JP6701600B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP6701600B2
JP6701600B2 JP2015206570A JP2015206570A JP6701600B2 JP 6701600 B2 JP6701600 B2 JP 6701600B2 JP 2015206570 A JP2015206570 A JP 2015206570A JP 2015206570 A JP2015206570 A JP 2015206570A JP 6701600 B2 JP6701600 B2 JP 6701600B2
Authority
JP
Japan
Prior art keywords
positive electrode
mass
carbon
utilization rate
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015206570A
Other languages
Japanese (ja)
Other versions
JP2017079144A (en
Inventor
潤基 本田
潤基 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2015206570A priority Critical patent/JP6701600B2/en
Priority to CN201610911645.XA priority patent/CN106602002A/en
Publication of JP2017079144A publication Critical patent/JP2017079144A/en
Application granted granted Critical
Publication of JP6701600B2 publication Critical patent/JP6701600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

この発明は鉛蓄電池に関する。   This invention relates to a lead storage battery.

出願人は、特許文献1(JP2010-277799)において、ペースト式の正極板の電極材料に、0.005mass%以上0.5mass%以下のSbと、0.05mass%以上0.5mass%以下のガラス短繊維とを含有させることを提案した。これによって、Sbとガラス短繊維とを個々に含有させる場合よりも、充放電サイクル寿命が顕著に増加する。   In the patent document 1 (JP2010-277799), the applicant uses 0.005 mass% or more and 0.5 mass% or less Sb and 0.05 mass% or more and 0.5 mass% or less glass short fiber as the electrode material of the paste-type positive electrode plate. Proposed to be included. Thereby, the charging/discharging cycle life is remarkably increased as compared with the case where Sb and the glass short fibers are individually contained.

特許文献2(JP2008-243480)は、ペースト式の正極板の電極材料に、0.01mass%以上0.5mass%以下のBiと、0.1mass%以上2.0mass%以下の膨張化黒鉛とを含有させることを提案している。特許文献2は、Biにより正極電極材料の軟化が抑制され、膨張化黒鉛は正極電極材料中で酸化されることにより消失し、残った空孔が正極利用率を向上させるとしている。   Patent Document 2 (JP2008-243480) discloses that an electrode material for a paste-type positive electrode plate contains 0.01 mass% or more and 0.5 mass% or less Bi and 0.1 mass% or more and 2.0 mass% or less expanded graphite. is suggesting. Patent Document 2 states that the softening of the positive electrode material is suppressed by Bi, the expanded graphite disappears by being oxidized in the positive electrode material, and the remaining holes improve the positive electrode utilization rate.

JP2010-277799JP2010-277799 JP2008-243480JP2008-243480

この発明の課題は、充放電を繰り返しても高い正極利用率を維持できる鉛蓄電池を提供することにある。   An object of the present invention is to provide a lead storage battery that can maintain a high positive electrode utilization rate even when charging and discharging are repeated.

この発明の鉛蓄電池は、正極電極材料がSbとカーボンとを含有することを特徴とする。
Sb含有量は金属換算で0.05mass%以上が好ましい。正極電極材料はカーボンを0.05mass%以上含有することが好ましい。
The lead-acid battery of the present invention is characterized in that the positive electrode material contains Sb and carbon.
The Sb content is preferably 0.05 mass% or more in terms of metal. The positive electrode material preferably contains carbon in an amount of 0.05 mass% or more.

この発明の鉛蓄電池用の正極は、正極電極材料がSbとカーボンとを含有することを特徴とする。Sb含有量は例えば金属換算で0.05mass%以上である。カーボンは例えば正極電極材料中に0.05mass%以上含有されることが好ましい。なおこの明細書において、鉛蓄電池での正極に関する記載は、鉛蓄電池に組み込まれる前の鉛蓄電池用の正極自体にも当てはまる。また鉛蓄電池用の正極に関する記載は、鉛蓄電池自体にも当てはまる。   The positive electrode for a lead-acid battery of the present invention is characterized in that the positive electrode material contains Sb and carbon. The Sb content is, for example, 0.05 mass% or more in terms of metal. Carbon is preferably contained in the positive electrode material in an amount of 0.05 mass% or more. In this specification, the description regarding the positive electrode for the lead storage battery also applies to the positive electrode for the lead storage battery itself before being incorporated into the lead storage battery. Moreover, the description regarding the positive electrode for a lead storage battery also applies to the lead storage battery itself.

鉛蓄電池の正極の正極電極材料にSbとカーボンとを含有させると、充放電を繰り返しても高い正極利用率を維持できる。しかもこの効果は、Sbのみを含有させた際の効果と、カーボンのみを含有させた際の効果の和よりも大きい。なおSb含有量はSb金属に換算し、正極電極材料に対する割合で示す。金属換算した割合で示すとは、化合物の量ではなく、元素の含有量で示す事である。   When Sb and carbon are contained in the positive electrode material of the positive electrode of the lead storage battery, a high positive electrode utilization rate can be maintained even if charging and discharging are repeated. Moreover, this effect is larger than the sum of the effect when only Sb is contained and the effect when only carbon is contained. The Sb content is converted to Sb metal and shown as a ratio to the positive electrode material. The expression “in terms of metal” means not the amount of the compound but the content of the element.

Sbの効果は存在することで発現し、0.5mass%では逆に正極利用率が低下しているので、好ましくは上限を0.3mass%とする。このため、正極電極材料が金属換算で0.3mass%以下のSbを含有することが好ましい。また、0.05mass%で効果が大きく表れるので、0.05mass%以上含有することが好ましい。   The effect of Sb is manifested by the presence of Sb, and at 0.5 mass%, the positive electrode utilization rate is conversely reduced, so the upper limit is preferably made 0.3 mass%. Therefore, it is preferable that the positive electrode material contains 0.3 mass% or less of Sb in terms of metal. Further, since the effect is significantly exhibited at 0.05 mass%, it is preferable to contain 0.05 mass% or more.

またカーボンの効果は存在することで発現し、1.3mass%では逆に正極利用率が低下するので、好ましくは上限を1.0mass%とする。また、0.05mass%で効果が表れるので、正極電極材料が0.05mass%以上のカーボンを含有することが好ましい。   Further, the effect of carbon is manifested by the presence of carbon, and at 1.3 mass%, the positive electrode utilization rate decreases, so the upper limit is preferably made 1.0 mass%. Further, since the effect is exhibited at 0.05 mass%, it is preferable that the positive electrode material contains 0.05 mass% or more of carbon.

特に好ましくは、正極電極材料が、金属換算で0.05mass%以上0.3mass%以下のSbと、0.05mass%以上1.0mass%以下のカーボンとを含有する。この条件を満たす場合に、充放電を繰り返した際の、正極利用率の維持率を特に高くできる。   Particularly preferably, the positive electrode material contains 0.05 mass% or more and 0.3 mass% or less of Sb in terms of metal, and 0.05 mass% or more and 1.0 mass% or less of carbon. When this condition is satisfied, the maintenance factor of the positive electrode utilization rate when charging and discharging are repeated can be made particularly high.

カーボンの種類は任意で、例えばグラファイト、活性炭、コークス等であり、好ましくはグラファイトとし、最も好ましくは膨張していないグラファイトとする。正極利用率の維持効果は、膨張していないグラファイトで最大で、膨張済みのグラファイトがこれに続き、活性炭等の電気伝導率が低いものでは、グラファイトよりも効果が小さくなる。   The type of carbon is arbitrary, for example graphite, activated carbon, coke, etc., preferably graphite, most preferably unexpanded graphite. The effect of maintaining the positive electrode utilization rate is the largest with unexpanded graphite, followed by expanded graphite, and the effect is smaller than with graphite having low electric conductivity such as activated carbon.

この発明の効果は低密度の正極電極材料で大きくなり、実験によると、密度が3.55g/cm3ではSbとカーボンの効果は小さかったので、正極電極材料の密度は3.45g/cm3以下が好ましい。なお密度が3.16g/cm3まで特に問題なく実用的な鉛蓄電池を製造できたので、正極電極材料の密度は3.16g/cm3以上3.45g/cm3以下であることがより好ましい。 The effect of the present invention is large in a low-density positive electrode material, and according to experiments, the effect of Sb and carbon was small at a density of 3.55 g/cm 3 , so the density of the positive electrode material is 3.45 g/cm 3 or less. preferable. Note the density could produce a practical lead-acid battery without any particular problem to 3.16 g / cm 3, and more preferably the density of the positive electrode material is not more than 3.16 g / cm 3 or more 3.45 g / cm 3.

上記の正極を、ペースト式ではなく、クラッド式とすると、充放電サイクルを繰り返した際の正極利用率をより高く維持できる。このため、上記の正極はクラッド式であることが好ましい。   When the positive electrode is a clad type instead of a paste type, the positive electrode utilization rate can be maintained higher when the charge/discharge cycle is repeated. For this reason, it is preferable that the positive electrode is of the clad type.

Sbは正極電極材料の軟化を抑制し、電極材料よりも低密度のカーボンは正極電極材料の密度を均一に低下させると共に、その導電性により正極利用率を向上させると考えられる。   It is considered that Sb suppresses softening of the positive electrode material, and carbon having a lower density than that of the electrode material uniformly lowers the density of the positive electrode material and improves the positive electrode utilization rate due to its conductivity.

さらにクラッド式の正極では、カーボンが正極電極材料内で膨張することにより、硝子繊維チューブに正極電極材料が押しつけられて、その構造が維持されると考えられる、またカーボンが酸化により消失すると、生じた空孔に電解液が保持されて、正極利用率に寄与すると考えられる。   Furthermore, in the clad-type positive electrode, it is considered that the expansion of carbon in the positive electrode material causes the positive electrode material to be pressed against the glass fiber tube to maintain its structure. It is considered that the electrolyte solution is retained in the pores and contributes to the positive electrode utilization rate.

しかしながら、これらはSbとカーボン各々の単独での効果であり、Sbとカーボンとの相乗効果が生じる機構は不明である。以下に、本発明の実施形態を例示する。   However, these are the effects of Sb and carbon alone, and the mechanism of the synergistic effect of Sb and carbon is unknown. Embodiments of the present invention will be exemplified below.

形態1:
鉛蓄電池であって、正極電極材料がSbとカーボンとを含有することを特徴とする。
Form 1:
A lead-acid battery, characterized in that the positive electrode material contains Sb and carbon.

形態2:
形態1の鉛蓄電池であって、前記Sbは金属換算で0.05mass%以上であることを特徴とする。
Form 2:
The lead acid battery of form 1, wherein the Sb is 0.05 mass% or more in terms of metal.

形態3:
形態1の鉛蓄電池であって、前記カーボンは金属換算で0.05mass%以上であることを特徴とする。
Form 3:
The lead acid battery of form 1, wherein the carbon content is 0.05 mass% or more in terms of metal.

形態4:
形態1または2に記載の鉛蓄電池鉛蓄電池であって、正極電極材料が、金属換算で0.3mass%以下のSbを含有することを特徴とする。
Form 4:
The lead-acid battery according to the form 1 or 2, wherein the positive electrode material contains 0.3 mass% or less of Sb in terms of metal.

形態5:
形態1または3に記載の鉛蓄電池であって、正極電極材料が、1.0mass%以下のカーボンを含有することを特徴とする。
Form 5:
The lead acid battery according to form 1 or 3, wherein the positive electrode material contains 1.0 mass% or less of carbon.

形態6:
形態1〜5のいずれかに記載の鉛蓄電池であって、正極電極材料が、金属換算で0.05mass%以上のSbと、0.05mass%以上のカーボンとを含有することを特徴とする。
形態7:
Form 6:
The lead acid battery according to any one of modes 1 to 5, wherein the positive electrode material contains 0.05 mass% or more of Sb and 0.05 mass% or more of carbon in terms of metal.
Form 7:

形態1〜6のいずれかに記載の鉛蓄電池であって、正極電極材料が、金属換算で0.3mass%以下のSbと、1.0mass%以下のカーボンとを含有することを特徴とする。   The lead acid battery according to any one of modes 1 to 6, characterized in that the positive electrode material contains 0.3 mass% or less of Sb in terms of metal and 1.0 mass% or less of carbon.

形態8:
形態1〜7のいずれかに記載の鉛蓄電池であって、前記カーボンがグラファイト、エキスパンデットグラファイト、活性炭、コークスのうち少なくとも1種を含むことを特徴とする。
Form 8:
The lead acid battery according to any one of modes 1 to 7, wherein the carbon contains at least one of graphite, expanded graphite, activated carbon and coke.

形態9:
形態1〜8のいずれかに記載の鉛蓄電池であって、前記正極電極材料の密度が3.45g/cm3以下であることを特徴とする。
Form 9:
The lead acid battery according to any one of modes 1 to 8, wherein the positive electrode material has a density of 3.45 g/cm 3 or less.

形態10:
形態1〜9のいずれかに記載の鉛蓄電池であって、前記正極電極材料の密度が3.16g/cm3以上であることを特徴とする。
Form 10:
The lead acid battery according to any one of modes 1 to 9, wherein the positive electrode material has a density of 3.16 g/cm 3 or more.

形態11:
形態1〜10のいずれかに記載の鉛蓄電池であって、正極がクラッド式であることを特徴とする。
Form 11:
The lead acid battery according to any one of modes 1 to 10, wherein the positive electrode is a clad type.

形態12:
鉛蓄電池用正極であって、正極電極材料がSbとカーボンとを含有することを特徴とする。
Form 12:
A positive electrode for a lead storage battery, characterized in that the positive electrode material contains Sb and carbon.

形態13:
形態12に記載の鉛蓄電池用正極であって、前記Sbは、金属換算で0.05mass%以上であることを特徴とする。
Form 13:
The positive electrode for a lead storage battery according to mode 12, wherein the Sb is 0.05 mass% or more in terms of metal.

形態14:
形態12に記載の鉛蓄電池用正極であって、前記カーボンは、金属換算で0.05mass%以上であることを特徴とする。
Form 14:
The lead storage battery positive electrode according to the twelfth aspect, wherein the carbon is 0.05 mass% or more in terms of metal.

形態15:
形態12〜14のいずれかに記載の鉛蓄電池であって、正極電極材料が、金属換算で0.3mass%以下のSbを含有することを特徴とする。
Form 15:
The lead acid battery according to any one of modes 12 to 14, wherein the positive electrode material contains 0.3 mass% or less of Sb in terms of metal.

形態16:
形態12〜15のいずれかに記載の鉛蓄電池であって、正極電極材料が、1.0mass%以下のカーボンを含有することを特徴とする、形態12〜15に記載の鉛蓄電池用正極。
Form 16:
The lead acid battery according to any one of modes 12 to 15, wherein the positive electrode material contains 1.0 mass% or less of carbon, and the positive electrode for lead acid battery according to modes 12 to 15 is characterized.

形態17:
形態10に記載の鉛蓄電池であって、正極電極材料が、金属換算で0.05mass%以上のSbと、0.05mass%以上のカーボンとを含有することを特徴とする。
Form 17:
The lead acid battery according to form 10, wherein the positive electrode material contains 0.05 mass% or more of Sb and 0.05 mass% or more of carbon in terms of metal.

形態18:
形態12〜17のいずれかに記載の鉛蓄電池であって、形態1の鉛蓄電池であって、正極電極材料が、金属換算で0.3mass%以下のSbと、1.0mass%以下のカーボンとを含有することを特徴とする。
Form 18:
The lead acid battery according to any one of modes 12 to 17, wherein the positive electrode electrode material contains 0.3 mass% or less of Sb and 1.0 mass% or less of carbon in terms of metal. It is characterized by doing.

形態19:
形態12〜18のいずれかに記載の鉛蓄電池であって、用正極前記カーボンがグラファイト、エキスパンデットグラファイト、活性炭、コークスのうち少なくとも1種を含有することを特徴とする。
Form 19:
The lead acid battery according to any one of modes 12 to 18, wherein the carbon for positive electrode contains at least one of graphite, expanded graphite, activated carbon, and coke.

形態20:
形態12〜19のいずれかに記載の鉛蓄電池であって、前記正極電極材料の密度が3.45g/cm3以下であることを特徴とする。
Form 20:
The lead acid battery according to any one of modes 12 to 19, wherein the positive electrode material has a density of 3.45 g/cm 3 or less.

形態21:
形態12〜20のいずれかに記載の鉛蓄電池であって、前記正極電極材料の密度が3.16g/cm3以上であることを特徴とする。
Form 21:
21. The lead acid battery according to any one of modes 12 to 20, characterized in that the positive electrode material has a density of 3.16 g/cm 3 or more.

形態22:
形態12〜21のいずれかに記載の鉛蓄電池用正極であって、正極がクラッド式であることを特徴とする。
Form 22:
The positive electrode for a lead storage battery according to any one of modes 12 to 21, wherein the positive electrode is a clad type.

電解液の比重を1.320、正極活物質の密度が3.41g/cm3とし、100サイクル後の、30℃の水槽中における正極利用率とカーボン含有量との関係を、Sb含有量が0mass%及び0.2mass%の場合に対して示す特性図The specific gravity of the electrolytic solution is 1.320, the density of the positive electrode active material is 3.41 g/cm 3, and after 100 cycles, the relationship between the positive electrode utilization rate and the carbon content in the water tank at 30° C., the Sb content is 0 mass% and Characteristic diagram shown for 0.2 mass% 図1のデータを、カーボン含有量もSb含有量も0の場合を100%とする相対値で示す特性図Characteristic diagram showing the data in Figure 1 as relative values with 100% when the carbon content and Sb content are both 0 電解液の比重を1.320、正極活物質の密度が3.41g/cm3とし、100サイクル後の、30℃の水槽中における正極利用率とSb含有量との関係を、カーボン含有量が0mass%及び0.3mass%の場合に対して示す特性図The specific gravity of the electrolytic solution is 1.320, the density of the positive electrode active material is 3.41 g/cm 3, and after 100 cycles, the relationship between the positive electrode utilization rate and the Sb content in the water tank at 30° C., the carbon content is 0 mass% and Characteristic diagram shown for 0.3 mass% 図3のデータを、カーボン含有量もSb含有量も0の場合を100%とする相対値で示す特性図Characteristic diagram showing the data in Figure 3 as relative values with 100% when both carbon content and Sb content are 0 電解液の比重を1.320、正極活物質の密度が3.41g/cm3とし、30℃の水槽中での正極利用率の初期値とカーボン含有量との関係を、Sb含有量が0mass%及び0.2mass%の場合に対して示す特性図The specific gravity of the electrolytic solution is 1.320, the density of the positive electrode active material is 3.41 g/cm 3 , and the relationship between the initial value of the positive electrode utilization rate and the carbon content in the water tank at 30° C. is 0 mass% and 0.2% Sb content. Characteristic diagram shown for mass% 図5のデータを、カーボン含有量もSb含有量も0の場合を100%とする相対値で示す特性図Characteristic diagram showing the data in Figure 5 as relative values with 100% when the carbon content and Sb content are both 0 電解液の比重を1.320、正極活物質の密度が3.41g/cm3とし、30℃の水槽中での正極利用率の初期値とSb含有量との関係を、カーボン含有量が0mass%及び0.3mass%の場合に対して示す特性図The specific gravity of the electrolytic solution is 1.320, the density of the positive electrode active material is 3.41 g/cm 3 , and the relationship between the initial value of the positive electrode utilization rate and the Sb content in the water tank at 30° C., the carbon content is 0 mass% and 0.3%. Characteristic diagram shown for mass% 図7のデータを、カーボン含有量もSb含有量も0の場合を100%とする相対値で示す特性図Characteristic diagram showing the data in Figure 7 as relative values with 100% when the carbon content and Sb content are both 0 電解液の比重を1.320とし、100サイクル後の、30℃の水槽中における正極利用率と正極活物質密度との関係を、カーボン0.3mass%とSb0.2mass%を含有するSb,C添加品と、カーボンもSbも含有しない無添加品とに対して示す特性図The specific gravity of the electrolytic solution was 1.320, and after 100 cycles, the relationship between the positive electrode utilization rate and the positive electrode active material density in a water tank at 30° C. was compared with Sb,C-added products containing 0.3 mass% carbon and 0.2 mass% Sb. , Characteristic diagram shown for additive-free products containing neither carbon nor Sb 電解液の比重を1.320、正極活物質の密度が3.41g/cm3とし、100サイクル後の、30℃の水槽中における正極利用率を、カーボンもSbも含有しない無添加品を100%とする相対値で、クラッド式とペースト式について示す特性図The specific gravity of the electrolyte is 1.320, the density of the positive electrode active material is 3.41 g/cm 3, and the positive electrode utilization rate in a water tank at 30°C after 100 cycles is 100% for additive-free products containing neither carbon nor Sb. Characteristic diagram showing the clad formula and paste formula with relative values

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。なお実施例では、負極電極材料を負極活物質と呼び、正極電極材料を正極活物質と呼ぶことがある。正極板がクラッド式の時は、正極板(正極)は、正極集電体(芯金や正極格子など)、正極電極材料(正極活物質)、及び硝子繊維チューブ、上下のフレーム等から成り、硝子繊維チューブ内の芯金以外の固形成分は正極電極材料に属するものとし、負極板(負極)は、負極集電体(負極格子など)と負極電極材料(負極活物質)とから成るものとする。正極がペースト式の時は、負極板(負極)は、負極集電体(負極格子など)と負極電極材料(負極活物質)とから成り、正極板(正極)は、正極集電体(正極格子など)と正極電極材料(正極活物質)から成る。   The best examples of the present invention will be shown below. In carrying out the present invention, the embodiments can be appropriately modified according to the common knowledge of those skilled in the art and the disclosure of the prior art. In the examples, the negative electrode material may be referred to as a negative electrode active material and the positive electrode material may be referred to as a positive electrode active material. When the positive electrode plate is a clad type, the positive electrode plate (positive electrode) consists of a positive electrode current collector (core metal, positive electrode grid, etc.), positive electrode material (positive electrode active material), glass fiber tube, upper and lower frames, etc. The solid components other than the core metal in the glass fiber tube shall belong to the positive electrode material, and the negative electrode plate (negative electrode) shall consist of the negative electrode current collector (negative electrode grid etc.) and the negative electrode material (negative electrode active material). To do. When the positive electrode is a paste type, the negative electrode plate (negative electrode) is composed of a negative electrode current collector (negative electrode grid, etc.) and a negative electrode material (negative electrode active material), and the positive electrode plate (positive electrode) is a positive electrode current collector (positive electrode). Grid) and a positive electrode material (positive electrode active material).

鉛蓄電池の製造
鉛粉とSb源としてのSb2O3粉末の混合粉を、Pb-Ca-Sn系の芯金を有する硝子繊維のチューブが並んだクラッド式極板に充填した。そして充填条件を変えて化成後の正極活物質の密度を変化させた。化成後のSb含有量が0(より正確には0.005mass%以下)から0.5mass%の範囲となるように含有量を変化させた。活物質材料を充填後、希硫酸に浸漬した後に、空気中で乾燥し、未化成の正極とした。以下、組成は化成後の組成で示す。
Manufacture of Lead Acid Battery A mixed powder of lead powder and Sb 2 O 3 powder as an Sb source was filled in a clad type electrode plate in which glass fiber tubes having a Pb-Ca-Sn core metal were arranged. Then, the packing conditions were changed to change the density of the positive electrode active material after chemical conversion. The content was changed so that the Sb content after chemical conversion was in the range of 0 (more accurately 0.005 mass% or less) to 0.5 mass%. After filling the active material, it was immersed in dilute sulfuric acid and then dried in air to obtain an unformed positive electrode. Hereinafter, the composition is shown as the composition after chemical conversion.

鉛粉の種類と製造条件は任意で、合成繊維補強剤等の有無と含有量とは任意、Sb源は金属Sb、SbOOH、Sb2O5等でも良く、またPb-Sb合金を鉛粉材料として、鉛粉からSb元素が供給されるようにしても良い。カーボンは、膨張の準備となる硫酸処理等を施していない通常のグラファイト、膨張済みのグラファイト、活性炭、コークス、カーボンブラックを検討した。活性炭とコークスは同等であったので、活性炭のデータを示す。またカーボンブラックは正極板から流出して電解液を濁らせ易かったので、これ以外のカーボンが好ましい。以下、単にカーボンあるいはグラファイトという場合、硫酸処理等を施していない通常のカーボンやグラファイトをいう。使用した通常のグラファイトの平均粒径は180μmであったが、好ましい範囲は10μm以上500μm以下である。 The type and manufacturing conditions of lead powder are arbitrary, the presence and content of synthetic fiber reinforcing agents, etc. are arbitrary, the Sb source may be metal Sb, SbOOH, Sb 2 O 5, etc., and Pb-Sb alloy is a lead powder material. Alternatively, the Sb element may be supplied from lead powder. As the carbon, usual graphite which has not been subjected to sulfuric acid treatment or the like for expansion preparation, expanded graphite, activated carbon, coke, and carbon black were examined. Since activated carbon and coke were equivalent, the data for activated carbon are shown. Further, since carbon black easily flows out from the positive electrode plate and makes the electrolytic solution cloudy, carbon other than this is preferable. Hereinafter, when simply referred to as carbon or graphite, it means ordinary carbon or graphite that has not been treated with sulfuric acid or the like. The average particle size of the ordinary graphite used was 180 μm, but the preferred range is 10 μm or more and 500 μm or less.

鉛粉と有機防縮剤と、硫酸バリウム、カーボンブラック、及び合成繊維補強材を、水と硫酸で混練し、負極活物質ペーストとした。化成後の負極活物質(厳密には負極電極材料)に対し、スルホン化リグニンを有機防縮剤として0.10mass%となるように含有させた。硫酸バリウムは1.0mass%、合成繊維補強材は0.05mass%、他にカーボンブラックを0.2mass%となるように(化成後の負極活物質(厳密には負極電極材料)に対し)含有させた。これらの成分の好ましい含有量の範囲は、有機防縮剤は0.05mass%以上0.3mass%以下、硫酸バリウムは0.5mass%以上2.0mass%以下、合成繊維補強材は0.03mass%以上0.2mass%以下で、カーボンブラック等のカーボンは3.0mass%以下である。負極活物質は、上記のもの以外の成分を含んでいても良い。負極活物質ペーストを、Pb-Ca-Sn系合金からなる鋳造格子に充填し、乾燥と熟成を施して未化成の負極板とした。   Lead powder, an organic shrink proof agent, barium sulfate, carbon black, and a synthetic fiber reinforcing material were kneaded with water and sulfuric acid to prepare a negative electrode active material paste. Sulfonated lignin was contained as an organic shrinkage inhibitor in an amount of 0.10 mass% with respect to the negative electrode active material (strictly speaking, the negative electrode material) after chemical conversion. Barium sulfate was added at 1.0 mass%, the synthetic fiber reinforcing material was added at 0.05 mass%, and carbon black was added at 0.2 mass% (to the negative electrode active material after formation (strictly speaking, negative electrode material)). The preferred content range of these components is 0.05 mass% or more and 0.3 mass% or less for the organic preservative, 0.5 mass% or more and 2.0 mass% or less for barium sulfate, and the synthetic fiber reinforcing material is 0.03 mass% or more and 0.2 mass% or less. Carbon such as carbon black is 3.0 mass% or less. The negative electrode active material may contain components other than those described above. The negative electrode active material paste was filled in a casting grid made of a Pb-Ca-Sn alloy and dried and aged to obtain an unformed negative electrode plate.

未化成の負極板を微多孔質のポリエチレンセパレータで包み、クラッド式の正極と共に電槽にセットし、硫酸から成る電解液(化成後に20℃で比重1.32となるように調整)を加え電槽化成し、2V出力で5時間率容量(C5、以後Cと表記)が165Ahのクラッド式鉛蓄電池とした。 Wrap an unformed negative electrode plate in a microporous polyethylene separator, set it in a battery case together with a clad positive electrode, and add an electrolytic solution consisting of sulfuric acid (adjusted to have a specific gravity of 1.32 at 20°C after formation) in the battery container. Then, a clad-type lead-acid battery with a 2-hour output and a 5-hour rate capacity (C 5 , hereinafter referred to as C) of 165 Ah was used.

正極利用率の測定
正極利用率は、0.2CA放電容量(Ah)÷正極理論容量(Ah)のことであり、%単位で表す。なお正極理論容量は、正極活物質中のPbO2重量(g)÷4.463(g/Ah)で定まり、PbO2重量は、正極活物質中のPb量をPbO2量に換算して求める。新しい蓄電池の場合、初充電後に下記の条件で10サイクルの充放電を行う。
放電:0.2CAで、セル当たりの終止電圧は1.70V
充電:0.2CAで、放電電気量の135%
Measurement of positive electrode utilization factor Positive electrode utilization factor is 0.2 CA discharge capacity (Ah) ÷ positive electrode theoretical capacity (Ah) and is expressed in %. Note the positive electrode theoretical capacity, Sadamari with PbO 2 weight in the positive electrode active material (g) ÷ 4.463 (g / Ah), PbO 2 weight is obtained by converting the amount of Pb in the positive electrode active material PbO 2 amount. In the case of a new storage battery, charge and discharge for 10 cycles under the following conditions after initial charging.
Discharge: 0.2CA, final voltage per cell is 1.70V
Charging: 0.2CA, 135% of discharged electricity

新しい蓄電池の場合、10サイクル後に満充電し、電解液の液面を調整し、1晩放置した。次いで30℃の水槽中で、0.2CAで終止電圧を1.70Vとして、容量を測定し、正極利用率の初期値を測定した。初期値の測定後に、鉛蓄電池を10℃の水槽中で、0.22CAで3時間放電し、0.18CAで放電電気量の115%分充電するサイクルを100サイクル経験させた。100サイクル後に、振動試験として上下方向に1.5±0.1Gの加速度で0.5時間振動させる試験を行い、その後に、上記の10サイクルの充放電を省略して満充電を行う他は、上記と同様にして容量を測定し、100サイクル後の正極利用率を測定した。   In the case of a new storage battery, it was fully charged after 10 cycles, the liquid level of the electrolyte was adjusted, and it was left overnight. Next, in a 30° C. water tank, the final voltage was set to 1.70 V at 0.2 CA, the capacity was measured, and the initial value of the positive electrode utilization rate was measured. After measuring the initial value, the lead-acid battery was discharged in a water tank at 10° C. for 3 hours at 0.22 CA, and the cycle of charging 115% of the discharged electricity at 0.18 CA was experienced for 100 cycles. After 100 cycles, as a vibration test, a test is performed in which vibration is applied vertically at an acceleration of 1.5 ± 0.1 G for 0.5 hours, and then the above 10 cycles of charge and discharge are omitted and full charge is performed. The capacity was measured in the same manner, and the positive electrode utilization rate after 100 cycles was measured.

試験結果
表1〜表11に試験結果を示し、主なデータを図1〜図10に再掲する。表1,表2は、0.22CA×3時間の放電を含む上記のサイクルを100サイクル繰り返した後の正極利用率を示し、表1は利用率自体を、表2は利用率の相対値を示す。Sb含有量を0mass%と0.2mass%に固定し、カーボン含有量を変えた際の結果を図1(利用率自体),図2(利用率の相対値)に、カーボン含有量を0mass%と0.3mass%に固定し、Sb含有量を変えた際の結果を図3(利用率自体),図4(利用率の相対値)に示す。
Test Results Tables 1 to 11 show the test results, and main data are reprinted in FIGS. 1 to 10. Tables 1 and 2 show the positive electrode utilization factor after 100 cycles of the above cycle including 0.22 CA×3 hours of discharge, Table 1 the utilization factor itself, and Table 2 the relative utilization factor. .. Fig. 1 (utilization rate itself) and Fig. 2 (relative value of utilization rate) show the results when the carbon content was changed with the Sb content fixed at 0 mass% and 0.2 mass%. The results when the Sb content was changed while fixing at 0.3 mass% are shown in FIG. 3 (utilization rate itself) and FIG. 4 (relative value of utilization rate).

図1,図2から明らかなように、0.2mass%のSbを含有すると、カーボンの効果がより強く現れる。また図3,図4から明らかなように、0.3mass%のカーボンを含有すると、Sbの効果がより強く現れる。これらのことは、Sbとカーボンとが相乗作用して、充放電を繰り返した後の正極利用率を向上させたことを示している。   As is clear from FIGS. 1 and 2, the effect of carbon becomes stronger when Sb of 0.2 mass% is contained. Further, as is clear from FIGS. 3 and 4, when 0.3 mass% of carbon is contained, the effect of Sb becomes stronger. These facts indicate that Sb and carbon synergistically improved the positive electrode utilization rate after repeated charge and discharge.

Sbを含有する場合、カーボンが存在することで、カーボンの効果は発現し、0.05mass%で顕著となり0.1mass%でより明瞭になるので、カーボン含有量の下限は0.05mass%とし、より好ましくは0.1mass%とした。カーボンの効果は0.6mass%〜1.0mass%で上限に達し、1.3mass%では正極利用率が低下し始めるので、より好ましい範囲の上限を1.0mass%とした。   In the case of containing Sb, the presence of carbon, the effect of carbon is expressed, it becomes noticeable at 0.05 mass% and becomes clearer at 0.1 mass%, so the lower limit of the carbon content is 0.05 mass%, and more preferably It was set to 0.1 mass%. The effect of carbon reaches the upper limit at 0.6 mass% to 1.0 mass%, and the positive electrode utilization rate starts to decrease at 1.3 mass%, so the upper limit of the more preferable range was made 1.0 mass%.

カーボンを含有する場合、Sbの効果は存在することで発現し、0.05mass%で効果が大きく表れるので、Sb含有量の下限を0.05mass%とする。0.2mass%で効果が最大となり、0.5mass%では正極利用率が低下するので、上限を0.3mass%とした。   When carbon is contained, the effect of Sb is manifested by the presence of Sb, and the effect becomes large at 0.05 mass%, so the lower limit of the Sb content is set to 0.05 mass%. The effect is maximized at 0.2 mass% and the positive electrode utilization rate decreases at 0.5 mass%, so the upper limit was made 0.3 mass%.

表3は利用率の初期値を、表4は利用率の初期値の相対値を示す。Sb含有量を0mass%と0.2mass%に固定し、カーボン含有量を変えた際の結果を図5,図6に示し、図5は利用率の初期値を、図6は利用率の初期値の相対値を示す。カーボン含有量を0mass%と0.3mass%に固定し、Sb含有量を変えた際の結果を図7,図8に示し、図7は利用率の初期値を、図8は利用率の初期値の相対値を示す。   Table 3 shows the initial value of the utilization rate, and Table 4 shows the relative value of the initial value of the utilization rate. Fig. 5 and Fig. 6 show the results when the Sb content was fixed to 0 mass% and 0.2 mass% and the carbon content was changed. Fig. 5 shows the initial value of the utilization rate, and Fig. 6 shows the initial value of the utilization rate. Indicates the relative value of. Fig. 7 and Fig. 8 show the results when the carbon content was fixed to 0 mass% and 0.3 mass% and the Sb content was changed. Fig. 7 shows the initial value of the utilization rate, and Fig. 8 shows the initial value of the utilization rate. Indicates the relative value of.

表5は、前記のサイクルを100サイクル経験した後の正極利用率への、カーボンの種類毎の効果を示す。Sb含有量は0.2mass%、カーボン含有量は0.3mass%とした。グラファイトで活性炭よりも良い結果が得られ、グラファイトの中でも、未膨張の通常のグラファイトが膨張済みのグラファイトよりも好ましいことが分かった。さらに各種のカーボンを複数種含有させた場合でも、未膨張の通常のグラファイトを含む組合せがより好ましいことが分かった。   Table 5 shows the effect of each carbon type on the positive electrode utilization after 100 cycles of the above cycle. The Sb content was 0.2 mass% and the carbon content was 0.3 mass%. It has been found that graphite gives better results than activated carbon, and among the graphite, unexpanded normal graphite is preferred over expanded graphite. Further, it has been found that a combination including unexpanded ordinary graphite is more preferable even when plural kinds of various carbons are contained.

表6と図9は、前記のサイクルを100サイクル経験した後の正極利用率への、正極電極材料の密度の効果を示す。そして結果を、Sbを0.2mass%、カーボンを0.3mass%含有する実施例と、Sbもカーボンも含有しない比較例とに対して示す。Sbとカーボンとを含有させることにより、活物質密度が低くても高い利用率が得られ、活物質密度が低いほど利用率の差が増した。密度が3.29g/cm3と3.41g/cm3で特に優れた利用率が得られ、密度3.16g/cm3でも密度3.55g/cm3の比較例に匹敵する利用率が得られた。これらのことから正極活物質の密度は3.45g/cm3以下が好ましく、特に3.16g/cm3以上3.45g/cm3以下が好ましい。 Table 6 and FIG. 9 show the effect of the density of the positive electrode material on the positive electrode utilization after 100 cycles of the above cycle. The results are shown for an example containing 0.2 mass% Sb and 0.3 mass% carbon and a comparative example containing neither Sb nor carbon. By incorporating Sb and carbon, a high utilization rate was obtained even when the active material density was low, and the difference in utilization rate increased as the active material density decreased. Density particularly good utilization is obtained at 3.29 g / cm 3 and 3.41 g / cm 3, utilization comparable to the comparative example of the density of 3.55 g / cm 3, even density 3.16 g / cm 3 was obtained. From these, the density of the positive electrode active material is preferably 3.45 g/cm 3 or less, and particularly preferably 3.16 g/cm 3 or more and 3.45 g/cm 3 or less.

従来から、正極活物質の利用率を向上させるために正極活物質密度を低くすることは試みられていた。しかし初期には利用率が向上するものの、100サイクル程度経過すると利用率は低下し、継続的な効果を得られなかった。本発明においては正極活物質の密度を低下させるためにカーボンを用い、正極内で活物質を均一に低密度化させることにより、正極活物質の初期の利用率を向上させる。さらにアンチモンを同時に存在させることにより、低密度な正極活物質の構造を維持し、多数のサイクルを経過しても、利用率が低下しない電池となしえた。そのため、カーボンとアンチモンを同時に存在させた本発明では、正極活物質密度を下げても、100サイクル後の利用率を維持できたと推測している。   Conventionally, attempts have been made to reduce the density of the positive electrode active material in order to improve the utilization rate of the positive electrode active material. However, although the utilization rate improved in the initial stage, the utilization rate decreased after about 100 cycles, and the continuous effect was not obtained. In the present invention, carbon is used to reduce the density of the positive electrode active material, and the density of the active material is uniformly reduced in the positive electrode to improve the initial utilization rate of the positive electrode active material. Furthermore, by allowing antimony to be present at the same time, the structure of the low-density positive electrode active material was maintained, and the battery could be made to have a low utilization rate even after a number of cycles. Therefore, in the present invention in which carbon and antimony are present at the same time, it is presumed that the utilization factor after 100 cycles could be maintained even if the positive electrode active material density was lowered.

Sbとカーボンを含有する場合、密度が3.16g/cm3でも100サイクル以上動作したが、Sbもカーボンも含有しない場合、3.16g/cm3では100サイクルの動作に鉛蓄電池が耐えなかった。このことは、カーボンとSbとを含有させることにより、より低密度の正極活物質を使用できることを意味し、3.16g/cm3でよりよい結果が得られたので、密度のより好ましい範囲を例えば3.16g/cm3以上とする。 When Sb and carbon were contained, the battery operated for 100 cycles or more even when the density was 3.16 g/cm 3 , but when Sb and carbon were not contained, the lead acid battery could not withstand 100 cycles of operation at 3.16 g/cm 3 . This means that by containing carbon and Sb, it is possible to use a lower density positive electrode active material, and since a better result was obtained at 3.16 g/cm 3 , a more preferable range of the density can be set, for example. 3.16g/cm 3 or more.

表7は 20 ℃(充電状態)での電解液の比重と100サイクル後の正極利用率との関係を示す。無添加品は電解液が高比重であるほど正極利用率を維持しにくいのに比べ、Sbとカーボンとを含有する場合、高比重の電解液の方が正極利用率を維持しやすく、電解液の比重は20℃で1.30以上が好ましいことが分かった。20℃で1.30以上1.34以下がより好ましい。   Table 7 shows the relationship between the specific gravity of the electrolyte at 20°C (charged state) and the positive electrode utilization rate after 100 cycles. In the additive-free product, the higher the specific gravity of the electrolyte solution, the more difficult it is to maintain the positive electrode utilization rate.In contrast, when Sb and carbon are contained, the electrolyte solution with a higher specific gravity is easier to maintain the positive electrode utilization rate, It was found that the specific gravity of is preferably 1.30 or more at 20°C. It is more preferably 1.30 or more and 1.34 or less at 20°C.

表8は電解液の比重が1.32での、試験温度と100サイクル後の正極利用率との関係を示す。Sbとカーボンとを含有する場合、低温にしても正極利用率を維持しやすいことが分かった。   Table 8 shows the relationship between the test temperature and the positive electrode utilization rate after 100 cycles when the specific gravity of the electrolytic solution was 1.32. It has been found that when Sb and carbon are contained, it is easy to maintain the positive electrode utilization rate even at low temperatures.

表9は、比重1.32の電解液での、1000サイクル後のセジメント(沈降物)量を示し、セジメント量は正極活物質の軟化脱落の指標である。正極活物質の密度を低下させるとセジメントが増すが、Sbとカーボンとを加えると、密度を低下させてもセジメントを減少させることができた。   Table 9 shows the amount of sediment (sediment) after 1000 cycles in the electrolytic solution having a specific gravity of 1.32, and the amount of sediment is an index of softening and falling of the positive electrode active material. When the density of the positive electrode active material was decreased, the sediment increased, but when Sb and carbon were added, the sediment could be decreased even if the density was decreased.

図10に、正極活物質密度を3.41g/cm、電解液の比重を1.320とし、30℃の水槽中で100サイクル後の正極利用率を、カーボンもSbも含有しない無添加品を100%とする相対値で、クラッド式とペースト式について示す。またカーボン濃度とSb濃度はmass%単位である。0.3mass%のカーボンと0.2mass%のSbとを含有する実施例では100サイクル後の正極利用率が増加し、しかも0.3mass%のカーボンによる増加と0.2mass%のSbによる増加との和よりも大きく、正極利用率が増加した。さらに100サイクル後の正極利用率の増加は、クラッド式でペースト式よりも著しかった。 10, the positive electrode active material density 3.41 g / cm 3, the specific gravity of the electrolytic solution is 1.320, the positive electrode utilization ratio after 100 cycles in 30 ° C. water bath, carbon is also additive-free product that does not contain Sb 100% The relative values are shown for the clad formula and the paste formula. The carbon concentration and Sb concentration are in mass%. In the examples containing 0.3 mass% carbon and 0.2 mass% Sb, the positive electrode utilization rate after 100 cycles increased, and more than the sum of the increase by 0.3 mass% carbon and the increase by 0.2 mass% Sb. Significantly, the positive electrode utilization rate increased. Further, the increase in the positive electrode utilization rate after 100 cycles was more remarkable in the clad type than in the paste type.

表10は、100サイクル後の正極利用率が、カーボン含有量によりどのように変化するかを示し、カーボン0.1mass%に対する正極利用率の変化に換算して示す。カーボン含有量による利用率の変化は、カーボン含有量が低いほど大きく、カーボン含有量が0.6mass%から1.0mass%の区間では、利用率はカーボン含有量によらずほぼ一定で、カーボン含有量が1.0mass%を超えると、利用率が低下し始めることが分かる。   Table 10 shows how the positive electrode utilization rate after 100 cycles changes depending on the carbon content, and is shown in terms of the change in the positive electrode utilization rate for 0.1 mass% of carbon. The change in the utilization rate due to the carbon content is larger as the carbon content is lower, and in the section where the carbon content is 0.6 mass% to 1.0 mass%, the utilization rate is almost constant regardless of the carbon content, and the carbon content is It can be seen that the utilization rate begins to decrease when the content exceeds 1.0 mass%.

表11は、正極利用率の初期値が、カーボン含有量によりどのように変化するかを示し、カーボン含有量が1.0mass%を超えると、利用率の初期値が低下し始めることが分かる。   Table 11 shows how the initial value of the positive electrode utilization rate changes depending on the carbon content, and it can be seen that when the carbon content exceeds 1.0 mass%, the initial value of the utilization rate begins to decrease.

ペースト式の正極板を実施例と同様に試作し、鉛蓄電池の正極利用率の維持率を評価した。クラッド式と同様に、カーボンとSbとにより100サイクル後の利用率を高く維持できる。   A paste-type positive electrode plate was prototyped in the same manner as in the example, and the retention rate of the positive electrode utilization rate of the lead storage battery was evaluated. Similar to the clad type, the utilization factor after 100 cycles can be kept high by carbon and Sb.

なお電解液はアルミニウムイオン、ナトリウムイオン、リチウムイオン等の公知の添加物を含有していても良く、蓄電池は制御弁式としても良い。尚、この明細書において電解液比重は、20℃における比重で示す。   The electrolytic solution may contain known additives such as aluminum ions, sodium ions and lithium ions, and the storage battery may be of a control valve type. In this specification, the specific gravity of the electrolytic solution is indicated by the specific gravity at 20°C.

Sb元素とカーボン等の定量法
以下に、Sb元素等の定量法と、正極電極材料密度の測定法を説明する。満充電された鉛蓄電池から正極を取り出し、水洗により硫酸分を除去し、乾燥重量を測定する。正極から正極活物質10gを取り出し、20gの酒石酸と20mLの(1+3)硝酸の溶液中に、加熱下に溶解して濾過する。なお(1+3)硝酸は、濃硝酸とイオン交換水の、容積比で1:3の混合物である。濾液をイオン交換水で希釈し、ICPにより原子吸光測定を行い、検量線によりSb含有量とPb含有量とを求める。
Quantitative Method for Sb Element and Carbon etc. Hereinafter, a quantitative method for the Sb element etc. and a method for measuring the positive electrode material density will be described. The positive electrode is taken out from the fully charged lead storage battery, the sulfuric acid content is removed by washing with water, and the dry weight is measured. 10 g of the positive electrode active material is taken out from the positive electrode, dissolved in a solution of 20 g of tartaric acid and 20 mL of (1+3) nitric acid under heating, and filtered. The (1+3) nitric acid is a mixture of concentrated nitric acid and ion-exchanged water in a volume ratio of 1:3. The filtrate is diluted with ion-exchanged water, atomic absorption measurement is performed by ICP, and the Sb content and the Pb content are obtained from the calibration curve.

濾別した固形分を純水で抽出し、遠心分離により固形分の種類毎に分離する。これによって、グラファイト、膨張化したグラファイト、活性炭等、カーボンの密度に応じて分離できる。繊維成分等を含む場合、密度の差によりカーボンと分離できる。グラファイトとカーボンブラック等のように、密度の差が小さく分離が不完全な場合、遠心分離を再度行って分離する。カーボンの種類は電子顕微鏡により確認できる。   The solid content separated by filtration is extracted with pure water and separated by centrifuge for each type of solid content. As a result, graphite, expanded graphite, activated carbon, etc. can be separated according to the density of carbon. When it contains a fiber component or the like, it can be separated from carbon due to the difference in density. If the difference in density is small and the separation is incomplete, such as graphite and carbon black, centrifuge again to separate. The type of carbon can be confirmed by an electron microscope.

正極電極材料密度の測定方法
電極材料の密度は以下の様にして測定する。既化成で満充電状態の電極を解体して取り出し、水洗及び乾燥する。電極材料を未粉砕の状態で水銀圧入法により、1g当たり見かけの体積vと1g当たりの全細孔容積uを測定する。なお見かけの体積vは、電極材料の固体容積と閉気孔の容積との和である。電極材料を容積V1が既知の容器に充填し、水銀圧入法により細孔径が100μm以上に相当する容積V2を測定する。水銀の圧入を続け、全細孔容積uを測定し、(V1-V2)-uを見かけの容積vとし、正極電極材料の密度dを d=1/(v+u)=1/(V1-V2) により求める。
Method for Measuring Density of Positive Electrode Material The density of the electrode material is measured as follows. Disassemble and take out the fully charged electrode that has already been formed, wash it with water and dry it. The apparent volume v per 1 g and the total pore volume u per 1 g are measured by the mercury intrusion method in a state where the electrode material is not ground. The apparent volume v is the sum of the solid volume of the electrode material and the volume of the closed pores. A container having a known volume V1 is filled with the electrode material, and the volume V2 corresponding to a pore diameter of 100 μm or more is measured by the mercury intrusion method. Continue to pressurize mercury and measure the total pore volume u to make (V1-V2)-u the apparent volume v, and the density d of the positive electrode material is d=1/(v+u)=1/(V1 -V2).

Claims (4)

鉛蓄電池であって、
正極電極材料が0.3mass%以下のSbと1.0mass%以下のカーボンとを含有し、かつ前記正極電極材料の密度が3.45g/cm 3 以下であることを特徴とする鉛蓄電池。
A lead acid battery,
A lead acid battery , wherein the positive electrode material contains Sb of 0.3 mass% or less and carbon of 1.0 mass% or less , and the density of the positive electrode material is 3.45 g/cm 3 or less .
鉛蓄電池であって、
正極電極材料が0.05mass%以上のSbと0.05mass%以上のカーボンとを含有することを特徴とする請求項1に記載の鉛蓄電池。
A lead acid battery,
The lead acid battery according to claim 1, wherein the positive electrode material contains Sb of 0.05 mass% or more and carbon of 0.05 mass% or more.
前記カーボンがグラファイト、エキスパンデットグラファイト、活性炭、コークスのうち少なくとも1種を含むことを特徴とする、請求項1または2に記載の鉛蓄電池。   The lead-acid battery according to claim 1, wherein the carbon contains at least one of graphite, expanded graphite, activated carbon, and coke. 正極がクラッド式であることを特徴とする、請求項1〜3のいずれかに記載の鉛蓄電池。 The lead storage battery according to claim 1 , wherein the positive electrode is a clad type.
JP2015206570A 2015-10-20 2015-10-20 Lead acid battery Active JP6701600B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015206570A JP6701600B2 (en) 2015-10-20 2015-10-20 Lead acid battery
CN201610911645.XA CN106602002A (en) 2015-10-20 2016-10-19 Lead battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206570A JP6701600B2 (en) 2015-10-20 2015-10-20 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2017079144A JP2017079144A (en) 2017-04-27
JP6701600B2 true JP6701600B2 (en) 2020-05-27

Family

ID=58555902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206570A Active JP6701600B2 (en) 2015-10-20 2015-10-20 Lead acid battery

Country Status (2)

Country Link
JP (1) JP6701600B2 (en)
CN (1) CN106602002A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114616698A (en) * 2019-10-28 2022-06-10 株式会社杰士汤浅国际 Lead-acid battery
WO2022137700A1 (en) * 2020-12-21 2022-06-30 株式会社Gsユアサ Clad positive-electrode plate for lead storage battery, and lead storage battery
JPWO2022196566A1 (en) * 2021-03-16 2022-09-22

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282264C (en) * 2003-03-25 2006-10-25 浙江南都电源动力股份有限公司 Accumulator positive pole active material
KR101011859B1 (en) * 2005-09-27 2011-01-31 후루카와 덴치 가부시키가이샤 Lead storage battery and manufacturing method of the same
CN102244248A (en) * 2011-06-10 2011-11-16 江苏双登集团有限公司 Positive plate of lead storage battery for electric bicycle
JP5787181B2 (en) * 2011-10-06 2015-09-30 株式会社Gsユアサ Lead acid battery
CN103035956B (en) * 2011-10-06 2017-06-30 株式会社杰士汤浅国际 Lead accumulator
CN104681879B (en) * 2013-11-29 2020-07-10 株式会社杰士汤浅国际 Lead-acid battery
CN103594738B (en) * 2013-12-12 2015-12-02 湖南丰日电源电气股份有限公司 A kind of high temperature valve controlled sealed lead-acid accumulator
CN103633332A (en) * 2013-12-12 2014-03-12 湖南丰日电源电气股份有限公司 Anode active material for high-temperature valve-regulated sealed lead-acid storage battery

Also Published As

Publication number Publication date
JP2017079144A (en) 2017-04-27
CN106602002A (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6136080B2 (en) Lead acid battery
JP6015427B2 (en) Negative electrode plate for lead acid battery and method for producing the same
WO2013046499A1 (en) Lead acid storage battery for energy storage
JP6202477B1 (en) Lead acid battery
JP2013218894A (en) Lead acid battery
JP6701600B2 (en) Lead acid battery
JP2015128053A (en) Lead storage battery
JP2016154132A (en) Lead acid storage battery
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP6653060B2 (en) Lead storage battery
JP5780106B2 (en) Lead-acid battery and method for manufacturing the same
JP5578123B2 (en) Liquid lead-acid battery
JP5720947B2 (en) Lead acid battery
JP6954353B2 (en) Lead-acid battery
CN105720240B (en) Lead-acid battery
JP5787181B2 (en) Lead acid battery
JP7207408B2 (en) lead acid battery
JP5598368B2 (en) Lead acid battery and negative electrode active material thereof
JP6607344B2 (en) Lead acid battery
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP6649690B2 (en) Lead storage battery
JP2013048082A (en) Lead acid battery
JPWO2018199242A1 (en) Lead storage battery
JP2014137970A (en) Lead-acid battery
JPWO2018199207A1 (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190719

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200419

R150 Certificate of patent or registration of utility model

Ref document number: 6701600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150