JP6996264B2 - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP6996264B2
JP6996264B2 JP2017234457A JP2017234457A JP6996264B2 JP 6996264 B2 JP6996264 B2 JP 6996264B2 JP 2017234457 A JP2017234457 A JP 2017234457A JP 2017234457 A JP2017234457 A JP 2017234457A JP 6996264 B2 JP6996264 B2 JP 6996264B2
Authority
JP
Japan
Prior art keywords
film body
electrode plate
lead
less
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017234457A
Other languages
Japanese (ja)
Other versions
JP2019102357A (en
Inventor
素子 原田
康平 島田
隆之 木村
裕介 浅利
博史 春名
富生 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017234457A priority Critical patent/JP6996264B2/en
Publication of JP2019102357A publication Critical patent/JP2019102357A/en
Application granted granted Critical
Publication of JP6996264B2 publication Critical patent/JP6996264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、鉛蓄電池に関する。 The present invention relates to a lead storage battery.

鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー、バックアップ用電源、及び電動車の主電源に用いられる。特に自動車用の鉛蓄電池は高温のエンジンルームに置かれる場合が多く、鉛蓄電池の電解液の減液抑制効果の維持(減液性能の向上)が特に求められる。 Lead-acid batteries are widely used in industry and are used, for example, in automobile batteries, backup power sources, and main power sources for electric vehicles. In particular, lead-acid batteries for automobiles are often placed in a high-temperature engine room, and it is particularly required to maintain the effect of suppressing the reduction of the electrolytic solution of the lead-acid battery (improvement of the liquid reduction performance).

ところで、自動車には、弁機構を備えた制御弁式鉛蓄電池、又は、開放型の液式鉛蓄電池が用いられる。制御弁式鉛蓄電池では、充電時に正極から発生する酸素ガスを負極で吸収させているため、充電末期に正極から発生した酸素ガスが負極活物質の海綿状鉛と反応することにより、硫酸鉛及び水が再生される。このように、制御弁式鉛蓄電池では、正極での酸素ガスの発生によって失われた水が再生されるため、電解液の補充が不要となる(例えば特許文献1)。このような背景のもと、特に欧州では、制御弁式鉛蓄電池が多用されているが、制御弁式鉛蓄電池には、液式鉛蓄電池に比べるとコストが高いという欠点がある。 By the way, a control valve type lead-acid battery provided with a valve mechanism or an open-type liquid-type lead-acid battery is used in an automobile. In the control valve type lead-acid battery, the oxygen gas generated from the positive electrode during charging is absorbed by the negative electrode. Therefore, the oxygen gas generated from the positive electrode at the end of charging reacts with the spongy lead of the negative electrode active material to form lead sulfate and Water is regenerated. As described above, in the control valve type lead-acid battery, the water lost due to the generation of oxygen gas at the positive electrode is regenerated, so that it is not necessary to replenish the electrolytic solution (for example, Patent Document 1). Against this background, control valve type lead-acid batteries are widely used, especially in Europe, but the control valve type lead-acid batteries have the disadvantage that they are more expensive than liquid-type lead-acid batteries.

一方、液式鉛蓄電池では、電解液の再生機構が存在しないため、制御弁式鉛蓄電池に比べると減液性能に劣るという欠点がある。液式鉛蓄電池は、制御弁式鉛蓄電池よりもコストが安いため、液式鉛蓄電池の減液性能を向上させることができれば、コストと減液性能との両立が可能になると考えられている。 On the other hand, the liquid-type lead-acid battery has a drawback that the liquid-reducing performance is inferior to that of the control valve type lead-acid battery because there is no mechanism for regenerating the electrolytic solution. Since the cost of a liquid-type lead-acid battery is lower than that of a control valve type lead-acid battery, it is considered that if the liquid-reducing performance of the liquid-type lead-acid battery can be improved, both the cost and the liquid-reducing performance can be achieved at the same time.

特開2007-250361号公報Japanese Unexamined Patent Publication No. 2007-250361

本発明は、減液抑制の点で優れる液式鉛蓄電池を提供することを目的とする。 An object of the present invention is to provide a liquid lead-acid battery which is excellent in suppressing liquid reduction.

本発明者らの検討によれば、平均細孔径が20μm以下の細孔を有し、引張強度が所定の範囲で維持される膜体を正極板又は負極板とセパレータとの間に配置することで、減液を抑制できることを見出した。このような効果が得られるのは、柔軟性及び伸縮性を備えた平均細孔径が小さい膜体を用いることで、電池性能を損なわない程度に電解液の対流、拡散等を低減しながら、電解液の蒸発及び過充電に由来する電解液の減液を抑制できるためであると考えられる。 According to the study by the present inventors, a film body having pores having an average pore diameter of 20 μm or less and maintaining the tensile strength within a predetermined range is arranged between the positive electrode plate or the negative electrode plate and the separator. It was found that the liquid reduction can be suppressed. Such an effect can be obtained by using a membrane body having flexibility and elasticity and a small average pore diameter, while reducing convection, diffusion, etc. of the electrolytic solution to the extent that the battery performance is not impaired. It is considered that this is because it is possible to suppress the decrease of the electrolytic solution due to the evaporation of the liquid and the overcharging.

すなわち、本発明は、一態様において、正極板と、負極板と、正極板と負極板との間に配置されたセパレータと、正極板又は負極板とセパレータとの間に配置され、繊維を含む膜体と、を備え、膜体は、平均細孔径が20μm以下の細孔を有し、下記式(1)で定義される膜体の引張強度の維持率Rが、0.60以上である、液式鉛蓄電池である。
R=S/S …(1)
式中、Sは、膜体の引張強度(N/cm)を表し、Sは、液式鉛蓄電池を満充電状態にした後、60℃の湯浴中に液式鉛蓄電池を配置した状態で、電圧14.4Vでの定電圧充電を42日間継続した後の膜体の引張強度(N/cm)を表す。
That is, in one embodiment, the present invention includes a positive electrode plate, a negative electrode plate, a separator arranged between the positive electrode plate and the negative electrode plate, and a positive electrode plate or a separator arranged between the negative electrode plate and the separator, and includes fibers. The membrane has pores having an average pore diameter of 20 μm or less, and the retention rate R of the tensile strength of the membrane defined by the following formula (1) is 0.60 or more. , A liquid lead-acid battery.
R = S 1 / S 0 ... (1)
In the formula, S 0 represents the tensile strength (N / cm 2 ) of the film body, and S 1 places the liquid lead-acid battery in a hot water bath at 60 ° C. after fully charging the liquid lead-acid battery. In this state, it represents the tensile strength (N / cm 2 ) of the film body after continuous constant voltage charging at a voltage of 14.4 V for 42 days.

一態様において、繊維に占める繊維径は、5μm未満の繊維の割合が25%以上である。一態様において、繊維に占める繊維径が5μm以上20μm以下の繊維の割合は、20%以上である。 In one embodiment, the ratio of fibers having a fiber diameter of less than 5 μm to the fibers is 25% or more. In one embodiment, the proportion of fibers having a fiber diameter of 5 μm or more and 20 μm or less in the fibers is 20% or more.

一態様において、膜体は、有機繊維を含む不織布を備える。 In one embodiment, the membrane body comprises a non-woven fabric containing organic fibers.

一態様において、セパレータは袋状のセパレータであり、正極板又は負極板と膜体とがセパレータ内に収容されている。 In one embodiment, the separator is a bag-shaped separator, and a positive electrode plate or a negative electrode plate and a film body are housed in the separator.

一態様において、膜体の厚さは、0.3mm以下である。 In one embodiment, the thickness of the membrane is 0.3 mm or less.

本発明によれば、減液抑制の点で優れる液式鉛蓄電池を提供することができる。 According to the present invention, it is possible to provide a liquid lead-acid battery which is excellent in suppressing liquid reduction.

一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。It is a perspective view which shows the whole structure and the internal structure of the lead storage battery which concerns on one Embodiment. 一実施形態に係る鉛蓄電池の電極群を示す斜視図である。It is a perspective view which shows the electrode group of the lead storage battery which concerns on one Embodiment. 図2におけるIII-III線に沿った矢視断面を示す模式断面図である。It is a schematic cross-sectional view which shows the cross section seen by the arrow along the line III-III in FIG.

以下、図面を適宜参照しながら、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

図1は、一実施形態に係る液式鉛蓄電池(以下、単に「鉛蓄電池」ともいう)の全体構成及び内部構造を示す斜視図である。図1に示すように、本実施形態に係る鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。 FIG. 1 is a perspective view showing the overall configuration and internal structure of a liquid lead-acid battery (hereinafter, also simply referred to as “lead-acid battery”) according to an embodiment. As shown in FIG. 1, the lead-acid battery 1 according to the present embodiment includes an electric tank 2 having an open upper surface and a lid 3 for closing the opening of the electric tank 2. The battery case 2 and the lid 3 are made of polypropylene, for example. The lid 3 is provided with a negative electrode terminal 4, a positive electrode terminal 5, and a liquid port plug 6 for closing the liquid injection port provided in the lid 3.

電槽2の内部には、電極群7と、電極群7を負極端子4に接続する負極柱8と、電極群7を正極端子5に接続する正極柱(図示せず)と、希硫酸等の電解液とが収容されている。 Inside the battery case 2, an electrode group 7, a negative electrode column 8 connecting the electrode group 7 to the negative electrode terminal 4, a positive electrode column (not shown) connecting the electrode group 7 to the positive electrode terminal 5, dilute sulfuric acid, etc. Electrolyte and is stored.

図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、板状の負極板9と、板状の正極板10と、負極板9と正極板10との間に配置されたセパレータ11とを備えている。電極群7は、複数の負極板9と正極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極板9及び正極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。 FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 includes a plate-shaped negative electrode plate 9, a plate-shaped positive electrode plate 10, and a separator 11 arranged between the negative electrode plate 9 and the positive electrode plate 10. The electrode group 7 has a structure in which a plurality of negative electrode plates 9 and positive electrode plates 10 are alternately laminated in a direction substantially parallel to the opening surface of the electric tank 2 via a separator 11. That is, the negative electrode plate 9 and the positive electrode plate 10 are arranged so that their main surfaces extend in the direction perpendicular to the opening surface of the battery case 2.

負極板9は、負極集電体12と、負極集電体12に保持され、金属鉛(Pb)を活物質として含む負極材13とを有している。正極板10は、正極集電体14と、正極集電体14上に保持され、二酸化鉛(PbO)を活物質として含む正極材15とを有している。複数の負極板9における負極集電体12の耳部12a同士は、負極側ストラップ16で集合溶接されている。同様に、複数の正極板10における正極集電体14の耳部14a同士は、正極側ストラップ17で集合溶接されている。そして、負極側ストラップ16及び正極側ストラップ17が、それぞれ負極柱8及び正極柱を介して負極端子4及び正極端子5に接続されている。 The negative electrode plate 9 has a negative electrode current collector 12 and a negative electrode material 13 held by the negative electrode current collector 12 and containing metallic lead (Pb) as an active material. The positive electrode plate 10 has a positive electrode current collector 14 and a positive electrode material 15 held on the positive electrode current collector 14 and containing lead dioxide (PbO 2 ) as an active material. The selvage portions 12a of the negative electrode current collectors 12 in the plurality of negative electrode plates 9 are collectively welded by the negative electrode side strap 16. Similarly, the selvage portions 14a of the positive electrode current collectors 14 in the plurality of positive electrode plates 10 are collectively welded by the positive electrode side strap 17. The negative electrode side strap 16 and the positive electrode side strap 17 are connected to the negative electrode terminal 4 and the positive electrode terminal 5 via the negative electrode column 8 and the positive electrode column, respectively.

図3は、図2におけるIII-III線に沿った矢視断面を示す模式断面図である。図3に示すように、一実施形態において、負極板9とセパレータ11との間には、膜体18が設けられている。 FIG. 3 is a schematic cross-sectional view showing a cross-sectional view taken along the line III-III in FIG. 2. As shown in FIG. 3, in one embodiment, a film body 18 is provided between the negative electrode plate 9 and the separator 11.

セパレータ11は、例えば袋状に形成されており、一実施形態において、負極板9及び膜体18は、セパレータ11内に収容されている。セパレータ11を形成する材料の例としては、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO、Al等の無機系粒子を付着させたものであってよい。 The separator 11 is formed in a bag shape, for example, and in one embodiment, the negative electrode plate 9 and the film body 18 are housed in the separator 11. Examples of the material forming the separator 11 include polyethylene (PE), polypropylene (PP) and the like. The separator 11 may be made by adhering inorganic particles such as SiO 2 and Al 2 O 3 to a woven fabric, a non-woven fabric, a porous membrane or the like formed of these materials.

セパレータ11の厚さは、好ましくは0.1mm以上0.5mm以下、より好ましくは0.2mm以上0.3mm以下である。セパレータ11の厚さが0.1mm以上であると、セパレータの強度を確保できる。セパレータ11の厚さが0.5mm以下であると、電池の内部抵抗の上昇を抑制できる。 The thickness of the separator 11 is preferably 0.1 mm or more and 0.5 mm or less, and more preferably 0.2 mm or more and 0.3 mm or less. When the thickness of the separator 11 is 0.1 mm or more, the strength of the separator can be ensured. When the thickness of the separator 11 is 0.5 mm or less, an increase in the internal resistance of the battery can be suppressed.

セパレータ11の平均孔径は、好ましくは10nm以上500nm以下、より好ましくは30nm以上200nm以下である。セパレータ11の平均孔径が10nm以上であると、硫酸イオンを好適に通過させ、硫酸イオンの拡散速度を確保できる。セパレータ11の平均孔径が500nm以下であると、鉛のデンドライトの成長が抑制され、短絡が生じにくくなる。 The average pore diameter of the separator 11 is preferably 10 nm or more and 500 nm or less, and more preferably 30 nm or more and 200 nm or less. When the average pore diameter of the separator 11 is 10 nm or more, sulfate ions can be suitably passed through and the diffusion rate of sulfate ions can be ensured. When the average pore diameter of the separator 11 is 500 nm or less, the growth of lead dendrites is suppressed and short circuits are less likely to occur.

膜体18は、一実施形態において、負極板9の表面を覆うように負極板9に密着した状態で設けられている。膜体18は、例えばシート状又は袋状であってよい。膜体18がシート状である場合、膜体18は、負極板9に巻きつけられるようにして負極板9の表面を覆っている。膜体18が袋状である場合、負極板9は、膜体18内に収容されている。 In one embodiment, the film body 18 is provided in close contact with the negative electrode plate 9 so as to cover the surface of the negative electrode plate 9. The film body 18 may be in the form of a sheet or a bag, for example. When the film body 18 is in the form of a sheet, the film body 18 covers the surface of the negative electrode plate 9 so as to be wound around the negative electrode plate 9. When the film body 18 has a bag shape, the negative electrode plate 9 is housed in the film body 18.

膜体18は、繊維を含んでいる。膜体18は、例えば、有機繊維を含む織布(有機織布)、有機繊維を含む不織布(有機不織布)、又はそれ以外の多孔質膜を備えていてよく、好ましくは有機繊維を含む不織布を備えている。有機繊維としては、ポリエチレン、ポリプロピレン、ポリエステル、ナイロン、アラミド等の合成繊維が挙げられる。 The membrane body 18 contains fibers. The film body 18 may include, for example, a woven fabric containing organic fibers (organic woven fabric), a non-woven fabric containing organic fibers (organic non-woven fabric), or a porous film other than that, preferably a non-woven fabric containing organic fibers. I have. Examples of the organic fiber include synthetic fibers such as polyethylene, polypropylene, polyester, nylon and aramid.

膜体18には、スルホン化処理、フッ素処理等の乾式親水処理、シリカゾル、アルミナゾル等を含む塗布液を用いた湿式親水処理により、親水性が付与されていてよい。膜体18は、好ましくは、乾式又は湿式親水処理により親水性が付与された有機織布、有機不織布又は多孔質膜を備えている。 The film body 18 may be imparted with hydrophilicity by a dry hydrophilic treatment such as a sulfonate treatment or a fluorine treatment, or a wet hydrophilic treatment using a coating liquid containing a silica sol, an alumina sol or the like. The membrane body 18 preferably includes an organic woven fabric, an organic non-woven fabric, or a porous membrane that has been imparted with hydrophilicity by a dry or wet hydrophilic treatment.

膜体18は、繊維径が異なる複数種類の繊維を含んでいてもよい。繊維径が5μm未満(特に1μm以上2μm以下程度)の細い繊維は、膜体18の比表面積を増加させることにより、硫酸の沈降を抑制する効果を奏すると考えられる。繊維径が5μm以上(特に5μm以上20μm以下程度)の太い繊維は、膜体18の強度を更に向上させると共に、膜体18の空間を増加させることにより、硫酸の拡散係数を大きくする効果を奏すると考えられる。太い繊維の繊維径は、好ましくは、細い繊維の繊維径の2.5倍以上である。 The film body 18 may contain a plurality of types of fibers having different fiber diameters. Fine fibers having a fiber diameter of less than 5 μm (particularly about 1 μm or more and 2 μm or less) are considered to have an effect of suppressing the sedimentation of sulfuric acid by increasing the specific surface area of the membrane body 18. Thick fibers having a fiber diameter of 5 μm or more (particularly about 5 μm or more and 20 μm or less) have the effect of further improving the strength of the membrane body 18 and increasing the space of the membrane body 18 to increase the diffusion coefficient of sulfuric acid. It is thought that. The fiber diameter of the thick fiber is preferably 2.5 times or more the fiber diameter of the thin fiber.

膜体18に含まれる全繊維中、繊維径が5μm以上の繊維が占める割合は、硫酸の拡散係数を大きくする観点から、好ましくは20%以上、より好ましくは30%以上、更に好ましくは40%以上、特に好ましくは50%以上であり、また、硫酸の沈降を抑制する観点から、好ましくは90%以下、より好ましくは85%以下、更に好ましくは80%以下、特に好ましくは75%以下である。繊維径が5μm以上20μm以下の繊維が占める割合が、上記の範囲であることが好ましい。 The proportion of fibers having a fiber diameter of 5 μm or more in the total fibers contained in the membrane body 18 is preferably 20% or more, more preferably 30% or more, still more preferably 40% from the viewpoint of increasing the diffusion coefficient of sulfuric acid. The above is particularly preferably 50% or more, and from the viewpoint of suppressing the precipitation of sulfuric acid, it is preferably 90% or less, more preferably 85% or less, still more preferably 80% or less, and particularly preferably 75% or less. .. The proportion of fibers having a fiber diameter of 5 μm or more and 20 μm or less is preferably in the above range.

膜体18に含まれる全繊維中、繊維径が5μm未満の繊維が占める割合は、硫酸の沈降を抑制する観点から、好ましくは25%以上、より好ましくは30%以上、更に好ましくは35%以上、特に好ましくは40%以上であり、また、硫酸の拡散係数を大きくする観点から、好ましくは70%以下、より好ましくは65%以下、更に好ましくは60%以下、特に好ましくは55%以下である。繊維径が1μm以上2μm以下の繊維が占める割合が、上記の範囲であることが好ましい。 The proportion of fibers having a fiber diameter of less than 5 μm in the total fibers contained in the membrane body 18 is preferably 25% or more, more preferably 30% or more, still more preferably 35% or more from the viewpoint of suppressing the sedimentation of sulfuric acid. It is particularly preferably 40% or more, and from the viewpoint of increasing the diffusion coefficient of sulfuric acid, it is preferably 70% or less, more preferably 65% or less, still more preferably 60% or less, and particularly preferably 55% or less. .. The proportion of fibers having a fiber diameter of 1 μm or more and 2 μm or less is preferably in the above range.

膜体に含まれる繊維に占める所定の繊維径の繊維の割合は、走査電子顕微鏡(例えば株式会社日立ハイテクノロジーズ製)で得られるSEM像に基づいて測定される。具体的には、SEM像における繊維100本についてその径(SEM像における繊維の短手方向の長さ(最短距離))を測定し、繊維径の分布を求める。次いで、測定した全繊維の本数に占める所定の繊維径の繊維の本数の割合を算出する。 The ratio of fibers having a predetermined fiber diameter to the fibers contained in the film body is measured based on an SEM image obtained by a scanning electron microscope (for example, manufactured by Hitachi High-Technologies Corporation). Specifically, the diameter of 100 fibers in the SEM image (the length (shortest distance) of the fibers in the lateral direction in the SEM image) is measured, and the distribution of the fiber diameters is obtained. Next, the ratio of the number of fibers having a predetermined fiber diameter to the total number of measured fibers is calculated.

膜体18は、細孔を有している。膜体18の平均細孔径は、20μm以下であり、減液を更に抑制する観点から、好ましくは、19μm以下、18μm以下、17μm以下、16μm以下、15μm以下、14μm以下、13μm以下、12μm以下、11μm以下又は10μm以下である。膜体18の平均細孔径は、電池の出力を向上させる観点から、好ましくは、1μm以上、2μm以上又は3μm以上である。 The membrane body 18 has pores. The average pore diameter of the membrane body 18 is 20 μm or less, and from the viewpoint of further suppressing liquid reduction, preferably 19 μm or less, 18 μm or less, 17 μm or less, 16 μm or less, 15 μm or less, 14 μm or less, 13 μm or less, 12 μm or less, It is 11 μm or less or 10 μm or less. The average pore diameter of the film body 18 is preferably 1 μm or more, 2 μm or more, or 3 μm or more from the viewpoint of improving the output of the battery.

膜体の平均細孔径は、水銀圧入法により測定される積算細孔径分布において、分布曲線のY軸(細孔容積又は細孔比表面積)における最小値と最大値との中間値に対応するX軸(細孔径)の値であるメディアン径として算出される。膜体の平均細孔径は、例えば、株式会社島津製作所製、オートポアIV 9500で測定できる。 The average pore diameter of the membrane is X corresponding to the median value between the minimum value and the maximum value on the Y axis (pore volume or pore specific surface area) of the distribution curve in the integrated pore diameter distribution measured by the mercury intrusion method. It is calculated as the median diameter, which is the value of the axis (pore diameter). The average pore diameter of the membrane can be measured by, for example, Autopore IV 9500 manufactured by Shimadzu Corporation.

膜体18の空孔率は、硫酸イオンの拡散性を確保しやすくすると共に、硫酸イオンを保持する空間を更に大きくする観点から、好ましくは60%以上、より好ましくは65%以上、更に好ましくは70%以上、特に好ましくは75%以上、きわめて好ましくは80%以上である。膜体の空孔率は、膜体から適当な大きさの直方体状に切り取った試料について、下記式(I)~(III)に従い実際の体積と見かけの体積とから算出される。
空孔率(%)={1-(実際の体積/見かけの体積)}×100 …(I)
実際の体積(cm)=重量の実測値(g)/密度(g/cm) …(II)
見かけの体積(cm)=縦(cm)×横(cm)×厚さ(cm) …(III)
なお、見かけの体積を算出する際の試料の縦、横及び厚さはいずれも実測値を用いる。
The porosity of the membrane body 18 is preferably 60% or more, more preferably 65% or more, still more preferably, from the viewpoint of facilitating the diffusion of sulfate ions and further increasing the space for retaining sulfate ions. It is 70% or more, particularly preferably 75% or more, and extremely preferably 80% or more. The porosity of the membrane body is calculated from the actual volume and the apparent volume according to the following formulas (I) to (III) for a sample cut into a rectangular parallelepiped shape of an appropriate size from the membrane body.
Porosity (%) = {1- (actual volume / apparent volume)} x 100 ... (I)
Actual volume (cm 3 ) = measured value of weight (g) / density (g / cm 3 ) ... (II)
Apparent volume (cm 3 ) = length (cm) x width (cm) x thickness (cm) ... (III)
The measured values are used for the length, width, and thickness of the sample when calculating the apparent volume.

膜体18の厚さは、内部抵抗の上昇を抑制する観点から、好ましくは0.3mm以下、より好ましくは0.25mm以下、更に好ましくは0.2mm以下、特に好ましくは0.15mm以下である。膜体18の厚さは、硫酸の沈降の防止能力、電池反応への影響、強度等の観点から、例えば0.03mm以上又は0.1mm以上である。膜体18が不織布を備える場合には、不織布を構成する繊維の太さ等に応じて膜体18の厚さが決定される。 The thickness of the film body 18 is preferably 0.3 mm or less, more preferably 0.25 mm or less, still more preferably 0.2 mm or less, and particularly preferably 0.15 mm or less, from the viewpoint of suppressing an increase in internal resistance. .. The thickness of the membrane body 18 is, for example, 0.03 mm or more or 0.1 mm or more from the viewpoint of the ability to prevent the sedimentation of sulfuric acid, the influence on the battery reaction, the strength and the like. When the film body 18 includes the non-woven fabric, the thickness of the film body 18 is determined according to the thickness of the fibers constituting the non-woven fabric and the like.

以上説明した膜体18は、下記式(1)で定義される引張強度の維持率Rが0.60以上となる膜体である。
R=S/S …(1)
式中、Sは、膜体18の引張強度(単位:N/cm、「試験前引張強度」ともいう)を表し、Sは、鉛蓄電池1を満充電させた後、60℃の湯浴中に鉛蓄電池1を配置した状態で、電圧2.4Vでの定電圧充電を42日間継続した後の膜体18の引張強度(N/cm、「試験後引張強度」ともいう)を表す。
The film body 18 described above is a film body having a tensile strength maintenance rate R of 0.60 or more as defined by the following formula (1).
R = S 1 / S 0 ... (1)
In the formula, S 0 represents the tensile strength of the film body 18 (unit: N / cm 2 , also referred to as “pre-test tensile strength”), and S 1 is 60 ° C. after the lead storage battery 1 is fully charged. With the lead-acid battery 1 placed in the hot water bath, the tensile strength of the film body 18 after continuous constant voltage charging at a voltage of 2.4 V for 42 days (N / cm 2 , also referred to as "post-test tensile strength"). Represents.

膜体18の引張強度S,Sは、引張試験機により測定された値である。具体的には、5mm×100mmの大きさに切り出した膜体18の測定試料を、引張試験機(例えば、株式会社島津製作所製、AGS-H 500N オートグラフ)に設置し、標点距離80mm、試験速度50mm/分の条件で、測定試料が破断するまで引っ張ったときの測定試料の引張強度の最大値を読み取る。この試験を測定試料3点について行い、得られた引張強度の最大値の平均値をその膜体の引張強度として定義する。 The tensile strengths S 0 and S 1 of the film body 18 are values measured by a tensile tester. Specifically, a measurement sample of the film body 18 cut out to a size of 5 mm × 100 mm was installed in a tensile tester (for example, AGS-H 500N Autograph manufactured by Shimadzu Corporation), and a gauge point distance of 80 mm. Under the condition of the test speed of 50 mm / min, the maximum value of the tensile strength of the measurement sample when the measurement sample is pulled until it breaks is read. This test is performed on three measurement samples, and the average value of the maximum values of the obtained tensile strengths is defined as the tensile strength of the film body.

なお、鉛蓄電池1における膜体18の維持率Rを実際に算出する場合は、同等の鉛蓄電池1(例えば型番が同じ鉛蓄電池)を6つ(試験前引張強度S測定用の鉛蓄電池3つ及び試験後引張強度S測定用の鉛蓄電池3つ)準備する。3つの鉛蓄電池1からそれぞれ膜体18を取り出して、純水で水洗してから60℃の恒温槽で24時間乾燥して水分を除去した後、膜体18の試験前引張強度Sを測定する。残り3つの鉛蓄電池1については、満充電状態にした後、60℃の湯浴中に鉛蓄電池1を配置した状態で、電圧14.4Vでの定電圧充電を42日間継続した後、鉛蓄電池1から膜体18を取り出して、試験前引張強度S測定時と同様に水洗及び乾燥を経て、膜体18の試験後引張強度Sを測定する。そして、測定された引張強度S,Sのそれぞれから、引張強度の維持率Rを算出する。この際、膜体18の引張強度は、3枚の膜体18について測定し、その平均値を用いる。 When actually calculating the retention rate R of the film body 18 in the lead storage battery 1, six equivalent lead storage batteries 1 (for example, lead storage batteries having the same model number) are used (lead storage battery 3 for measuring tensile strength S 0 before the test). And 3 lead-acid batteries for measuring tensile strength S 1 after the test) Prepare. The membrane body 18 is taken out from each of the three lead-acid batteries 1, washed with pure water, dried in a constant temperature bath at 60 ° C. for 24 hours to remove water, and then the pre-test tensile strength S0 of the membrane body 18 is measured. do. The remaining three lead-acid batteries 1 are fully charged, and after the lead-acid batteries 1 are placed in a hot water bath at 60 ° C., constant voltage charging at a voltage of 14.4 V is continued for 42 days, and then the lead-acid batteries are used. The film body 18 is taken out from No. 1, and after washing and drying in the same manner as in the case of measuring the tensile strength S 0 before the test, the tensile strength S 1 after the test of the film body 18 is measured. Then, the maintenance rate R of the tensile strength is calculated from each of the measured tensile strengths S 0 and S 1 . At this time, the tensile strength of the film body 18 is measured for the three film bodies 18, and the average value thereof is used.

膜体18の引張強度の維持率Rは、0.60以上であり、減液を更に抑制できる観点から、好ましくは0.70以上又は、より好ましくは0.80以上、更に好ましくは0.85以上、特に好ましくは0.90以上である。 The retention rate R of the tensile strength of the film body 18 is 0.60 or more, and from the viewpoint of further suppressing liquid reduction, it is preferably 0.70 or more, more preferably 0.80 or more, still more preferably 0.85. As mentioned above, it is particularly preferably 0.90 or more.

膜体18の試験前引張強度Sは、好ましくは500N/cm以上、より好ましくは600N/cm以上、更に好ましくは700N/cm以上である。 The pre-test tensile strength S 0 of the film body 18 is preferably 500 N / cm 2 or more, more preferably 600 N / cm 2 or more, and further preferably 700 N / cm 2 or more.

以上のような引張強度の維持率R又は試験前引張強度Sを有する膜体18を得るためには、上述したような膜体18の各性状を適宜調整すればよいが、特に、ポリエチレン及び/又はポリプロピレンの繊維を含む膜体を用いる、π結合及び/又はヘテロ原子(窒素原子、酸素原子等)を有する繊維を含む膜体を用いる、繊維の配向性を有さない(繊維が等方的に配置されている)膜体を用いる、繊維径が5μm未満の繊維の割合が低く、5μm以上の繊維の割合が高い膜体を用いる、厚い(例えば0.1mm以上)膜体を用いることなどが好適である。 In order to obtain the film body 18 having the maintenance rate R of the tensile strength or the tensile strength S 0 before the test as described above, each property of the film body 18 as described above may be appropriately adjusted, and in particular, polypropylene and / Or use a film body containing polypropylene fibers, use a membrane body containing fibers having π bonds and / or hetero atoms (nitrogen atom, oxygen atom, etc.), do not have fiber orientation (fibers are isotropic) Use a thick (for example, 0.1 mm or more) membrane with a low proportion of fibers with a fiber diameter of less than 5 μm and a high proportion of fibers with a fiber diameter of 5 μm or more. Etc. are suitable.

上記実施形態では、膜体18は負極板9の主面(セパレータ11に対向する面)、側面及び底面のすべてを覆い、それらの表面に接触するように(密着した状態で)設けられていたが、他の実施形態では、膜体は、負極板9から離間するように、負極板9とセパレータ11との間に設けられていてもよい。この場合、膜体18は、例えばセパレータ11の負極側の面上に設けられていてよい。減液を更に抑制する観点からは、膜体18は、負極板9の表面に接触するように(密着した状態で)設けられていることが好ましい。 In the above embodiment, the film body 18 covers all of the main surface (the surface facing the separator 11), the side surface, and the bottom surface of the negative electrode plate 9 and is provided so as to be in contact with the surfaces thereof (in close contact with each other). However, in another embodiment, the film body may be provided between the negative electrode plate 9 and the separator 11 so as to be separated from the negative electrode plate 9. In this case, the film body 18 may be provided, for example, on the surface of the separator 11 on the negative electrode side. From the viewpoint of further suppressing the liquid reduction, it is preferable that the film body 18 is provided so as to be in contact with (in close contact with) the surface of the negative electrode plate 9.

上記実施形態では、膜体18は負極板9の主面(セパレータ11に対向する面)、側面及び底面のすべてを覆っていたが、他の実施形態では、膜体は、負極板9の主面(セパレータ11に対向する面)のみを覆うように設けられていてもよい。 In the above embodiment, the film body 18 covers all of the main surface (the surface facing the separator 11), the side surface and the bottom surface of the negative electrode plate 9, but in other embodiments, the film body is the main surface of the negative electrode plate 9. It may be provided so as to cover only the surface (the surface facing the separator 11).

上記実施形態では、膜体18は、負極板9とセパレータ11との間に設けられていたが、他の実施形態では、膜体は、正極板10とセパレータ11との間に設けられていてよい。すなわち、上述した膜体に関する説明において、「負極板」を「正極板」と読み替えてよい。 In the above embodiment, the film body 18 is provided between the negative electrode plate 9 and the separator 11, but in other embodiments, the film body is provided between the positive electrode plate 10 and the separator 11. good. That is, in the above description of the film body, the "negative electrode plate" may be read as "positive electrode plate".

<実施例1>
一酸化鉛を主成分とする鉛粉を希硫酸で練って調製したペーストを鉛合金格子に充填したペースト式極板を用いた。その後、熟成と乾燥工程とを経て未化成極板が得られた。なお、未化成の正極板及び負極板は、いずれも2価の鉛化合物である一酸化鉛(PbO)、三塩基性希硫酸鉛(3PbO・PbSO・HO)等の混合物で構成されている。化成により、正極板の未化成物質は二酸化鉛(PbO)に酸化され、負極板の未化成物質は海綿状鉛(Pb)に還元され、既化極板(正極板、負極板)が得られた。
<Example 1>
A paste-type plate was used in which a lead alloy lattice was filled with a paste prepared by kneading lead powder containing lead monoxide as a main component with dilute sulfuric acid. After that, an unmodified electrode plate was obtained through aging and drying steps. The unchemical positive electrode plate and the negative electrode plate are both composed of a mixture of divalent lead compounds such as lead monoxide (PbO) and tribasic lead sulfate ( 3PbO / PbSO4 / H2O ). ing. Due to the chemical formation, the unchemical material of the positive electrode plate is oxidized to lead dioxide (PbO 2 ), and the unchemical material of the negative electrode plate is reduced to spongy lead (Pb) to obtain an existing electrode plate (positive electrode plate, negative electrode plate). Was done.

膜体として、表1に示す平均細孔径及び引張強度を有する有機不織布(主成分:ポリプロピレン、厚さ:0.2mm)を用い、負極板近傍に配置した。当該不織布を構成する繊維は、繊維径が1~2μmの繊維である繊維A:40%と、繊維径5~20μmの繊維である繊維B:60%との2種類を含んでいる。セパレータとしては、厚さが0.25mm、平均孔径が30nm~200nmである袋状のポリエチレン製セパレータを用い、負極板及び膜体をセパレータ内に収容した。電解液としては希硫酸を用いて、Dサイズ(JIS D5301。幅:173mm、箱高さ:204mm。負極板の幅:145mm、負極板の高さ(上枠部込み):113mm。)の定格容量60Ahの鉛蓄電池を作製した。 As the film body, an organic non-woven fabric (main component: polypropylene, thickness: 0.2 mm) having an average pore diameter and tensile strength shown in Table 1 was used and arranged in the vicinity of the negative electrode plate. The fibers constituting the nonwoven fabric include two types, a fiber A: 40%, which is a fiber having a fiber diameter of 1 to 2 μm, and a fiber B: 60%, which is a fiber having a fiber diameter of 5 to 20 μm. As the separator, a bag-shaped polyethylene separator having a thickness of 0.25 mm and an average pore diameter of 30 nm to 200 nm was used, and the negative electrode plate and the film body were housed in the separator. Dilute sulfuric acid is used as the electrolytic solution, and the D size (JIS D5301; width: 173 mm, box height: 204 mm; negative electrode plate width: 145 mm, negative electrode plate height (including upper frame): 113 mm) is rated. A lead storage battery having a capacity of 60 Ah was produced.

<実施例2~4>
膜体の平均細孔径及び引張強度を表1に示すとおりに変更した以外は、実施例1と同様にして鉛蓄電池を作製した。
<Examples 2 to 4>
A lead-acid battery was produced in the same manner as in Example 1 except that the average pore diameter and tensile strength of the membrane were changed as shown in Table 1.

<実施例5>
鉛蓄電池のサイズを欧州で一般的なLN1サイズ(EN 50342-2。幅:175mm、箱高さ:190mm。負極板の幅:143mm、負極板の高さ(上枠部込み):100mm。)に変更した以外は、実施例1と同様にして鉛蓄電池を作製した。
<Example 5>
The size of the lead-acid battery is LN1 size, which is common in Europe (EN 50342-2. Width: 175 mm, box height: 190 mm. Negative electrode plate width: 143 mm, negative electrode plate height (including upper frame): 100 mm.) A lead-acid battery was produced in the same manner as in Example 1 except that it was changed to.

<比較例1>
負極板上に膜体を設けなかった以外は、実施例1と同様にして鉛蓄電池を作製した。
<Comparative Example 1>
A lead-acid battery was produced in the same manner as in Example 1 except that the film body was not provided on the negative electrode plate.

<比較例2>
膜体として、表1に示すとおりの平均細孔径及び引張強度を有する有機不織布を用いた以外は、実施例1と同様にして鉛蓄電池を作製した。比較例2で用いた膜体は、繊維径1~2μmの繊維である繊維A:90%と、繊維径5~20μmの繊維である繊維B:10%との2種類を含んでいる。
<Comparative Example 2>
A lead-acid battery was produced in the same manner as in Example 1 except that an organic nonwoven fabric having an average pore diameter and tensile strength as shown in Table 1 was used as the film body. The film body used in Comparative Example 2 contains two types, a fiber A: 90%, which is a fiber having a fiber diameter of 1 to 2 μm, and a fiber B: 10%, which is a fiber having a fiber diameter of 5 to 20 μm.

<比較例3>
膜体の平均細孔径及び引張強度を表1に示すとおりに変更した以外は、実施例1と同様にして鉛蓄電池を作製した。
<Comparative Example 3>
A lead-acid battery was produced in the same manner as in Example 1 except that the average pore diameter and tensile strength of the membrane were changed as shown in Table 1.

(平均細孔径の算出)
膜体の平均細孔径は、株式会社島津製作所製、オートポアIV 9500で測定した。膜体の平均細孔径は、水銀圧入法により測定された積算細孔径分布において、分布曲線のY軸(細孔容積又は細孔比表面積)における最小値と最大値との中間値に対応するX軸(細孔径)の値であるメディアン径として算出した。
(Calculation of average pore diameter)
The average pore diameter of the membrane was measured by Autopore IV 9500 manufactured by Shimadzu Corporation. The average pore diameter of the membrane is X corresponding to the median value between the minimum value and the maximum value on the Y axis (pore volume or pore specific surface area) of the distribution curve in the integrated pore diameter distribution measured by the mercury intrusion method. It was calculated as the median diameter, which is the value of the axis (pore diameter).

(引張強度及び維持率の測定)
膜体の引張強度は、株式会社島津製作所製、AGS-H 500N オートグラフ(引張試験機)で測定した。5mm×100mmの大きさに切り出した膜体を試験機に設置し、標点距離80mm、試験速度50mm/分の条件で、膜体が切断されるまで引っ張った。膜体の中央部付近で切断された試験片の引張強度の最大値を読み取り、その値を膜体の引張強度とした。膜体の引張強度は、電池に適用する(電池を組み立てる)前に一度測定し(試験前引張強度S)、下記の減液試験終了後に電池から膜体を取り出して再び測定した(試験後引張強度S)。これらの引張強度S,S、及びこれらから算出される引張強度の維持率R(=S/S)を表1に示す。
(Measurement of tensile strength and maintenance rate)
The tensile strength of the film body was measured by an AGS-H 500N autograph (tensile tester) manufactured by Shimadzu Corporation. A film body cut out to a size of 5 mm × 100 mm was installed in a testing machine, and was pulled until the film body was cut under the conditions of a gauge point distance of 80 mm and a test speed of 50 mm / min. The maximum value of the tensile strength of the test piece cut near the center of the membrane was read, and that value was taken as the tensile strength of the membrane. The tensile strength of the membrane was measured once before being applied to the battery (assembling the battery) (tensile strength before the test S 0 ), and after the following liquid reduction test was completed, the membrane was taken out from the battery and measured again (after the test). Tensile strength S 1 ). Table 1 shows these tensile strengths S 0 and S 1 , and the tensile strength maintenance rate R (= S 1 / S 0 ) calculated from these.

(減液抑制効果の評価(減液試験))
鉛蓄電池の減液性能(減液抑制の効果)を次のように測定した。まず始めに、充電が完了した鉛蓄電池を、湯浴温度が60℃±2℃に設定された湯浴中に配置した状態で、電圧14.4Vでの定電圧充電を42日間継続した。試験期間中は、1時間毎の電流値を記録し、積算充電容量(Ah)を算出した。さらに、1週間毎に電池の重量を記録し、初期からの電池重量減少量(g)を算出した。積算充電電気量と電池減少量とは、互いにおよそ比例関係にあるため、ここでは積算充電電気量(g/Ah)を減液抑制効果の指標とした。膜体を設けない場合(比較例1)の減液抑制効果を100として、以下の基準に基づいて、各実施例及び比較例の減液抑制効果を評価した。評価がA又はBであれば、減液抑制の点で優れているといえる。
A:70未満
B:70以上75未満
C:75以上90未満
D:90以上100以下
(Evaluation of liquid reduction suppression effect (liquid reduction test))
The liquid reduction performance (effect of suppressing liquid reduction) of the lead storage battery was measured as follows. First, a constant voltage charge at a voltage of 14.4 V was continued for 42 days in a state where the fully charged lead-acid battery was placed in a hot water bath in which the hot water bath temperature was set to 60 ° C. ± 2 ° C. During the test period, the hourly current value was recorded and the integrated charge capacity (Ah) was calculated. Further, the weight of the battery was recorded every week, and the amount of decrease in battery weight (g) from the initial stage was calculated. Since the cumulative charge electricity amount and the battery reduction amount are approximately proportional to each other, the cumulative charge electricity amount (g / Ah) is used as an index of the liquid reduction suppressing effect here. The liquid reduction suppressing effect in each Example and Comparative Example was evaluated based on the following criteria, assuming that the liquid reduction suppressing effect in the case where the membrane was not provided (Comparative Example 1) was 100. If the evaluation is A or B, it can be said that it is excellent in terms of suppressing liquid reduction.
A: less than 70 B: 70 or more and less than 75 C: 75 or more and less than 90 D: 90 or more and less than 100

Figure 0006996264000001
Figure 0006996264000001

以上の結果から、膜体の平均細孔径が20μm以下であり、かつ引張強度の維持率Rが0.60以上である実施例では、優れた減液抑制効果が得られた。一方、膜体を設けていない比較例1と膜体の平均細孔径が40μmの比較例4では、減液抑制効果の違いがほとんど見られなかった。また、引張強度の維持率Rが0.60未満である膜体を用いた比較例2及び比較例3も、減液抑制効果の点で実施例より劣っていた。これは、引張強度の維持率Rが低いことにより、極板の膨張伸縮への追従性が劣り、結果として充分に減液を抑制できなかったためと考えられる。 From the above results, in the examples in which the average pore diameter of the film body was 20 μm or less and the maintenance rate R of the tensile strength was 0.60 or more, an excellent liquid reduction suppressing effect was obtained. On the other hand, in Comparative Example 1 in which the film body was not provided and Comparative Example 4 in which the average pore diameter of the film body was 40 μm, almost no difference in the liquid reduction suppressing effect was observed. Further, Comparative Example 2 and Comparative Example 3 using a film body having a tensile strength maintenance rate R of less than 0.60 were also inferior to the Examples in terms of the liquid reduction suppressing effect. It is considered that this is because the maintenance rate R of the tensile strength is low, so that the ability to follow the expansion and contraction of the electrode plate is inferior, and as a result, the liquid reduction cannot be sufficiently suppressed.

なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例を含む。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。 The present invention is not limited to the above examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to the embodiment including all the described configurations.

1…鉛蓄電池、9…負極板、10…正極板、11…セパレータ、18…膜体。 1 ... Lead-acid battery, 9 ... Negative electrode plate, 10 ... Positive electrode plate, 11 ... Separator, 18 ... Membrane.

Claims (6)

正極板と、
負極板と、
前記正極板と前記負極板との間に配置されたセパレータと、
前記正極板又は前記負極板と前記セパレータとの間に配置され、繊維を含む膜体と、
を備え、
前記膜体は、平均細孔径が20μm以下の細孔を有し、
下記式(1)で定義される前記膜体の引張強度の維持率Rが、0.60以上である、液式鉛蓄電池。
R=S/S …(1)
[式中、Sは、前記膜体の引張強度(N/cm)を表し、Sは、前記液式鉛蓄電池を満充電状態にした後、60℃の湯浴中に前記液式鉛蓄電池を配置した状態で、電圧14.4Vでの定電圧充電を42日間継続した後の前記膜体の引張強度(N/cm)を表す。]
With a positive electrode plate
Negative electrode plate and
A separator arranged between the positive electrode plate and the negative electrode plate,
A film body arranged between the positive electrode plate or the negative electrode plate and the separator, and containing fibers,
Equipped with
The film body has pores having an average pore diameter of 20 μm or less, and has an average pore diameter of 20 μm or less.
A liquid lead-acid battery having a retention rate R of tensile strength of the film body defined by the following formula (1) of 0.60 or more.
R = S 1 / S 0 ... (1)
[In the formula, S 0 represents the tensile strength (N / cm 2 ) of the film body, and S 1 is the liquid formula in a hot water bath at 60 ° C. after the liquid lead-acid battery is fully charged. It represents the tensile strength (N / cm 2 ) of the film body after constant voltage charging at a voltage of 14.4 V was continued for 42 days with the lead storage battery arranged. ]
前記繊維に占める繊維径が5μm未満の繊維の割合が25%以上である、請求項1に記載の液式鉛蓄電池。 The liquid lead-acid battery according to claim 1, wherein the ratio of fibers having a fiber diameter of less than 5 μm to the fibers is 25% or more. 前記繊維に占める繊維径が5μm以上20μm以下の繊維の割合が20%以上である、請求項1又は2に記載の液式鉛蓄電池。 The liquid lead-acid battery according to claim 1 or 2, wherein the ratio of fibers having a fiber diameter of 5 μm or more and 20 μm or less to the fibers is 20% or more. 前記膜体が、有機繊維を含む不織布を備える、請求項1~3のいずれか一項に記載の液式鉛蓄電池。 The liquid lead-acid battery according to any one of claims 1 to 3, wherein the film body includes a nonwoven fabric containing organic fibers. 前記セパレータが袋状のセパレータであり、前記正極板又は前記負極板と前記膜体とが前記セパレータ内に収容されている、請求項1~4のいずれか一項に記載の液式鉛蓄電池。 The liquid lead-acid battery according to any one of claims 1 to 4, wherein the separator is a bag-shaped separator, and the positive electrode plate or the negative electrode plate and the film body are housed in the separator. 前記膜体の厚さが0.3mm以下である、請求項1~5のいずれか一項に記載の液式鉛蓄電池。 The liquid lead-acid battery according to any one of claims 1 to 5, wherein the film body has a thickness of 0.3 mm or less.
JP2017234457A 2017-12-06 2017-12-06 Lead-acid battery Active JP6996264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017234457A JP6996264B2 (en) 2017-12-06 2017-12-06 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017234457A JP6996264B2 (en) 2017-12-06 2017-12-06 Lead-acid battery

Publications (2)

Publication Number Publication Date
JP2019102357A JP2019102357A (en) 2019-06-24
JP6996264B2 true JP6996264B2 (en) 2022-01-17

Family

ID=66974003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017234457A Active JP6996264B2 (en) 2017-12-06 2017-12-06 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP6996264B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077445A (en) 2001-08-31 2003-03-14 Yuasa Corp Lead acid storage battery
JP2013206571A (en) 2012-03-27 2013-10-07 Nippon Sheet Glass Co Ltd Liquid type storage battery separator and liquid type storage battery
JP2014133873A (en) 2012-12-11 2014-07-24 Asahi Kasei Chemicals Corp Polyethylene powder, molding, and separator for lithium ion secondary battery
JP2019003838A (en) 2017-06-15 2019-01-10 日立化成株式会社 Liquid-type lead storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077445A (en) 2001-08-31 2003-03-14 Yuasa Corp Lead acid storage battery
JP2013206571A (en) 2012-03-27 2013-10-07 Nippon Sheet Glass Co Ltd Liquid type storage battery separator and liquid type storage battery
JP2014133873A (en) 2012-12-11 2014-07-24 Asahi Kasei Chemicals Corp Polyethylene powder, molding, and separator for lithium ion secondary battery
JP2019003838A (en) 2017-06-15 2019-01-10 日立化成株式会社 Liquid-type lead storage battery

Also Published As

Publication number Publication date
JP2019102357A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP7156589B2 (en) battery electrode pair
JP7380580B2 (en) lead acid battery
JP6197945B2 (en) Lead acid battery
JP2013118057A (en) Separator and nonaqueous electrolyte secondary battery using the same
US6777129B2 (en) Alkaline storage battery
KR102031508B1 (en) Lead acid battery
JP6996264B2 (en) Lead-acid battery
JP2017188477A (en) Lead storage battery
JP2006086039A (en) Lead-acid storage battery
JP6919469B2 (en) Lead-acid battery
JP6953821B2 (en) Liquid lead-acid battery
JP4639620B2 (en) Alkaline storage battery
WO2020208909A1 (en) Separator for liquid-type lead storage battery and liquid-type lead storage battery
JP6237922B2 (en) Lead acid battery
JP2005285499A5 (en)
WO2018105060A1 (en) Liquid lead-acid battery
JP7152831B2 (en) lead acid battery
WO2018199124A1 (en) Lead acid storage battery
JP7274830B2 (en) lead acid battery
JPWO2020067031A1 (en) Separator for lead-acid battery and lead-acid battery
JP2006156060A (en) Lead battery
WO2019064854A1 (en) Lead acid storage battery
JP2018190570A (en) Lead storage battery
JP4239510B2 (en) Lead-acid battery and manufacturing method thereof
JPWO2020066808A1 (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R151 Written notification of patent or utility model registration

Ref document number: 6996264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151