JP2019003838A - Liquid-type lead storage battery - Google Patents

Liquid-type lead storage battery Download PDF

Info

Publication number
JP2019003838A
JP2019003838A JP2017117931A JP2017117931A JP2019003838A JP 2019003838 A JP2019003838 A JP 2019003838A JP 2017117931 A JP2017117931 A JP 2017117931A JP 2017117931 A JP2017117931 A JP 2017117931A JP 2019003838 A JP2019003838 A JP 2019003838A
Authority
JP
Japan
Prior art keywords
electrode plate
film body
separator
fibers
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017117931A
Other languages
Japanese (ja)
Other versions
JP6953821B2 (en
Inventor
素子 原田
Motoko Harada
素子 原田
真吾 荒城
Shingo Araki
真吾 荒城
隆之 木村
Takayuki Kimura
隆之 木村
岩崎 富生
Tomio Iwasaki
富生 岩崎
博史 春名
Hiroshi Haruna
博史 春名
本田 光利
Mitsutoshi Honda
光利 本田
大郊 高松
Daiko TAKAMATSU
大郊 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017117931A priority Critical patent/JP6953821B2/en
Publication of JP2019003838A publication Critical patent/JP2019003838A/en
Application granted granted Critical
Publication of JP6953821B2 publication Critical patent/JP6953821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To achieve both of the suppression of stratification of electrolyte solution and the enhancement of an output performance of a lead storage battery.SOLUTION: A liquid-type lead storage battery comprises: a positive electrode plate 10; a negative electrode plate 9; a separator 11 disposed between the positive electrode plate 10 and the negative electrode plate 9; a film body 14 including a fiber and disposed between the negative electrode plate 9 and the separator 11; an electrolyte solution; and a battery case which contains the positive electrode plate 10, the negative electrode plate 9, the separator 11, the film body 14 and the electrolyte solution. The film body 14 has pores of 20 μm or less in average pore diameter. The film body 14 has a porosity of 60% or more. Of the fiber included in the film body 14, the fiber of 5 μm or more in fiber diameter accounts for 10% or more.SELECTED DRAWING: Figure 3

Description

本発明は、液式鉛蓄電池に関する。   The present invention relates to a liquid lead acid battery.

鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー、バックアップ用電源、及び電動車の主電源に用いられる。近年の自動車では、炭酸ガス排出規制対策、低燃費化等を目的として、発電制御、信号待ち等の際にエンジンを停止するアイドリングストップアンドスタートシステム(以下、「ISS」と称する。)が採用されるようになっている。   Lead-acid batteries are widely used for industrial purposes, and are used, for example, for automobile batteries, backup power supplies, and main power supplies for electric vehicles. In recent automobiles, an idling stop-and-start system (hereinafter referred to as “ISS”) that stops the engine during power generation control, waiting for a signal, or the like is employed for the purpose of carbon dioxide emission regulation measures, fuel efficiency reduction, and the like. It has become so.

アイドリングストップ中はオルタネータによる発電が行われないため、電動装備への電力は全て鉛蓄電池から供給され、鉛蓄電池では従来よりも深い放電が行われる。また、走行中もオルタネータの発電が制御されるため、充電不足の状態となる。   Since no power is generated by the alternator during idling stop, all electric power to the electric equipment is supplied from the lead storage battery, and the lead storage battery discharges deeper than before. Moreover, since the power generation of the alternator is controlled even during traveling, the battery is in a state of insufficient charging.

鉛蓄電池において深い放電と充電不足とが繰り返される場合、電解液の成層化が、鉛蓄電池の短寿命化の要因として顕在化してきている。ここで、成層化とは、充放電の繰り返しにより、電解液中の硫酸イオン(SO 2−)及び硫酸水素イオン(HSO )(以下、これらを「硫酸イオン」と総称する)が沈降して、電槽の上下で電解液の比重に差が生じる現象をいう。この成層化は、鉛蓄電池の満充電容量に対する残容量の割合が小さくなるにつれて顕著になるため、電解液の撹拌効果が得られにくい中間充電状態で使用されるISS車用鉛蓄電池では、成層化の抑制が重要な課題となる。加えて、ISS車では、エンジン始動とエンジン停止中の電力供給とが頻繁に行われるため、高い出力性能も求められている。すなわち、ISS車においては、成層化の抑制と出力性能とを両立することが求められる。 When deep discharge and insufficient charging are repeated in a lead storage battery, stratification of the electrolyte has become apparent as a factor in shortening the life of the lead storage battery. Here, stratification means that sulfate ions (SO 4 2− ) and hydrogen sulfate ions (HSO 4 ) (hereinafter collectively referred to as “sulfate ions”) in the electrolytic solution are precipitated by repeated charge and discharge. A phenomenon in which a difference in the specific gravity of the electrolyte occurs between the top and bottom of the battery case. This stratification becomes more pronounced as the ratio of the remaining capacity to the full charge capacity of the lead storage battery becomes smaller. Therefore, in the lead storage battery for an ISS vehicle used in an intermediate charge state in which the stirring effect of the electrolyte is difficult to be obtained, stratification is performed. Suppression is an important issue. In addition, in an ISS vehicle, high output performance is also required because the engine is frequently started and the power is supplied while the engine is stopped. That is, in an ISS vehicle, it is required to achieve both suppression of stratification and output performance.

このような課題に対し、特許文献1には、電極表面にブチルゴム等を含む多孔質樹脂層に含まれることにより、保液性を確保し、鉛蓄電池の長寿命化等が可能な液式鉛蓄電池が記載されている。   For such a problem, Patent Document 1 discloses a liquid lead that can maintain liquid retention and increase the life of a lead-acid battery by being included in a porous resin layer containing butyl rubber or the like on the electrode surface. A storage battery is described.

特開2003−223890号公報JP 2003-223890 A

しかし、特許文献1に記載されたような鉛蓄電池では、電解液の成層化の抑制と電池の出力性能との両立の点で未だ改善の余地がある。   However, in the lead storage battery as described in Patent Document 1, there is still room for improvement in terms of coexistence of suppression of stratification of the electrolyte and output performance of the battery.

そこで、本発明は、電解液の成層化の抑制と電池の出力性能の向上とを両立することを目的とする。   Accordingly, an object of the present invention is to achieve both suppression of stratification of the electrolytic solution and improvement of the output performance of the battery.

本発明者らの検討によれば、正極近傍では、放電時に発生した水が電解液の混合を促進するため、成層化の影響は小さい一方、負極近傍では、そのような作用がないために、成層化が起こりやすい。そこで、本発明者らは、更なる検討を重ねた結果、平均細孔径が20μm以下の細孔を有する膜体であって、空孔率が60%以上であり、繊維径が5μm以上の繊維の割合が10%以上である膜体を負極とセパレータとの間に設けた場合に、電解液の成層化を抑制し、かつ高い出力性能が得られることを見出した。   According to the study by the present inventors, water generated at the time of discharge promotes mixing of the electrolyte solution in the vicinity of the positive electrode, so that the effect of stratification is small, while there is no such effect in the vicinity of the negative electrode. Stratification is likely to occur. Therefore, as a result of further studies, the present inventors have obtained a membrane having pores having an average pore diameter of 20 μm or less, a porosity of 60% or more, and a fiber diameter of 5 μm or more. It was found that when a film body having a ratio of 10% or more is provided between the negative electrode and the separator, stratification of the electrolyte is suppressed and high output performance is obtained.

すなわち、本発明は、一態様において、正極板と、負極板と、正極板と負極板との間に配置されたセパレータと、負極板とセパレータとの間に配置され、繊維を含む膜体と、電解液と、正極板、負極板、セパレータ、膜体及び電解液を収容する電槽と、を備え、膜体は平均細孔径が20μm以下の細孔を有し、膜体の空孔率は60%以上であり、膜体に含まれる繊維に占める繊維径が5μm以上の繊維の割合が10%以上である、液式鉛蓄電池である。   That is, in one aspect, the present invention provides a positive electrode plate, a negative electrode plate, a separator disposed between the positive electrode plate and the negative electrode plate, a film body disposed between the negative electrode plate and the separator, and containing fibers. A positive electrode plate, a negative electrode plate, a separator, a membrane body, and a battery case containing the electrolyte solution, and the membrane body has pores having an average pore diameter of 20 μm or less, and the porosity of the membrane body Is a liquid type lead-acid battery in which the proportion of fibers having a fiber diameter of 5 μm or more in the fibers contained in the film body is 10% or more.

一態様において、膜体は、有機繊維を含む不織布、無機繊維を含む不織布、又は、有機繊維及び無機繊維を含む不織布を備える。   In one embodiment, the film body includes a nonwoven fabric containing organic fibers, a nonwoven fabric containing inorganic fibers, or a nonwoven fabric containing organic fibers and inorganic fibers.

一態様において、繊維に占める繊維径が、5μm未満の繊維の割合が60%以上である。一態様において、繊維に占める繊維径が5μm以上10μm以下の繊維の割合が、10%以上である。   In one embodiment, the proportion of fibers having a fiber diameter of less than 5 μm in the fibers is 60% or more. In one embodiment, the proportion of fibers having a fiber diameter of 5 μm or more and 10 μm or less in the fibers is 10% or more.

一態様において、セパレータは袋状のセパレータであり、負極板及び膜体がセパレータ内に収容されている。   In one embodiment, the separator is a bag-shaped separator, and the negative electrode plate and the film body are accommodated in the separator.

一態様において、膜体の厚さは、0.3mm以下である。   In one embodiment, the thickness of the film body is 0.3 mm or less.

本発明によれば、電解液の成層化を抑制と電池の出力性能の向上とを両立することができる。   According to the present invention, it is possible to achieve both suppression of stratification of the electrolytic solution and improvement of the output performance of the battery.

一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。It is a perspective view showing the whole lead-acid battery composition and internal structure concerning one embodiment. 一実施形態に係る鉛蓄電池の電極群を示す斜視図である。It is a perspective view which shows the electrode group of the lead storage battery which concerns on one Embodiment. 図2におけるI−I線に沿った矢視断面を示す模式断面図である。It is a schematic cross section which shows the arrow cross section along the II line | wire in FIG.

以下、図面を適宜参照しながら、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

図1は、一実施形態に係る液式鉛蓄電池(以下、単に「鉛蓄電池」ともいう)の全体構成及び内部構造を示す斜視図である。図1に示すように、本実施形態に係る鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。   FIG. 1 is a perspective view showing an overall configuration and an internal structure of a liquid lead acid battery (hereinafter also simply referred to as “lead acid battery”) according to an embodiment. As shown in FIG. 1, the lead storage battery 1 according to the present embodiment includes a battery case 2 having an upper surface opened and a lid 3 for closing the opening of the battery case 2. The battery case 2 and the lid 3 are made of, for example, polypropylene. The lid 3 is provided with a negative electrode terminal 4, a positive electrode terminal 5, and a liquid port plug 6 that closes a liquid injection port provided in the lid 3.

電槽2の内部には、電極群7と、電極群7を負極端子4に接続する負極柱8と、電極群7を正極端子5に接続する正極柱(図示せず)と、希硫酸等の電解液とが収容されている。   Inside the battery case 2 are an electrode group 7, a negative pole 8 connecting the electrode group 7 to the negative terminal 4, a positive pole (not shown) connecting the electrode group 7 to the positive terminal 5, dilute sulfuric acid, etc. The electrolyte solution is accommodated.

鉛蓄電池1は、一実施形態において、JIS D5301において規定される区分でD以上の幅寸法を有していてよい。鉛蓄電池1の幅寸法は、例えば、JIS D5301において規定される区分でD、E、F、G又はHであってよい。   In one embodiment, the lead-acid battery 1 may have a width dimension equal to or greater than D in a section defined in JIS D5301. The width dimension of the lead storage battery 1 may be D, E, F, G, or H, for example, as defined in JIS D5301.

鉛蓄電池1は、一実施形態において、EN 50342−2において規定される区分でLBN0以上又はLN0以上の幅寸法を有していてよい。鉛蓄電池1の幅寸法は、例えば、EN 50342−2において規定される区分でLBN0〜6又はLN0〜6であってよい。   In one embodiment, the lead storage battery 1 may have a width dimension of LBN0 or more or LN0 or more in a section defined in EN 50342-2. The width dimension of the lead storage battery 1 may be LBN0-6 or LN0-6, for example, as defined in EN 50342-2.

鉛蓄電池1は、一実施形態において、170mm以上の幅寸法を有していてよい。鉛蓄電池1の幅寸法は、例えば、175mm以上又は180mm以上であってもよく、280mm以下又は225mm以下であってもよい。   In one embodiment, the lead storage battery 1 may have a width dimension of 170 mm or more. The width dimension of the lead storage battery 1 may be, for example, 175 mm or more or 180 mm or more, or 280 mm or less or 225 mm or less.

図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、金属鉛(Pb)を活物質として含む板状の負極板9と、二酸化鉛(PbO)を活物質として含む板状の正極板10と、負極板9と正極板10との間に配置されたセパレータ11とを備えている。電極群7は、複数の負極板9と正極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極板9及び正極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。 FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 includes a plate-like negative electrode plate 9 containing metallic lead (Pb) as an active material, a plate-like positive electrode plate 10 containing lead dioxide (PbO 2 ) as an active material, and a negative electrode A separator 11 disposed between the plate 9 and the positive electrode plate 10 is provided. The electrode group 7 has a structure in which a plurality of negative electrode plates 9 and positive electrode plates 10 are alternately stacked in a direction substantially parallel to the opening surface of the battery case 2 via separators 11. That is, the negative electrode plate 9 and the positive electrode plate 10 are arranged so that their main surfaces extend in a direction perpendicular to the opening surface of the battery case 2.

複数の負極板9の耳部9a同士は、負極側ストラップ12で集合溶接されている。同様に、複数の正極板10の耳部10a同士は、正極側ストラップ13で集合溶接されている。そして、負極側ストラップ12及び正極側ストラップ13のが、それぞれ負極柱8及び正極柱を介して負極端子4及び正極端子5に接続される。   The ear portions 9 a of the plurality of negative electrode plates 9 are collectively welded by the negative side strap 12. Similarly, the ears 10 a of the plurality of positive electrode plates 10 are collectively welded by the positive side strap 13. The negative side strap 12 and the positive side strap 13 are connected to the negative terminal 4 and the positive terminal 5 through the negative pole 8 and the positive pole, respectively.

図3は、図2におけるI−I線に沿った矢視断面を示す模式断面図である。図3に示すように、負極板9とセパレータ11との間には膜体14が設けられている。   FIG. 3 is a schematic cross-sectional view showing a cross-section taken along the line II in FIG. As shown in FIG. 3, a film body 14 is provided between the negative electrode plate 9 and the separator 11.

セパレータ11は、例えば袋状に形成されており、負極板9及び膜体14は、セパレータ11内に収容されている。セパレータ11を形成する材料の例としては、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO、Al等の無機系粒子を付着させたものであってよい。 The separator 11 is formed in a bag shape, for example, and the negative electrode plate 9 and the film body 14 are accommodated in the separator 11. Examples of the material forming the separator 11 include polyethylene (PE) and polypropylene (PP). The separator 11 may be one in which inorganic particles such as SiO 2 and Al 2 O 3 are attached to a woven fabric, a nonwoven fabric, a porous film or the like formed of these materials.

セパレータ11の厚さは、好ましくは0.1mm以上0.5mm以下、より好ましくは0.2mm以上0.3mm以下である。セパレータ11の厚さが0.1mm以上であると、セパレータの強度を確保できる。セパレータ11の厚さが0.5mm以下であると、電池の内部抵抗の上昇を抑制できる。   The thickness of the separator 11 is preferably 0.1 mm or more and 0.5 mm or less, more preferably 0.2 mm or more and 0.3 mm or less. When the thickness of the separator 11 is 0.1 mm or more, the strength of the separator can be secured. When the thickness of the separator 11 is 0.5 mm or less, an increase in the internal resistance of the battery can be suppressed.

セパレータ11の平均孔径は、好ましくは10nm以上500nm以下、より好ましくは30nm以上200nm以下である。セパレータ11の平均孔径が10nm以上であると、硫酸イオンを好適に通過させ、硫酸イオンの拡散速度を確保できる。セパレータ11の平均孔径が500nm以下であると、鉛のデンドライトの成長が抑制され、短絡が生じにくくなる。   The average pore diameter of the separator 11 is preferably 10 nm to 500 nm, more preferably 30 nm to 200 nm. When the average pore diameter of the separator 11 is 10 nm or more, sulfate ions can be suitably passed, and the diffusion rate of sulfate ions can be ensured. When the average pore diameter of the separator 11 is 500 nm or less, the growth of lead dendrite is suppressed, and a short circuit hardly occurs.

本実施形態では、膜体14は、負極板9の表面を覆うように負極板9に密着した状態で設けられている。膜体14は、例えばシート状又は袋状であってよい。膜体14がシート状である場合、膜体14は、負極板9に巻きつけられるようにして負極板9の表面を覆っている。膜体14が袋状である場合、負極板9は、膜体14内に収容されている。   In the present embodiment, the film body 14 is provided in close contact with the negative electrode plate 9 so as to cover the surface of the negative electrode plate 9. The film body 14 may be, for example, a sheet shape or a bag shape. When the film body 14 has a sheet shape, the film body 14 covers the surface of the negative electrode plate 9 so as to be wound around the negative electrode plate 9. When the film body 14 has a bag shape, the negative electrode plate 9 is accommodated in the film body 14.

膜体14は、繊維を含んでいる。膜体14は、例えば不織布を備えている。不織布は、有機繊維を含む不織布、無機繊維を含む不織布、又は、繊維として有機繊維及び無機繊維を含む有機・無機混合不織布であってよい。有機繊維としては、ポリエチレン、ポリプロピレン、ポリエステル、ナイロン、アラミド等の合成繊維が挙げられる。無機繊維としては、SiOの繊維(ガラス繊維)等が挙げられる。有機・無機混合不織布は、SiO等で形成された無機粉体を更に含んでいてもよい。 The film body 14 includes fibers. The film body 14 includes, for example, a nonwoven fabric. The nonwoven fabric may be a nonwoven fabric containing organic fibers, a nonwoven fabric containing inorganic fibers, or an organic / inorganic mixed nonwoven fabric containing organic fibers and inorganic fibers as fibers. Examples of the organic fiber include synthetic fibers such as polyethylene, polypropylene, polyester, nylon, and aramid. Examples of inorganic fibers include SiO 2 fibers (glass fibers). The organic / inorganic mixed nonwoven fabric may further contain inorganic powder formed of SiO 2 or the like.

膜体14は、繊維径が異なる複数種類の繊維を含んでいる。繊維径が5μm未満(特に1μm以上2μm以下程度)の細い繊維は、膜体14の比表面積を増加させることにより、硫酸の沈降を抑制する効果を奏すると考えられる。繊維径が5μm以上(特に5μm以上10μm以下程度)の太い繊維は、膜体14の強度を確保すると共に、膜体14の空間を増加させることにより、硫酸の拡散係数を大きくする効果を奏すると考えられる。太い繊維の繊維径は、好ましくは、細い繊維の繊維径の2.5倍以上である。このように、膜体14が細い繊維及び太い繊維の2種類以上を含むことで、成層化抑制と出力性能との両立が可能になると考えられる。   The film body 14 includes a plurality of types of fibers having different fiber diameters. It is considered that fine fibers having a fiber diameter of less than 5 μm (particularly about 1 μm or more and 2 μm or less) have an effect of suppressing the precipitation of sulfuric acid by increasing the specific surface area of the film body 14. A thick fiber having a fiber diameter of 5 μm or more (particularly about 5 μm or more and 10 μm or less) has the effect of increasing the diffusion coefficient of sulfuric acid by ensuring the strength of the film body 14 and increasing the space of the film body 14. Conceivable. The fiber diameter of the thick fiber is preferably at least 2.5 times the fiber diameter of the thin fiber. Thus, it is thought that coexistence with stratification suppression and output performance is attained because the film body 14 contains two or more types of a thin fiber and a thick fiber.

膜体14に含まれる全繊維中、繊維径が5μm以上の繊維が占める割合は、10%以上であり、硫酸の拡散係数を更に大きくする観点から、好ましくは5%以上、より好ましくは7%以上、更に好ましくは9%以上、特に好ましくは10%以上であり、また、硫酸の沈降を更に抑制する観点から、好ましくは90%以下、より好ましくは85%以下、更に好ましくは80%以下、特に好ましくは75%以下である。繊維径が5μm以上10μm以下の繊維が占める割合が、上記の範囲であることが好ましい。   The ratio of fibers having a fiber diameter of 5 μm or more in the total fibers contained in the membrane body 14 is 10% or more, and from the viewpoint of further increasing the diffusion coefficient of sulfuric acid, it is preferably 5% or more, more preferably 7%. Or more, more preferably 9% or more, particularly preferably 10% or more, and preferably 90% or less, more preferably 85% or less, still more preferably 80% or less, from the viewpoint of further suppressing the precipitation of sulfuric acid. Particularly preferably, it is 75% or less. The proportion of fibers having a fiber diameter of 5 μm or more and 10 μm or less is preferably in the above range.

膜体14に含まれる全繊維中、繊維径が5μm未満の繊維が占める割合は、硫酸の沈降を更に抑制する観点から、好ましくは60%以上、より好ましくは65%以上、更に好ましくは70%以上、特に好ましくは75%以上であり、また、硫酸の拡散係数を更に大きくする観点から、好ましくは95%以下、より好ましくは90%以下、更に好ましくは85%以下、特に好ましくは80%以下である。繊維径が1μm以上2μm以下の繊維が占める割合が、上記の範囲であることが好ましい。   The proportion of fibers with a fiber diameter of less than 5 μm in the total fibers contained in the membrane body 14 is preferably 60% or more, more preferably 65% or more, and even more preferably 70%, from the viewpoint of further suppressing sulfuric acid settling. From the viewpoint of further increasing the diffusion coefficient of sulfuric acid, it is preferably 95% or less, more preferably 90% or less, still more preferably 85% or less, particularly preferably 80% or less. It is. The proportion of fibers having a fiber diameter of 1 μm or more and 2 μm or less is preferably in the above range.

膜体に含まれる繊維に占める所定の繊維径の繊維の割合は、走査電子顕微鏡(例えば株式会社日立ハイテクノロジーズ製)で得られるSEM像に基づいて測定される。具体的には、SEM像における繊維100本についてその径(SEM像における繊維の短手方向の長さ(最短距離))を測定し、繊維径の分布を求める。次いで、測定した全繊維の本数に占める所定の繊維径の繊維の本数の割合を算出する。   The ratio of fibers having a predetermined fiber diameter to the fibers contained in the film body is measured based on an SEM image obtained with a scanning electron microscope (for example, manufactured by Hitachi High-Technologies Corporation). Specifically, the diameter (length in the short direction of the fiber in the SEM image (shortest distance)) of 100 fibers in the SEM image is measured, and the fiber diameter distribution is obtained. Next, the ratio of the number of fibers having a predetermined fiber diameter to the total number of fibers measured is calculated.

膜体14は、細孔を有している。膜体14の平均細孔径は、20μm以下であり、電解液の成層化を更に抑制する観点から、好ましくは、19μm以下、18μm以下、17μm以下、16μm以下、15μm以下、14μm以下、13μm以下、12μm以下、11μm以下又は10μm以下である。膜体14の平均細孔径は、電池の出力を更に向上させる観点から、好ましくは、1μm以上、2μm以上又は3μm以上である。   The film body 14 has pores. The average pore diameter of the membrane body 14 is 20 μm or less, and from the viewpoint of further suppressing the stratification of the electrolytic solution, preferably 19 μm or less, 18 μm or less, 17 μm or less, 16 μm or less, 15 μm or less, 14 μm or less, 13 μm or less, It is 12 μm or less, 11 μm or less, or 10 μm or less. The average pore diameter of the film body 14 is preferably 1 μm or more, 2 μm or more, or 3 μm or more from the viewpoint of further improving the output of the battery.

膜体の平均細孔径は、水銀圧入法により測定される積算細孔径分布において、分布曲線のY軸(細孔容積又は細孔比表面積)における最小値と最大値との中間値に対応するX軸(細孔径)の値であるメディアン径として算出される。膜体の平均細孔径は、例えば、株式会社島津製作所製、オートポアIV 9500で測定できる。   The average pore diameter of the membrane body is an X corresponding to an intermediate value between the minimum value and the maximum value on the Y axis (pore volume or pore specific surface area) of the distribution curve in the cumulative pore diameter distribution measured by the mercury intrusion method. It is calculated as the median diameter which is the value of the axis (pore diameter). The average pore diameter of the membrane can be measured with, for example, Autopore IV 9500 manufactured by Shimadzu Corporation.

上述のような膜体14を負極板9とセパレータ11との間に設けることにより、電槽2下部における高濃度の硫酸の蓄積を抑制し、電解液の成層化を抑制することができる。言い換えると、膜体14を設けることにより、電槽2内部の硫酸イオンの濃度を均一に保持することができ、電池反応が偏在することを抑制できるため、鉛蓄電池1の寿命の向上が可能となる。このような膜体14をセパレータ11とは別にセパレータ11よりも負極板9の近傍に設けることにより、例えばセパレータ11に成層化抑制のための処理を施した場合に比べて、より高い成層化の抑制効果が得られる。   By providing the film body 14 as described above between the negative electrode plate 9 and the separator 11, accumulation of high-concentration sulfuric acid in the lower part of the battery case 2 can be suppressed, and stratification of the electrolytic solution can be suppressed. In other words, by providing the film body 14, the concentration of sulfate ions inside the battery case 2 can be kept uniform, and the battery reaction can be prevented from being unevenly distributed, so that the life of the lead storage battery 1 can be improved. Become. By providing such a film body 14 in the vicinity of the negative electrode plate 9 rather than the separator 11 separately from the separator 11, for example, compared with the case where the separator 11 is subjected to a treatment for suppressing stratification, the stratification is higher. An inhibitory effect is obtained.

膜体14の空孔率は、60%以上であり、硫酸イオンの拡散性を更に確保しやすくすると共に、硫酸イオンを保持する空間を更に大きくする観点から、好ましくは65%以上、より好ましくは70%以上、更に好ましくは75%以上、特に好ましくは80%以上である。膜体の空孔率は、膜体から適当な大きさの直方体状に切り取った試料について、下記式(3)〜(5)に従い実際の体積と見かけの体積とから算出される。
空孔率(%)={1−(実際の体積/見かけの体積)}×100 …(3)
実際の体積(cm)=重量の実測値(g)/密度(g/cm) …(4)
見かけの体積(cm)=縦(cm)×横(cm)×厚さ(cm) …(5)
なお、見かけの体積を算出する際の試料の縦、横及び厚さはいずれも実測値を用いる。
The porosity of the film body 14 is 60% or more, and from the viewpoint of further ensuring the diffusibility of sulfate ions and further increasing the space for holding sulfate ions, it is preferably 65% or more, more preferably It is 70% or more, more preferably 75% or more, and particularly preferably 80% or more. The porosity of the film body is calculated from the actual volume and the apparent volume according to the following formulas (3) to (5) for a sample cut from the film body into a rectangular parallelepiped having an appropriate size.
Porosity (%) = {1− (actual volume / apparent volume)} × 100 (3)
Actual volume (cm 3 ) = actual value of weight (g) / density (g / cm 3 ) (4)
Apparent volume (cm 3 ) = length (cm) × width (cm) × thickness (cm) (5)
Note that measured values are used for the length, width, and thickness of the sample when calculating the apparent volume.

膜体14の厚さは、内部抵抗の上昇を抑制する観点から、好ましくは0.3mm以下、より好ましくは0.25mm以下、更に好ましくは0.2mm以下、特に好ましくは0.15mm以下である。膜体14の厚さは、硫酸の沈降の防止能力、電池反応への影響、強度等の観点から、例えば0.03mm以上である。膜体14が不織布を備える場合には、不織布を構成する繊維の太さ等に応じて膜体14の厚さが決定される。   The thickness of the film body 14 is preferably 0.3 mm or less, more preferably 0.25 mm or less, still more preferably 0.2 mm or less, and particularly preferably 0.15 mm or less from the viewpoint of suppressing an increase in internal resistance. . The thickness of the film body 14 is, for example, 0.03 mm or more from the viewpoints of sulfuric acid precipitation prevention ability, influence on battery reaction, strength, and the like. In the case where the film body 14 includes a nonwoven fabric, the thickness of the film body 14 is determined according to the thickness of the fibers constituting the nonwoven fabric.

上記実施形態では、膜体14は負極板9の主面(セパレータ11に対向する面)、側面及び底面のすべてを覆い、それらの表面に接触するように(密着した状態で)設けられていたが、他の実施形態では、膜体は、負極板9から離間するように、負極板9とセパレータ11との間に設けられていてもよい。この場合、膜体14は、例えばセパレータ11の負極側の面上に設けられていてよい。電解液の成層化をより抑制する観点からは、膜体14は、負極板9の表面に接触するように(密着した状態で)設けられていることが好ましい。   In the above embodiment, the film body 14 is provided so as to cover all of the main surface (the surface facing the separator 11), the side surface, and the bottom surface of the negative electrode plate 9, and to be in contact with (in close contact with) the surfaces. However, in another embodiment, the film body may be provided between the negative electrode plate 9 and the separator 11 so as to be separated from the negative electrode plate 9. In this case, the film body 14 may be provided on the surface of the separator 11 on the negative electrode side, for example. From the viewpoint of further suppressing the stratification of the electrolytic solution, the film body 14 is preferably provided so as to be in contact with (in close contact with) the surface of the negative electrode plate 9.

上記実施形態では、膜体14は負極板9の主面(セパレータ11に対向する面)、側面及び底面のすべてを覆っていたが、他の実施形態では、膜体は、負極板9の主面(セパレータ11に対向する面)のみを覆うように設けられていてもよい。   In the above embodiment, the film body 14 covers all of the main surface (the surface facing the separator 11), the side surface, and the bottom surface of the negative electrode plate 9. In other embodiments, the film body is the main surface of the negative electrode plate 9. It may be provided so as to cover only the surface (the surface facing the separator 11).

<実施例1>
一酸化鉛を主成分とする鉛粉を希硫酸で練って調製したペーストを鉛合金格子に充填したペースト式極板を用いた。その後、熟成と乾燥工程とを経て未化成極板が得られた。なお、未化成の正極板及び負極板は、いずれも2価の鉛化合物である一酸化鉛(PbO)、三塩基性希硫酸鉛(3PbO・PbSO・HO)等の混合物で構成されている。化成により、正極板の未化成物質は二酸化鉛(PbO)に酸化され、負極板の未化成物質は海綿状鉛(Pb)に還元され、既化極板(正極板、負極板)が得られた。
<Example 1>
A paste type electrode plate in which a lead alloy lattice filled with a paste prepared by kneading lead powder mainly composed of lead monoxide with dilute sulfuric acid was used. Thereafter, an unformed electrode plate was obtained through aging and drying steps. The unformed positive electrode plate and negative electrode plate are both composed of a mixture of divalent lead compounds such as lead monoxide (PbO) and tribasic dilute lead sulfate (3PbO · PbSO 4 · H 2 O). ing. As a result of the conversion, the unformed material of the positive electrode plate is oxidized to lead dioxide (PbO 2 ), and the unformed material of the negative electrode plate is reduced to spongy lead (Pb) to obtain an already formed electrode plate (positive electrode plate, negative electrode plate). It was.

膜体として表1に示すとおりの無機不織布(主成分:SiO)を用い、負極板上に配置した。当該無機不織布を構成する繊維は、繊維径が1μm以上2μm以下の繊維である繊維Aと、繊維径5μm以上10μm以下の繊維である繊維Bとの2種類を含んでおり、繊維A,Bの割合を表1に示した。セパレータとしては、厚さが0.25mm、平均孔径が30nm以上200nm以下である袋状のポリエチレン製セパレータを用い、負極板及び膜体をセパレータ内に収容した。電解液としては希硫酸を用いて、成層化抑制が困難なDサイズ(JIS D5301。幅:173mm、箱高さ:204mm。負極板の幅:145mm、負極板の高さ(上枠部込み):113mm。)の定格容量60Ahの鉛蓄電池を作製した。 An inorganic non-woven fabric (main component: SiO 2 ) as shown in Table 1 was used as the film body and placed on the negative electrode plate. The fibers constituting the inorganic nonwoven fabric include two types of fibers A and B, a fiber A having a fiber diameter of 1 μm to 2 μm and a fiber B having a fiber diameter of 5 μm to 10 μm. The ratio is shown in Table 1. As the separator, a bag-like polyethylene separator having a thickness of 0.25 mm and an average pore diameter of 30 nm to 200 nm was used, and the negative electrode plate and the film body were accommodated in the separator. D size using dilute sulfuric acid as electrolyte (JIS D5301, width: 173 mm, box height: 204 mm, negative plate width: 145 mm, negative plate height (including upper frame)) : 113 mm.) A lead storage battery with a rated capacity of 60 Ah was produced.

(平均細孔径の算出)
膜体の平均細孔径は、株式会社島津製作所製、オートポアIV 9500で測定した。膜体の平均細孔径は、水銀圧入法により測定された積算細孔径分布において、分布曲線のY軸(細孔容積又は細孔比表面積)における最小値と最大値との中間値に対応するX軸(細孔径)の値であるメディアン径として算出した。
(Calculation of average pore diameter)
The average pore diameter of the membrane was measured with Autopore IV 9500 manufactured by Shimadzu Corporation. The average pore diameter of the membrane body is an X corresponding to an intermediate value between the minimum value and the maximum value on the Y axis (pore volume or pore specific surface area) of the distribution curve in the cumulative pore diameter distribution measured by the mercury intrusion method. The median diameter was calculated as the value of the axis (pore diameter).

(繊維径の算出)
膜体に含まれる繊維の繊維径は、株式会社日立ハイテクノロジーズ製の走査電子顕微鏡で得られたSEM像に基づいて測定した。具体的には、SEM像における繊維100本についてその径(SEM像における繊維の短手方向の長さ(最短距離))を測定し、繊維径の分布を求めた。次いで、測定した全繊維の本数に占める繊維径が1μm以上2μm以下である繊維Aの本数及び繊維径が5μm以上10μm以下である繊維Bの本数の割合をそれぞれ算出した。
(Calculation of fiber diameter)
The fiber diameter of the fiber contained in the film body was measured based on an SEM image obtained with a scanning electron microscope manufactured by Hitachi High-Technologies Corporation. Specifically, the diameter (length in the short direction of the fiber (shortest distance) of the fiber in the SEM image) of 100 fibers in the SEM image was measured, and the fiber diameter distribution was obtained. Subsequently, the ratio of the number of fibers A having a fiber diameter of 1 μm or more and 2 μm or less and the number of fibers B having a fiber diameter of 5 μm or more and 10 μm or less to the total number of measured fibers was calculated.

(成層化抑制効果の評価)
電解液の成層化を抑制する効果を評価した。DOD17.5%寿命試験と同様に充放電を繰り返し、255サイクル目における電槽内の上部と下部での電解液の上下比重差を成層化の指標とした。具体的には、電極群の上端(セパレータの上端)から1cm上までの領域を電槽内の上部とし、電極群の下端から1cm下までの領域を電槽内の下部とした。なお、電極群の高さ(電極群の下端からセパレータの上端までの長さ)は、116mmであった。そして、膜体を設けない場合(比較例1)の上下比重差を100として、上下比重差を算出した。
(Evaluation of stratification control effect)
The effect of suppressing the stratification of the electrolyte was evaluated. Charging and discharging were repeated in the same manner as in the DOD 17.5% life test, and the difference in upper and lower specific gravity of the electrolyte solution at the upper and lower portions in the battery case at the 255th cycle was used as an index for stratification. Specifically, the region from the upper end of the electrode group (the upper end of the separator) to 1 cm above was the upper part in the battery case, and the region from the lower end of the electrode group to 1 cm below was the lower part in the battery case. The height of the electrode group (the length from the lower end of the electrode group to the upper end of the separator) was 116 mm. Then, when the film body was not provided (Comparative Example 1), the vertical specific gravity difference was calculated as 100, and the vertical specific gravity difference was calculated.

(出力性能の評価)
VDA規格に準拠して出力性能を評価した。すなわち、鉛蓄電池の初期性能を測定後、2〜96時間かけて満充電状態まで再充電した後、以下のシーケンステストを実施した。下記(1)〜(5)が1ユニットであり、出力性能は、下記(2)の放電時における電圧が7.2Vを下回るまでに当該ユニットを何回繰り返せるかに基づき評価した。なお、膜体を設けない場合(比較例1)の出力性能を100とした相対値を表1に示す。膜体を設けた場合は設けない場合に比べると硫酸の拡散が遅くなるため、出力は低下することになる。
(1)45Aで59秒間放電する。
(2)300Aで1秒間放電する。
(3)14.0Vで60秒間充電する(最大電流値:100A)。
(4)上記(1)〜(3)のシーケンステストを3600回繰り返す。
(5)48時間休止する。
(Evaluation of output performance)
The output performance was evaluated according to the VDA standard. That is, after measuring the initial performance of the lead-acid battery, it was recharged to a fully charged state over 2 to 96 hours, and then the following sequence test was performed. The following (1) to (5) are one unit, and the output performance was evaluated based on how many times the unit can be repeated until the voltage at the time of discharging (2) below falls below 7.2V. Table 1 shows relative values with the output performance set to 100 when no film body is provided (Comparative Example 1). When the film body is provided, the diffusion of sulfuric acid is delayed as compared with the case where the film body is not provided, and thus the output is reduced.
(1) Discharge at 45 A for 59 seconds.
(2) Discharge at 300 A for 1 second.
(3) Charge at 14.0 V for 60 seconds (maximum current value: 100 A).
(4) The above sequence tests (1) to (3) are repeated 3600 times.
(5) Pause for 48 hours.

なお、上下比重差が70未満かつ出力が90以上であれば、電解液の成層化の抑制と電池の出力性能の向上とを両立できるといえる。上下比重差は、好ましくは50未満である。出力は、好ましくは95以上である。   If the difference in specific gravity between the upper and lower parts is less than 70 and the output is 90 or more, it can be said that both suppression of stratification of the electrolyte and improvement of the output performance of the battery can be achieved. The upper / lower specific gravity difference is preferably less than 50. The output is preferably 95 or more.

(DOD17.5%寿命試験(耐久性))
DOD17.5%寿命性能は次のように測定した。まず始めに、充電が完了した鉛蓄電池を、湯浴温度が25℃±2℃に設定された水槽中に配置した。DOD17.5%の寿命試験では、以下のサイクルユニット(a)〜(g)の順に実施した。なお、60Ahの鉛蓄電池では、20時間率電流は3Aである。また、この試験は、ISS車での鉛蓄電池の使われ方を模擬したサイクル試験であり、鉛蓄電池の電圧が10.0Vを下回った時点で寿命に達したと判断した。結果を表1に示す。
(a)12A(20時間率電流の4倍に相当)で2.5時間放電。
放電下限電圧は10.0Vよりも大きいものとした。
(b)21A(20時間率電流の7倍に相当)で40分間充電。
充電上限電圧は14.4±0.05Vであった。
(c)21A(20時間率電流の7倍に相当)で30分間放電。
放電下限電圧は10.0Vよりも大きいものとした。
(d)上記(b)及び(c)を交互に85回繰り返す。
(e)6A(20時間率電流の2倍に相当)で18時間充電。
CC(定電流)−CV(定電圧)充電とし、CV充電時の電圧は16.0V±0.05Vとした。
(f)3A(20時間率電流±1.0%)で放電。
終止電圧10.5±0.1Vに到達するまで放電させて鉛蓄電池の容量を確認し、容量低下率が5%よりも小さいことを確認した。
(g)15A(20時間率電流の5倍)で24時間充電。
CC−CV充電とし、CV充電時の電圧は16.0V±0.05Vとした。
(DOD 17.5% life test (durability))
The DOD 17.5% life performance was measured as follows. First, the lead-acid battery that had been fully charged was placed in a water tank whose hot water bath temperature was set to 25 ° C. ± 2 ° C. In the life test of DOD 17.5%, the following cycle units (a) to (g) were carried out in this order. In a 60 Ah lead-acid battery, the 20 hour rate current is 3 A. In addition, this test was a cycle test simulating the use of a lead storage battery in an ISS car, and it was determined that the life was reached when the voltage of the lead storage battery fell below 10.0V. The results are shown in Table 1.
(A) Discharge for 2.5 hours at 12 A (corresponding to 4 times the 20-hour current).
The discharge lower limit voltage was greater than 10.0V.
(B) Charging for 40 minutes at 21A (equivalent to 7 times the 20-hour current).
The charge upper limit voltage was 14.4 ± 0.05V.
(C) Discharge for 30 minutes at 21 A (corresponding to 7 times the 20 hour current).
The discharge lower limit voltage was greater than 10.0V.
(D) The above (b) and (c) are repeated 85 times alternately.
(E) Charging for 18 hours at 6A (equivalent to twice the 20-hour rate current).
CC (constant current) -CV (constant voltage) charging was used, and the voltage during CV charging was 16.0 V ± 0.05 V.
(F) Discharge at 3 A (20 hour rate current ± 1.0%).
It was discharged until the final voltage reached 10.5 ± 0.1 V, and the capacity of the lead storage battery was confirmed, and it was confirmed that the capacity reduction rate was smaller than 5%.
(G) Charged for 24 hours at 15A (5 times the 20 hour current).
CC-CV charging was used, and the voltage during CV charging was 16.0 V ± 0.05 V.

<実施例2〜6>
膜体として表1に示すとおりの無機不織布を用いた以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<Examples 2 to 6>
A lead-acid battery was produced and evaluated in the same manner as in Example 1 except that the inorganic nonwoven fabric as shown in Table 1 was used as the film body.

<実施例7,8>
膜体として、無機不織布に代えて表1に示すとおりの有機・無機混合不織布(多孔シート、パルプ、ガラス繊維及びシリカ粉末を含む混合繊維から構成される不織布)を用いた以外は、それぞれ実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<Examples 7 and 8>
Each example except that an organic / inorganic mixed nonwoven fabric (nonwoven fabric composed of mixed fibers containing porous sheet, pulp, glass fiber and silica powder) as shown in Table 1 was used as the film body instead of the inorganic nonwoven fabric. The lead acid battery was produced and evaluated in the same manner as in Example 1.

<実施例9>
膜体として、無機不織布に代えて表1に示すとおりの有機不織布(ポリプロピレン製)を用いた以外は、それぞれ実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<Example 9>
A lead-acid battery was prepared and evaluated in the same manner as in Example 1 except that an organic nonwoven fabric (made of polypropylene) as shown in Table 1 was used instead of the inorganic nonwoven fabric as the film body.

<実施例10>
鉛蓄電池のサイズを欧州で一般的なLN1サイズ(EN 50342−2。幅:175mm、箱高さ:190mm。負極板の幅:143mm、負極板の高さ(上枠部込み):100mm。)に変更した以外は、実施例4と同様にして鉛蓄電池の作製及び評価を行った。
<Example 10>
The size of the lead-acid battery is LN1 size (EN 50342-2. Width: 175 mm, Box height: 190 mm. Negative electrode plate width: 143 mm, Negative electrode plate height (including upper frame): 100 mm) A lead-acid battery was produced and evaluated in the same manner as in Example 4 except that the change was made.

<比較例1>
負極板上に膜体を設けなかった以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<Comparative Example 1>
A lead-acid battery was produced and evaluated in the same manner as in Example 1 except that the film body was not provided on the negative electrode plate.

<比較例2>
膜体として表1に示すとおりの無機不織布(主成分:SiO)を用いた以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<Comparative Example 2>
A lead-acid battery was prepared and evaluated in the same manner as in Example 1 except that an inorganic nonwoven fabric (main component: SiO 2 ) as shown in Table 1 was used as the film body.

<比較例3>
膜体として表1に示すとおりの有機不織布(ポリプロピレン製)を用いた以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<Comparative Example 3>
A lead-acid battery was prepared and evaluated in the same manner as in Example 1 except that an organic nonwoven fabric (made of polypropylene) as shown in Table 1 was used as the film body.

Figure 2019003838
Figure 2019003838

以上の結果から、負極とセパレータとの間に設けた膜体の平均細孔径が20μm以下、空孔率が60%以上、繊維Bの比率が10%以上である実施例では成層化抑制と出力性能が両立されていることが分かる。一方、膜体を設けていない比較例1と膜体の平均細孔径が40μmの比較例3では成層化が抑制されず、加えて、ISS寿命(耐久性)が1500未満となり、実施例に比べると大幅に短寿命となった。膜体の平均細孔径が1μmかつ繊維Bの比率が5%である比較例2では、出力性能が90未満となった。膜体の空孔率が50%の比較例4では、出力性能が90未満となった。   From the above results, in the examples in which the average pore diameter of the film body provided between the negative electrode and the separator is 20 μm or less, the porosity is 60% or more, and the ratio of the fibers B is 10% or more, stratification suppression and output It can be seen that the performance is compatible. On the other hand, in Comparative Example 1 in which no film body is provided and in Comparative Example 3 in which the average pore diameter of the film body is 40 μm, stratification is not suppressed, and in addition, the ISS life (durability) is less than 1500, which is compared with the Example. And the service life was significantly shortened. In Comparative Example 2 in which the average pore diameter of the membrane was 1 μm and the ratio of fiber B was 5%, the output performance was less than 90. In Comparative Example 4 in which the porosity of the film body was 50%, the output performance was less than 90.

なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例を含む。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。   In addition, this invention is not limited to said Example, Various modifications are included. For example, the above-described embodiments are described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to an aspect including all the configurations described.

1…鉛蓄電池、2…電槽、9…負極板、10…正極板、11…セパレータ、14…膜体。 DESCRIPTION OF SYMBOLS 1 ... Lead storage battery, 2 ... Battery case, 9 ... Negative electrode plate, 10 ... Positive electrode plate, 11 ... Separator, 14 ... Film body.

Claims (8)

正極板と、
負極板と、
前記正極板と前記負極板との間に配置されたセパレータと、
前記負極板と前記セパレータとの間に配置され、繊維を含む膜体と、
電解液と、
前記正極板、前記負極板、前記セパレータ、前記膜体及び前記電解液を収容する電槽と、を備え、
前記膜体は、平均細孔径が20μm以下の細孔を有し、
前記膜体の空孔率は60%以上であり、
前記繊維に占める繊維径が5μm以上の繊維の割合が10%以上である、液式鉛蓄電池。
A positive electrode plate;
A negative electrode plate;
A separator disposed between the positive electrode plate and the negative electrode plate;
A film body disposed between the negative electrode plate and the separator and including fibers;
An electrolyte,
A positive electrode plate, the negative electrode plate, the separator, the membrane body, and a battery case containing the electrolytic solution,
The membrane body has pores having an average pore diameter of 20 μm or less,
The porosity of the film body is 60% or more,
A liquid lead-acid battery in which the proportion of fibers having a fiber diameter of 5 μm or more in the fibers is 10% or more.
前記繊維に占める繊維径が5μm未満の繊維の割合が60%以上である、請求項1に記載の液式鉛蓄電池。   The liquid lead acid battery according to claim 1, wherein a ratio of fibers having a fiber diameter of less than 5 μm in the fibers is 60% or more. 前記繊維に占める繊維径が5μm以上10μm以下の繊維の割合が10%以上である、請求項1又は2に記載の液式鉛蓄電池。   The liquid lead acid battery according to claim 1 or 2, wherein a ratio of fibers having a fiber diameter of 5 µm to 10 µm in the fibers is 10% or more. 前記膜体が、有機繊維を含む不織布を備える、請求項1〜3のいずれか一項に記載の鉛蓄電池。   The lead acid battery as described in any one of Claims 1-3 with which the said film body is provided with the nonwoven fabric containing an organic fiber. 前記膜体が、無機繊維を含む不織布を備える、請求項1〜3のいずれか一項に記載の液式鉛蓄電池。   The liquid lead acid battery as described in any one of Claims 1-3 with which the said film body is provided with the nonwoven fabric containing an inorganic fiber. 前記膜体が、有機繊維及び無機繊維を含む不織布を備える、請求項1〜3のいずれか一項に記載の液式鉛蓄電池。   The liquid lead acid battery as described in any one of Claims 1-3 with which the said film body is provided with the nonwoven fabric containing an organic fiber and an inorganic fiber. 前記セパレータが袋状のセパレータであり、前記負極板及び前記膜体が前記セパレータ内に収容されている、請求項1〜6のいずれか一項に記載の液式鉛蓄電池。   The liquid lead acid battery according to any one of claims 1 to 6, wherein the separator is a bag-shaped separator, and the negative electrode plate and the film body are accommodated in the separator. 前記膜体の厚さが0.3mm以下である、請求項1〜7のいずれか一項に記載の液式鉛蓄電池。   The liquid lead acid battery according to any one of claims 1 to 7, wherein the film body has a thickness of 0.3 mm or less.
JP2017117931A 2017-06-15 2017-06-15 Liquid lead-acid battery Active JP6953821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017117931A JP6953821B2 (en) 2017-06-15 2017-06-15 Liquid lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017117931A JP6953821B2 (en) 2017-06-15 2017-06-15 Liquid lead-acid battery

Publications (2)

Publication Number Publication Date
JP2019003838A true JP2019003838A (en) 2019-01-10
JP6953821B2 JP6953821B2 (en) 2021-10-27

Family

ID=65006187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017117931A Active JP6953821B2 (en) 2017-06-15 2017-06-15 Liquid lead-acid battery

Country Status (1)

Country Link
JP (1) JP6953821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102357A (en) * 2017-12-06 2019-06-24 日立化成株式会社 Lead storage battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077445A (en) * 2001-08-31 2003-03-14 Yuasa Corp Lead acid storage battery
WO2012120999A1 (en) * 2011-03-08 2012-09-13 株式会社Gsユアサ Liquid lead storage battery and battery system
JP2013206571A (en) * 2012-03-27 2013-10-07 Nippon Sheet Glass Co Ltd Liquid type storage battery separator and liquid type storage battery
WO2015146919A1 (en) * 2014-03-27 2015-10-01 新神戸電機株式会社 Lead storage battery
US20160268566A1 (en) * 2015-03-09 2016-09-15 Johns Manville Acid resistant glass mats that include binders with hydrophilic agents
JP2017059480A (en) * 2015-09-18 2017-03-23 株式会社Gsユアサ Lead storage battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077445A (en) * 2001-08-31 2003-03-14 Yuasa Corp Lead acid storage battery
WO2012120999A1 (en) * 2011-03-08 2012-09-13 株式会社Gsユアサ Liquid lead storage battery and battery system
JP2013206571A (en) * 2012-03-27 2013-10-07 Nippon Sheet Glass Co Ltd Liquid type storage battery separator and liquid type storage battery
WO2015146919A1 (en) * 2014-03-27 2015-10-01 新神戸電機株式会社 Lead storage battery
US20160268566A1 (en) * 2015-03-09 2016-09-15 Johns Manville Acid resistant glass mats that include binders with hydrophilic agents
JP2017059480A (en) * 2015-09-18 2017-03-23 株式会社Gsユアサ Lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102357A (en) * 2017-12-06 2019-06-24 日立化成株式会社 Lead storage battery
JP6996264B2 (en) 2017-12-06 2022-01-17 昭和電工マテリアルズ株式会社 Lead-acid battery

Also Published As

Publication number Publication date
JP6953821B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
JP5500315B2 (en) Lead acid battery
JP6977770B2 (en) Liquid lead-acid battery
KR102031508B1 (en) Lead acid battery
JP6525167B2 (en) Lead storage battery
JP2006086039A (en) Lead-acid storage battery
JP6953821B2 (en) Liquid lead-acid battery
WO2019225389A1 (en) Lead storage battery
JP5994545B2 (en) Lead acid battery
WO2019088040A1 (en) Lead storage battery separator and lead storage battery
WO2019064792A1 (en) Lead storage cell
JP2006318659A (en) Lead-acid battery
WO2020066763A1 (en) Lead battery
JP7152831B2 (en) lead acid battery
WO2018105060A1 (en) Liquid lead-acid battery
JP7274830B2 (en) lead acid battery
JP6996264B2 (en) Lead-acid battery
JP2006156060A (en) Lead battery
JP2006318658A (en) Lead-acid battery
JP6572711B2 (en) Lead acid battery
WO2024043226A1 (en) Aqueous electrolyte secondary battery
JP7379417B2 (en) Alkaline secondary battery and method for manufacturing alkaline secondary battery
JP6870266B2 (en) Lead-acid battery
JP2023154163A (en) lead acid battery
JP2021057108A (en) Lead-acid battery
JP2002260717A (en) Valve controlled lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R151 Written notification of patent or utility model registration

Ref document number: 6953821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350