会社村田製作所 In-vehicle battery and in-vehicle power supply device
WO2016080222A1 (en) * 2014-11-17 2016-05-26 株式会社村田製作所 On-vehicle battery, and on-vehicle power supply device
WO2021218814A1 (en) * 2020-04-30 2021-11-04 宁德时代新能源科技股份有限公司 Battery, apparatus, battery production method, and device
WO2022226748A1 (en) * 2021-04-26 2022-11-03 宁德时代新能源科技股份有限公司 Battery group, battery pack, electric apparatus, and manufacturing method and manufacturing device for battery group
US11804637B2 (en) 2021-04-26 2023-10-31 Contemporary Amperex Technology Co., Limited Battery module, battery pack, electric apparatus, and method and device for manufacturing battery module
US11901555B2 (en) 2021-07-30 2024-02-13 Contemporary Amperex Technology Co., Limited Battery module, battery pack, and electric apparatus

Similar Documents

Publication Publication Date Title
KR100903244B1 (en) Assembled battery system, method for charging assembled battery, and charging cleaner
US9812732B2 (en) Dual storage system and method with lithium ion and lead acid battery cells
US9023522B2 (en) Cathode for lithium-ion secondary battery, lithium-ion secondary battery, vehicle and power storage system equipped with the battery
US11594777B2 (en) Dual energy storage system and starter battery module
JPH10208730A (en) Non-aqueous electrolyte secondary battery
JP2005108477A (en) Battery pack and electric automobile
JP2003174734A (en) Hybrid secondary battery
JP2003134689A (en) Power supply system
JP2002025630A (en) Power supply system of running vehicle
JP2000113909A (en) Storing method for lithium secondary battery
JP5282966B2 (en) Lithium ion secondary battery
JP2003219575A (en) Power system
CN1237649C (en) Sealed nickel-metal compound accumulator and mixing electric vehicle therewith
JP3702763B2 (en) Secondary battery for traveling vehicle
JP2003086254A (en) Hybrid secondary battery
JP2001286004A (en) Power supply system for running vehicle
JP6038560B2 (en) Non-aqueous electrolyte battery storage or transport method, battery pack storage or transport method, and non-aqueous electrolyte battery charge state maintaining method
JP3707349B2 (en) Power supply system for traveling vehicles
JP2001313082A (en) Power source system for running vehicle
JP2002051471A (en) Power supply system for vehicle, and method for estimating state of charging of the system
JP7431192B2 (en) Control method for alkaline secondary batteries
JP2001313085A (en) Power source system for running vehicle
JPH0845558A (en) Portable type power supply system
JPH10149807A (en) Assembled battery
JP2002042900A (en) Power system for traveling vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20050610