JP6015427B2 - Negative electrode plate for lead acid battery and method for producing the same - Google Patents

Negative electrode plate for lead acid battery and method for producing the same Download PDF

Info

Publication number
JP6015427B2
JP6015427B2 JP2012279999A JP2012279999A JP6015427B2 JP 6015427 B2 JP6015427 B2 JP 6015427B2 JP 2012279999 A JP2012279999 A JP 2012279999A JP 2012279999 A JP2012279999 A JP 2012279999A JP 6015427 B2 JP6015427 B2 JP 6015427B2
Authority
JP
Japan
Prior art keywords
negative electrode
mass
active material
electrode active
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012279999A
Other languages
Japanese (ja)
Other versions
JP2014123525A5 (en
JP2014123525A (en
Inventor
あや 澤
あや 澤
誉雄 堤
誉雄 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2012279999A priority Critical patent/JP6015427B2/en
Publication of JP2014123525A publication Critical patent/JP2014123525A/en
Publication of JP2014123525A5 publication Critical patent/JP2014123525A5/ja
Application granted granted Critical
Publication of JP6015427B2 publication Critical patent/JP6015427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

この発明は鉛蓄電池用の負極板とその製造方法に関し、特に負極活物質中にカーボンブラックを多量に含有する負極板とその製造方法に関する。   The present invention relates to a negative electrode plate for a lead storage battery and a manufacturing method thereof, and more particularly to a negative electrode plate containing a large amount of carbon black in a negative electrode active material and a manufacturing method thereof.

鉛蓄電池の寿命因子の1つとしてサルフェーションがあり、これは、充電による海綿状鉛への還元が困難な硫酸鉛の結晶が、負極活物質中に成長する現象である。サルフェーションは、アイドリングストップ車のように、鉛蓄電池を充電不足な条件で使用する際に、主な寿命因子の1つとなる。サルフェーションを抑制するため、負極活物質中のカーボンブラック含有量を増し、負極活物質中にカーボンブラックから成る電子導電性のネットワークを設けることが知られている。しかしながらカーボンブラックを多量に含有させると、負極活物質ペーストは固くなり、格子への充填が困難になる。そこで負極活物質ペースト中の水量を増して格子への充填を容易にすると、負極活物質中の鉛量の減少等に伴い高率放電性能が低下した。またサルフェーションへの耐久性も不十分であった。   One of the life factors of lead-acid batteries is sulfation, which is a phenomenon in which lead sulfate crystals that are difficult to reduce to spongy lead by charging grow in the negative electrode active material. Sulfation is one of the main life factors when a lead-acid battery is used under insufficient charging conditions, such as an idling stop vehicle. In order to suppress sulfation, it is known to increase the carbon black content in the negative electrode active material and to provide an electronically conductive network made of carbon black in the negative electrode active material. However, when carbon black is contained in a large amount, the negative electrode active material paste becomes hard and it becomes difficult to fill the lattice. Therefore, when the amount of water in the negative electrode active material paste was increased to facilitate filling of the lattice, the high rate discharge performance decreased with a decrease in the amount of lead in the negative electrode active material. Moreover, the durability to sulfation was insufficient.

単にカーボンブラックを増量しても、サルフェーションの問題は解決しない。課題は、・ 負極活物質ペーストの格子への充填を容易にし、
・ 高率放電性能を現状以上に保ち、
・ かつサルフェーションへの耐久性を改善することである。発明者は、負極活物質ペーストの密度、負極活物質中のカーボンブラックの分散性、及び負極活物質中の細孔径の分布に着目して、これらの課題を達成することを検討し、この発明に至った。
Simply increasing the amount of carbon black does not solve the problem of sulfation. The challenges are:-Easy filling of the anode active material paste into the grid,
・ Keeping the high rate discharge performance higher than the current level,
・ And to improve the durability to sulfation. The inventor examined the achievement of these problems by paying attention to the density of the negative electrode active material paste, the dispersibility of carbon black in the negative electrode active material, and the pore size distribution in the negative electrode active material. It came to.

ここで関連する先行技術を示す。特許文献1(特開2006-196191)は液式の鉛蓄電池の負極活物質に、0.22〜1.28mass%のカーボンブラックと、0.2〜0.6mass%のビスフェノールスルホン酸ポリマー縮合物とを含有させることを提案している。特許文献1は、この組成で充電受入性が改善し、アイドリングストップ車にも最適であるとしている。なお特許文献1は負極活物質の密度にも細孔径の分布にも言及していない。   Here is related prior art. Patent Document 1 (Japanese Patent Laid-Open No. 2006-196191) states that 0.22 to 1.28 mass% carbon black and 0.2 to 0.6 mass% bisphenolsulfonic acid polymer condensate are contained in the negative electrode active material of a liquid lead-acid battery. is suggesting. Patent Document 1 states that this composition improves charge acceptance and is optimal for an idling stop vehicle. Patent Document 1 does not mention the density of the negative electrode active material or the pore size distribution.

特開2006-196191JP 2006-196191

この発明の課題は、負極活物質ペーストの充填が容易で、高率放電性能が現状以上で、かつサルフェーションへの耐久性に優れる、鉛蓄電池用の負極板とその製造方法を提供することにある。   An object of the present invention is to provide a negative electrode plate for a lead-acid battery, which can be easily filled with a negative electrode active material paste, has a higher rate discharge performance than the current state, and is excellent in durability to sulfation, and a method for producing the same. .

この発明の鉛蓄電池用負極板は、海綿状鉛を主成分とする負極活物質と鉛格子等の集電体とから成り、
前記負極活物質は化成済みの段階において、
前記海綿状鉛100mass%当たりで、カーボンブラックを1.0mass%以上2.5mass%以下とビスフェノール縮合物を0.1mass%以上0.9mass%以下含有し、
容積基準での細孔径の中央値(細孔径の積算分布での50vol%の細孔径)が0.5μm以下で、かつ多孔度(細孔径が300μm以下の細孔に対し、細孔容積を積算したもの)が0.22mL/g以上0.4mL/g以下であることを特徴とする。
The negative electrode plate for a lead storage battery of the present invention comprises a negative electrode active material mainly composed of spongy lead and a current collector such as a lead grid,
In the stage where the negative electrode active material is already formed,
Per 100 mass% of the spongy lead, containing 1.0 mass% to 2.5 mass% of carbon black and 0.1 mass% to 0.9 mass% of bisphenol condensate,
For pores with a median pore size on a volume basis (50 vol% pore size in the pore size cumulative distribution) of 0.5 μm or less and porosity (pore size of 300 μm or less), the pore volume was integrated. Is 0.22 mL / g or more and 0.4 mL / g or less.

この発明の負極活物質は、
・ 多孔度が0.22mL/g以上0.4mL/g以下と大きく、
・ 細孔径の中央値が0.5μm以下と小さく、
・ カーボンブラックを1.0mass%以上2.5mass%以下含有し、
・ ビスフェノール縮合物を0.1mass%以上0.9mass%以下含有する。
The negative electrode active material of this invention is
・ Porosity is as high as 0.22mL / g or more and 0.4mL / g or less,
・ The median pore diameter is as small as 0.5μm or less,
・ Contains carbon black in the range of 1.0 mass% to 2.5 mass%,
-Containing 0.1 mass% or more and 0.9 mass% or less of bisphenol condensate.

負極活物質にカーボンブラックを多量に含有させると、負極活物質ペーストの硬さが増して充填に適さなくなる。しかしこの発明では、負極活物質ペーストの密度を低下させると共にビスフェノール縮合物を含有させることにより、ペーストの硬さを充填に適した範囲に保つことができる。またカーボンブラックを多量に含有させると共に、ビスフェノール縮合物を含有させると、細孔径の中央値(積算の細孔径分布での、50vol%での細孔径)は0.5μm以下になり、径が小さな細孔が増して、負極活物質の内部での充放電が容易になる。さらにビスフェノール縮合物はカーボンブラックを負極活物質中に均一に分散させて、サイクル寿命性能を改善する。なおカーボンブラックが均一に分散していることは、カーボンブラックの凝集による大きな細孔を無くし、細孔径の中央値を小さくすることに寄与していると推定できる。これらのため、多孔度が高いため鉛量が少なくても、高率放電性能を現状以上に保ち、サイクル寿命性能を向上させることができる。なおリグニンを負極活物質に含有させる場合、ビスフェノール縮合物はリグニンによるカーボンブラックの吸着を抑制し、リグニンの防縮性能を保って、高率放電性能を維持することに寄与しているものと推定できる。   When a large amount of carbon black is contained in the negative electrode active material, the hardness of the negative electrode active material paste increases and it becomes unsuitable for filling. However, in the present invention, the hardness of the paste can be kept in a range suitable for filling by reducing the density of the negative electrode active material paste and including the bisphenol condensate. When carbon black is contained in a large amount and a bisphenol condensate is contained, the median pore diameter (pore diameter at 50 vol% in the integrated pore diameter distribution) is 0.5 μm or less, and the small diameter is small. The number of holes increases and charging / discharging inside the negative electrode active material becomes easy. Further, the bisphenol condensate uniformly disperses carbon black in the negative electrode active material and improves cycle life performance. It can be presumed that the uniform dispersion of carbon black contributes to eliminating the large pores due to the aggregation of carbon black and reducing the median pore diameter. For these reasons, since the porosity is high, even if the amount of lead is small, the high-rate discharge performance can be kept higher than the current level, and the cycle life performance can be improved. When lignin is included in the negative electrode active material, it can be estimated that the bisphenol condensate contributes to the suppression of carbon black adsorption by lignin, maintaining the shrinkage performance of lignin, and maintaining high rate discharge performance. .

この明細書において、負極活物質中のカーボンブラック、ビスフェノール縮合物の含有量は、負極活物質中の海綿状鉛を100mass%として示す。負極活物質が硫酸鉛等を含有している場合、硫酸鉛を海綿状鉛に換算して海綿状鉛の量を定める。   In this specification, the content of the carbon black and bisphenol condensate in the negative electrode active material indicates the amount of spongy lead in the negative electrode active material as 100 mass%. When the negative electrode active material contains lead sulfate or the like, the amount of spongy lead is determined by converting lead sulfate into spongy lead.

ビスフェノール縮合物は、置換基としてスルホン酸基を有するビスフェノール縮合物から成る水溶性高分子である。ビスフェノール縮合物は例えば、
(−(OH)(RSO3H)Ph−X−Ph(OH)(R'SO3H)CH2−)n
の化学式で表され、R,R'はメチレン基等の適宜のアルキル基、XはSO2基、アルキル基等で、Xを含まずに2個のフェニル基Phが直接結合していても良い。またSO3H基の水素は、負極活物質中で適宜の陽イオン、特にNa+イオン等のアルカリ金属イオンにより置換されていることがある。さらにRSO3H基、R'SO3H基、CH2基はフェニル基PhのOH基に対して例えばオルソの位置にあり、縮合物のモノマーはCH2基を介して互いに接続されている。市販のビスフェノール縮合物はモノマー当たり2個のスルホン酸基を有するものが多いが、モノマー当たりのスルホン酸基の数は1個〜4個等のように任意である。XがSO2基の場合がビスフェノールS、Xが −C(CH32− の場合がビスフェノールA、Xが CH2基の場合がビスフェノールFで、実施例ではビスフェノールSを用いる例を示すが、ビスフェノールA,ビスフェノールF等を用いても良い。ビスフェノール縮合物の分子量は任意で、例えば4000〜250,000程度とし、分子量の影響は小さい。ビスフェノール縮合物は、芳香族環とスルホン酸基とを含む水溶性高分子である点で、リグニンスルホン酸と類似しているが、カルボキシ基とエーテル基及びアルコール性水酸基を持たない点と、網状ではなく直鎖状の高分子である点が異なる。
The bisphenol condensate is a water-soluble polymer composed of a bisphenol condensate having a sulfonic acid group as a substituent. Bisphenol condensates are for example
(-(OH) (RSO 3 H) Ph-X-Ph (OH) (R'SO 3 H) CH 2- ) n
Wherein R and R ′ are appropriate alkyl groups such as a methylene group, X is a SO 2 group, an alkyl group, etc., and two phenyl groups Ph may be directly bonded without containing X. . Further, the SO 3 H group hydrogen may be substituted in the negative electrode active material by an appropriate cation, particularly an alkali metal ion such as Na + ion. Further, the RSO 3 H group, the R′SO 3 H group, and the CH 2 group are located, for example, in an ortho position with respect to the OH group of the phenyl group Ph, and the monomers of the condensate are connected to each other via the CH 2 group. Although many commercially available bisphenol condensates have two sulfonic acid groups per monomer, the number of sulfonic acid groups per monomer is arbitrary, such as 1 to 4. When X is SO 2 group, bisphenol S, when X is —C (CH 3 ) 2 —, bisphenol A, when X is CH 2 group are bisphenol F, and in the examples, bisphenol S is used. Bisphenol A, bisphenol F, etc. may be used. The molecular weight of the bisphenol condensate is arbitrary, for example, about 4000 to 250,000, and the influence of the molecular weight is small. A bisphenol condensate is similar to lignin sulfonic acid in that it is a water-soluble polymer containing an aromatic ring and a sulfonic acid group, but has no carboxy group, ether group, and alcoholic hydroxyl group, Instead, it is a linear polymer.

好ましくは、負極活物質は細孔径の中央値が0.25μm以上0.5μm以下である。細孔径の中央値が0.25μm未満ではペーストが固くなって充填に適さず、また高率放電性能もサイクル寿命性能も低下する(表1の12,13)。カーボンブラックを1.0mass%以上含有させる場合、負極活物質の密度が3.2g/cm3を超えると、ペーストが固くなって充填に適さない(表1の試料3,7)。 Preferably, the negative electrode active material has a median pore diameter of 0.25 μm or more and 0.5 μm or less. When the median pore diameter is less than 0.25 μm, the paste becomes hard and unsuitable for filling, and the high-rate discharge performance and cycle life performance deteriorate (12 and 13 in Table 1). When carbon black is contained in an amount of 1.0 mass% or more, if the density of the negative electrode active material exceeds 3.2 g / cm 3 , the paste becomes hard and is not suitable for filling (samples 3 and 7 in Table 1).

また好ましくは、負極活物質は多孔度が0.22mL/g以上0.3 mL/g以下である。多孔度が0.3 mL/gを超えると、高率放電性能もサイクル寿命性能も低下する(表1の試料6,8)。多孔度が0.22mL/g未満では、ペーストが固く充填に適さず、また高率放電性能もサイクル寿命性能も低下する(表1の3,7)。   Preferably, the negative electrode active material has a porosity of 0.22 mL / g or more and 0.3 mL / g or less. When the porosity exceeds 0.3 mL / g, both the high rate discharge performance and the cycle life performance deteriorate (samples 6 and 8 in Table 1). If the porosity is less than 0.22 mL / g, the paste is hard and unsuitable for filling, and the high rate discharge performance and cycle life performance are reduced (3 and 7 in Table 1).

さらに好ましくは、負極活物質は、海綿状鉛100mass%当たりで、ビスフェノール縮合物を0.3mass%以上0.7 mass%以下含有する。この範囲を外れると、サイクル寿命性能が低下し始める(表1の試料15,16)。   More preferably, the negative electrode active material contains 0.3 mass% to 0.7 mass% of bisphenol condensate per 100 mass% of spongy lead. Outside this range, cycle life performance begins to decline (Samples 15 and 16 in Table 1).

この発明の鉛蓄電池用負極板は液式用でも良いが、セパレータにより圧迫が加わるため、負極活物質が脱落しにくい、制御弁式鉛蓄電池用であることが好ましい。   The negative electrode plate for a lead storage battery of the present invention may be used for a liquid type, but is preferably used for a control valve type lead storage battery in which the negative electrode active material is less likely to fall off because pressure is applied by a separator.

またこの発明は、海綿状鉛を主成分とする負極活物質と鉛格子等の集電体とから成る、鉛蓄電池用負極板の製造方法において、
カーボンブラックとビスフェノール縮合物と水とを含有するカーボンペーストを、練合により製造するステップと、
カーボンペーストと鉛粉と硫酸と水とを練合し、密度が4.1g/cm3以下で3.0g/cm3以上の負極活物質ペーストとするステップと、
負極活物質ペーストを鉛格子に充填し、熟成し、乾燥し、化成するステップとを行うことにより、
前記海綿状鉛100mass%当たりで、カーボンブラックを1.0mass%以上2.5mass%以下とビスフェノール縮合物を0.1mass%以上0.9mass%以下含有し、容積基準での細孔径の中央値が0.5μm以下で、かつ多孔度(細孔径が300μm以下の細孔に対し、細孔容積を積算したもの)が0.22mL/g以上0.4mL/g以下である化成済みの負極板とすることを特徴とする。
Further, the present invention is a method for producing a negative electrode plate for a lead storage battery, comprising a negative electrode active material mainly composed of spongy lead and a current collector such as a lead grid.
Producing a carbon paste containing carbon black, a bisphenol condensate and water by kneading;
A step of kneading carbon paste, lead powder, sulfuric acid and water into a negative electrode active material paste having a density of 4.1 g / cm 3 or less and 3.0 g / cm 3 or more;
By filling the negative electrode active material paste into the lead lattice, aging, drying, and forming,
Per 100 mass% of spongy lead, carbon black is contained in an amount of 1.0 mass% to 2.5 mass% and a bisphenol condensate is contained in an amount of 0.1 mass% to 0.9 mass%, and the median pore diameter on a volume basis is 0.5 μm or less. And a formed negative electrode plate having a porosity (integrated pore volume for pores having a pore diameter of 300 μm or less) of 0.22 mL / g or more and 0.4 mL / g or less.

なおカーボンペーストは、カーボンブラックとビスフェノール縮合物と水とを1ステップで混練しても、実施例のように、カーボンブラックと水とを混練したペーストに、ビスフェノール縮合物を加えて再度混練するように2ステップで混練しても良い。またカーボンペーストには、硫酸Ba、合成樹脂繊維等の周知の第3成分を加えても良く、鉛粉と水と硫酸の他にリグニン等の周知の第3成分を加えても良い。化成は電槽化成でも、タンク化成でも良い。この発明での、負極活物質ペーストの密度と化成済みの負極活物質での多孔度との換算を示す。負極活物質ペーストの密度で4.1g/cm3以下で3.0g/cm3以上が、多孔度で0.22mL/g以上0.4mL/g以下に、4.1g/cm3以下で3.6g/cm3以上が、多孔度で0.22mL/g以上0.3mL/g以下に対応する。また負極活物質ペーストの密度で3.0g/cm3以上で4.1g/cm3以下が、化成済みの負極活物質の密度で2.0g/cm3以上で3.2g/cm3以下に相当する。この明細書で、負極板に関する記載は、負極板の製造方法にも当てはまる。 Note that the carbon paste may be kneaded again by adding the bisphenol condensate to the paste obtained by kneading the carbon black and water, even if the carbon black, the bisphenol condensate and water are kneaded in one step. Alternatively, kneading may be performed in two steps. The carbon paste may be added with a known third component such as Ba sulfate or synthetic resin fiber, or may be added with a known third component such as lignin in addition to lead powder, water and sulfuric acid. Chemical conversion may be either battery case conversion or tank formation. The conversion of the density of the negative electrode active material paste and the porosity of the formed negative electrode active material in this invention is shown. The density of the negative electrode active material paste is 4.1 g / cm 3 or less and 3.0 g / cm 3 or more, and the porosity is 0.22 mL / g or more and 0.4 mL / g or less, and 4.1 g / cm 3 or less and 3.6 g / cm 3 or more. However, the porosity corresponds to 0.22 mL / g or more and 0.3 mL / g or less. Further, the density of the negative electrode active material paste is 3.0 g / cm 3 or more and 4.1 g / cm 3 or less, and the density of the formed negative electrode active material is 2.0 g / cm 3 or more and 3.2 g / cm 3 or less. In this specification, the description regarding a negative electrode plate is applicable also to the manufacturing method of a negative electrode plate.

この発明の鉛蓄電池用負極板の製造方法では、
・ 負極活物質ペーストの密度を4.1g/cm3以下で3.0g/cm3以上へと低下させることと、
・ 0.1mass%以上0.9mass%以下のビスフェノール縮合物を含有させることにより、
カーボンブラックを1.0mass%以上2.5mass%以下含有させても、負極活物質ペーストの硬さを格子への充填に適した範囲に保つことができる。なおこの明細書では、ビスフェノール縮合物とカーボンブラックの含有量を、海綿状鉛100mass%当たりで示す。さらにカーボンブラックを1.0mass%以上2.5mass%以下含有させ、ビスフェノール縮合物を0.1mass%以上0.9mass%以下含有させることにより、小径の細孔を多数設けて、負極活物質の内部での充放電を容易にする。またビスフェノール縮合物によりカーボンブラックを負極活物質中に均一に分散させ、サイクル寿命性能を改善する。このようにして、充填性を改善するため鉛量を少なくしながら、高率放電性能を現状以上に保ち、サイクル寿命性能を現状よりも改善する。
In the method for producing a negative electrode plate for a lead storage battery of the present invention,
Reducing the density of the negative electrode active material paste to 4.1 g / cm 3 or less to 3.0 g / cm 3 or more;
・ By including 0.1 mass% or more and 0.9 mass% or less of bisphenol condensate,
Even if carbon black is contained in an amount of 1.0 mass% to 2.5 mass%, the hardness of the negative electrode active material paste can be maintained in a range suitable for filling the lattice. In this specification, the contents of bisphenol condensate and carbon black are shown per 100 mass% of spongy lead. In addition, carbon black is contained in an amount of 1.0 mass% to 2.5 mass% and a bisphenol condensate is contained in an amount of 0.1 mass% to 0.9 mass%, thereby providing a large number of small-diameter pores and charging / discharging inside the negative electrode active material. To make it easier. Also, the carbon black is uniformly dispersed in the negative electrode active material by the bisphenol condensate to improve the cycle life performance. In this way, while reducing the amount of lead to improve the fillability, the high rate discharge performance is kept higher than the current level, and the cycle life performance is improved from the current level.

実施例での負極板の製造工程図Manufacturing process diagram of negative electrode plate in Example 実施例と従来例とでの、負極活物質中の細孔径分布を示す特性図:縦軸は微分空孔量dV/dLogDを、横軸は細孔径DをLogD単位で表す。ここにVはD=0から積算した空孔量で、単位は任意単位であり、横軸の数字はμm単位の細孔径Dである。Characteristic chart showing pore diameter distribution in negative electrode active material in Examples and Conventional Examples: The vertical axis represents differential pore volume dV / dLogD, and the horizontal axis represents pore diameter D in LogD units. Here, V is the amount of pores accumulated from D = 0, the unit is an arbitrary unit, and the number on the horizontal axis is the pore diameter D in μm units.

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.

水とカーボンブラックとを練合し、次いで分散剤としてビスフェノールSの縮合物(分子量約100,000)と、海綿状鉛100mass%に対して0.6mass%の硫酸Baと、海綿状鉛100mass%に対して0.1mass%の合成樹脂繊維とを加えて練合した。カーボンブラックはケッチェンブラックでもアセチレンブラックでもほぼ同等の結果が得られ、またオイルファーネスブラック等の他のカーボンブラックを用いても良い。ビスフェノールS縮合物に変えて、ビスフェノールA縮合物を用いてもほぼ同等の結果が得られ、さらにビスフェノールS縮合物の分子量を10,000に変えても、結果は同等であった。さらにビスフェノールF縮合物等の、他のビスフェノール縮合物を用いても良く、硫酸Ba及び合成樹脂繊維は加えなくても良い。以上のようにして得られたペーストをカーボンペーストと呼ぶ。   Kneading water and carbon black, then condensate of bisphenol S as a dispersant (molecular weight about 100,000), 0.6 mass% Ba sulfate with 100 mass% spongy lead, and 100 mass% spongy lead 0.1 mass% synthetic resin fiber was added and kneaded. As carbon black, ketjen black or acetylene black gives almost the same result, and other carbon black such as oil furnace black may be used. Even when the bisphenol A condensate was used instead of the bisphenol S condensate, almost the same results were obtained, and even when the molecular weight of the bisphenol S condensate was changed to 10,000, the results were the same. Further, other bisphenol condensates such as bisphenol F condensate may be used, and Ba sulfate and synthetic resin fibers may not be added. The paste obtained as described above is called a carbon paste.

ボールミル法で製造した鉛粉と、防縮剤のリグニンスルホン酸(海綿状鉛100mass%に対し、0.2mass%、なお以下単に「リグニン」という)と、水と、硫酸とをカーボンペーストに加えて練合し、負極活物質ペーストとした。なお鉛粉の種類及び製造方法は任意である。実施例では、カーボンブラックとビスフェノール縮合物とを予め練合したカーボンペーストを鉛粉と混合したが、これらを別々に鉛粉に加えて練合しても良い。   Lead powder produced by the ball mill method, lignin sulfonic acid as a non-shrinking agent (0.2 mass% for 100 mass% spongy lead, hereinafter simply referred to as “lignin”), water, and sulfuric acid are added to the carbon paste and kneaded. To obtain a negative electrode active material paste. In addition, the kind and manufacturing method of lead powder are arbitrary. In the examples, a carbon paste in which carbon black and a bisphenol condensate are previously kneaded is mixed with lead powder. However, these may be separately added to the lead powder and kneaded.

負極活物質ペーストを、Pb-Ca-Sn系の合金からなるエキスパンド格子に充填し、定法に従い熟成と乾燥とを施し、未化成の負極板とした。鉛粉100mass%に対し合成樹脂繊維0.1mass%と水と硫酸とから成る正極活物質ペーストを、Pb-Ca-Sn系の合金からなるエキスパンド格子に充填し、定法に従い熟成と乾燥とを施して、未化成の正極板とした。負極板と正極板との間に、ガラスマットリテーナを挟み込み、圧迫を加えた状態で電槽にセットし、硫酸(化成後の比重は1.30)をガラスマットリテーナ等のセパレータに保持させて、定法に従い電槽化成を行い、制御弁式鉛蓄電池とした。セパレータの種類は任意で、また液式の鉛蓄電池としても良く、化成はタンク化成でも良い。電極構成は、初期性能(低温高率放電性能)の測定用では正極板2枚と負極板1枚で、5hR容量は8Ah、耐久性能の評価用では正極板7枚と負極板8枚で、5hR容量は48Ahとした。未化成の負極板までの製造方法を、図1に示す。   The negative electrode active material paste was filled in an expanded lattice made of a Pb—Ca—Sn alloy, and aged and dried according to a conventional method to obtain an unformed negative electrode plate. A positive electrode active material paste consisting of 0.1 mass% synthetic resin fiber, water and sulfuric acid is filled into 100 mass% lead powder in an expanded lattice made of a Pb-Ca-Sn alloy, and is subjected to aging and drying according to a conventional method. An unchemically formed positive electrode plate was obtained. A glass mat retainer is sandwiched between the negative electrode plate and the positive electrode plate, set in a battery case with pressure applied, and sulfuric acid (specific gravity after chemical conversion is 1.30) is held by a separator such as a glass mat retainer. The battery was formed in accordance with the control valve type lead-acid battery. The type of the separator is arbitrary and may be a liquid lead-acid battery, and the chemical conversion may be a tank chemical. The electrode configuration consists of 2 positive plates and 1 negative plate for measuring initial performance (low temperature high rate discharge performance), 5 hR capacity of 8 Ah, 7 positive plates and 8 negative plates for durability performance evaluation, The 5hR capacity was 48Ah. The production method up to the unformed negative electrode plate is shown in FIG.

負極活物質ペーストの調製時に、水の量を変えてペーストの密度を2.8g/cm3から4.4g/cm3の範囲で変化させた。これは既化成の活物質密度の範囲としては1.8g/cm3から3.5g/cm3に相当し、負極活物質の多孔度の範囲としては0.46mL/ gから0.19mL/ gに相当した。カーボンブラック含有量は、鉛粉100mass%に対し0.3mass%から3mass%の範囲で変化させ、ビスフェノール縮合物の量は鉛粉100mass%に対し0〜1.0mass%の範囲で変化させた。 During the preparation of the negative electrode active material pastes were varying amounts of water the density of the paste was varied in the range of 2.8 g / cm 3 of 4.4 g / cm 3. This is the range of the active material density of the already Kasei equivalent from 1.8 g / cm 3 to 3.5 g / cm 3, as the range of the porosity of the anode active material was equivalent from 0.46 mL / g to 0.19 mL / g. The carbon black content was changed in the range of 0.3 mass% to 3 mass% with respect to 100 mass% of the lead powder, and the amount of the bisphenol condensate was changed in the range of 0 to 1.0 mass% with respect to 100 mass% of the lead powder.

化成済みの負極板に対し、負極活物質の密度、多孔度、細孔径の分布を測定し、空孔量が50vol%での細孔径(中央細孔径)を測定した。この明細書では、海綿状鉛100mass%に対する含有量で含有物の量を示し、負極活物質の組成は、必要に応じて負極板を充電することにより硫酸鉛を海綿状に鉛に還元し、負極活物質を負極板から分離し、水洗、乾燥後に測定する。化成済みの負極活物質の密度は、次の手順で求めた。各組成物質の真密度をd、負極活物質1g当たりのその含有量をm、容積をm/dとし、m/dを組成物質毎に加えて総和を求めた。この総和に多孔度を加えて負極活物質1g当たりの体積とし、その逆数を既化成の負極活物質の密度とした。多孔度と細孔径の分布は水銀圧入法により測定し、多孔度は負極活物質1g当たりの細孔容積で、海綿状鉛1g当たりの細孔容積ではない。また細孔の測定は、300μmを上限として実施した。さらに負極活物質ペーストの格子への充填性を示す指標として、針入度をJIS K2207に従って測定した。   The density, porosity, and pore size distribution of the negative electrode active material were measured for the formed negative electrode plate, and the pore size (center pore size) at a pore volume of 50 vol% was measured. In this specification, the amount of inclusion is indicated by the content with respect to 100 mass% of spongy lead, and the composition of the negative electrode active material reduces lead sulfate to spongy by charging the negative electrode plate as necessary. The negative electrode active material is separated from the negative electrode plate, measured after washing with water and drying. The density of the formed negative electrode active material was determined by the following procedure. The total density was determined by adding the true density of each composition material as d, the content per 1 g of the negative electrode active material as m, the volume as m / d, and adding m / d for each composition material. Porosity was added to this sum to obtain a volume per 1 g of the negative electrode active material, and the reciprocal thereof was taken as the density of the preformed negative electrode active material. The distribution of porosity and pore diameter is measured by mercury porosimetry, and the porosity is the pore volume per gram of the negative electrode active material, not the pore volume per gram of spongy lead. The pores were measured with an upper limit of 300 μm. Further, the penetration was measured according to JIS K2207 as an index showing the filling property of the negative electrode active material paste into the lattice.

初期性能として低温での高率放電性能を評価し、周囲温度−15℃で、37.5Aの放電電流で端子電圧が1.0Vまで低下するまでの放電時間を測定した。耐久性能として充電が不十分な条件でのサイクル性能を評価し、周囲温度25℃で、放電電流50Aで60秒間放電し、最大電流50Aで2.33Vで60秒間、定電圧充電するサイクルを繰り返し、放電時の端子電圧が1.0Vを下回るまでのサイクル数を測定した。値は各1個の蓄電池の結果で示す。制御弁式鉛蓄電池の構成と評価結果とを表1に示す。なお表1では、針入度が50以上100以下を○(従来例は70で、従来例と同様に充填可)、100超130以下を△(ペーストが柔らかいため充填が難しい)、50未満(ペーストが固すぎ、充填が極めて難しい)と130超を(ペーストが柔らかすぎ、負極活物質の脱落の可能性が大)を×とした。低温高率放電性能では従来例と同様の150秒以上が必要で、サイクル寿命性能はアイドリングストップ車等に使用するには20,000サイクル以上が必要である。   As the initial performance, high-rate discharge performance at low temperature was evaluated, and the discharge time until the terminal voltage decreased to 1.0 V at a discharge current of 37.5 A at an ambient temperature of −15 ° C. was measured. Evaluate cycle performance under insufficient charging conditions as durability performance, discharge at 60 ° C with discharge current 50A for 60 seconds at ambient temperature 25 ° C, repeat constant voltage charge cycle at 2.33V for 60 seconds with maximum current 50A, The number of cycles until the terminal voltage during discharge fell below 1.0 V was measured. The value is shown by the result of one battery each. Table 1 shows the configuration and evaluation results of the control valve type lead-acid battery. In Table 1, the penetration is 50 to 100 or less (70 in the conventional example, can be filled in the same way as the conventional example), and over 130 is less than 130 (filling is difficult because the paste is soft), less than 50 ( The paste was too hard and filling was extremely difficult) and over 130 (the paste was too soft and the possibility of the negative electrode active material falling off) was rated as x. The low-temperature, high-rate discharge performance requires 150 seconds or more as in the conventional example, and the cycle life performance requires 20,000 cycles or more for use in an idling stop vehicle or the like.

既化成の負極活物質密度を3.5g/cm3に固定し、カーボンブラック含有量を増すと(試料1,2)、ペーストが硬化して充填性が低下し、低温高率放電性能が低下し、サイクル寿命性能はさして向上しない。低温高率放電性能の低下は、リグニンがカーボンブラックを吸着することにより、防縮剤としての機能が低下したためと推定できる。カーボンブラック含有量を増すと共に、ビスフェノール縮合物を含有させると(試料3)、針入度は改善するが依然として非実用的な範囲であり、低温高率放電性能が従来例よりも向上し、サイクル寿命も実用的な範囲に達した。 When the density of the pre-formed negative electrode active material is fixed at 3.5 g / cm 3 and the carbon black content is increased (Samples 1 and 2), the paste is cured and the filling property is lowered, and the low-temperature high-rate discharge performance is lowered. The cycle life performance is not improved. The decrease in the low-temperature and high-rate discharge performance can be presumed to be due to the fact that the lignin adsorbs carbon black, thereby reducing the function as an anti-shrink agent. Increasing the carbon black content and containing the bisphenol condensate (Sample 3) improves the penetration but is still in an impractical range, improves the low-temperature high-rate discharge performance over the conventional example, and improves the cycle. The service life has reached a practical range.

カーボンブラック含有量を0.3mass%として、負極活物質の密度を3.5g/cm3から2.7g/cm3へ低下させると(試料4)、針入度は200に達して、性能を評価できなくなった。ここでカーボンブラック含有量を1.5mass%とすると(試料5)、負極活物質の密度を2.7g/cm3としても、針入度は60で実用的になったが、低温高率放電性能が極端に低下し、サイクル寿命も従来例よりも低下した。これは鉛量の減少とリグニンがカーボンブラックを吸着して防縮性能が低下したことにより、低温高率放電性能が低下し、鉛量の減少と高率放電性能の低下とにより、サイクル寿命も低下したものと推定できる。これに対して試料6の実施例のように、既化成活物質の密度2.7g/cm3へ低下させ、カーボンブラック含有量を増すと共に、ビスフェノール縮合物を含有させると、針入度は実用的となり、低温高率放電性能は向上し、かつサイクル寿命も向上する。なお試料6では試料3よりも、鉛量が少ないにも係わらず、サイクル寿命が向上している。 If the carbon black content is 0.3 mass% and the density of the negative electrode active material is reduced from 3.5 g / cm 3 to 2.7 g / cm 3 (sample 4), the penetration will reach 200 and the performance cannot be evaluated. It was. Here, when the carbon black content is 1.5 mass% (Sample 5), even if the density of the negative electrode active material is 2.7 g / cm 3 , the penetration is 60 and practical, but the low-temperature high-rate discharge performance is The cycle life was significantly reduced and the cycle life was also lower than that of the conventional example. This is due to the decrease in lead content and lignin adsorbing carbon black, resulting in reduced shrinkage performance, resulting in lower low-temperature, high-rate discharge performance, and lower cycle life due to reduced lead content and high-rate discharge performance. Can be estimated. On the other hand, when the density of the already formed active material is reduced to 2.7 g / cm 3 to increase the carbon black content and the bisphenol condensate is contained as in the example of Sample 6, the penetration is practical. Thus, the low-temperature high-rate discharge performance is improved and the cycle life is also improved. The sample 6 has a longer cycle life than the sample 3 although the amount of lead is smaller.

既化成の負極活物質密度を2.0〜3.2g/cm3とすると優れた性能が得られ(試料6〜8)、1.8g/cm3とすると針入度も低温高率放電性能もサイクル寿命も不十分となり(試料9)、前記のように3.5g/cm3とすると針入度が非実用的であった(試料3)。既化成の負極活物質の密度とビスフェノール縮合物量を固定し、カーボンブラック含有量を変化させると、0.9mass%から1.0mass%へ増すことにより低温高率放電性能を著しく改善でき、2.5mass%から3.0mass%へ増すと全ての項目で性能が低下した(試料10〜13)。既化成の負極活物質の密度とカーボンブラック含有量とを固定し、ビスフェノール縮合物量を変化させると、0.05mass%から0.1mass%へ増すことにより全ての項目で性能が向上し、0.9mass%から1.0mass%へ増すと全ての項目で性能が低下した(試料14〜17)。 When the density of the pre-formed negative electrode active material is 2.0 to 3.2 g / cm 3 , excellent performance is obtained (samples 6 to 8), and when it is 1.8 g / cm 3 , both penetration, low temperature and high rate discharge performance, and cycle life are obtained. When the amount was 3.5 g / cm 3 as described above, the penetration was impractical (Sample 3). By fixing the density of the pre-formed negative electrode active material and the amount of bisphenol condensate and changing the carbon black content, the low-temperature high-rate discharge performance can be significantly improved by increasing from 0.9 mass% to 1.0 mass%, from 2.5 mass% When it increased to 3.0 mass%, performance fell in all the items (samples 10-13). By fixing the density and carbon black content of the preformed negative electrode active material and changing the amount of bisphenol condensate, the performance improves in all items by increasing from 0.05 mass% to 0.1 mass%, from 0.9 mass% When it increased to 1.0 mass%, the performance fell in all items (samples 14 to 17).

中央細孔径は、カーボンブラック含有量を増す、あるいはビスフェノール縮合物含有量を増すと、小さくなった。そして良い結果が得られるのは中央細孔径が0.5μm以下で、特に0.25μm以上0.5μm以下である。試料1(従来例)と試料6(実施例)での、化成済み負極活物質の細孔径分布を図2に示す。試料1(従来例)では細孔径が1μm超と1μm未満とに2つのピークがあり、試料6(実施例)では細孔径が1μm超のピークが消滅している。0.5μm以下の径の細孔が大量にあることは、充放電を効率的に行えることを意味し、このことが鉛量の不足を補い、低温高率放電性能を従来例以上に保った、と推定できる。そしてビスフェノール縮合物は、カーボンブラックを負極活物質中に均一に分散させることにより、針入度を増すと共にサイクル寿命とを向上させた、と推定できる。さらにビスフェノール縮合物は、リグニンによるカーボンブラックの吸着を抑制することにより、低温高率放電性能を向上させた、と推定できる。   The median pore size decreased with increasing carbon black content or increasing bisphenol condensate content. Good results are obtained when the median pore diameter is 0.5 μm or less, particularly 0.25 μm or more and 0.5 μm or less. FIG. 2 shows the pore size distribution of the formed negative electrode active material in Sample 1 (conventional example) and Sample 6 (Example). Sample 1 (conventional example) has two peaks with a pore diameter of more than 1 μm and less than 1 μm, and sample 6 (Example) has a peak with a pore diameter of more than 1 μm disappeared. The large number of pores having a diameter of 0.5 μm or less means that charging and discharging can be performed efficiently, which compensates for the shortage of lead amount, and maintains low temperature and high rate discharge performance more than the conventional example. Can be estimated. The bisphenol condensate can be presumed to have improved penetration and improved cycle life by uniformly dispersing carbon black in the negative electrode active material. Furthermore, it can be estimated that the bisphenol condensate has improved low-temperature high-rate discharge performance by suppressing the adsorption of carbon black by lignin.

以上のことから、負極板の構成は以下が好ましい。
・ 既化成の負極活物質の密度は、2.0g/cm3以上で3.2g/cm3以下、特に2.5g/cm3以上で3.2g/cm3以下;
・ 既化成の負極活物質の多孔度は、0.22mL/g以上で0.4mL/g以下、特に0.22mL/g以上で0.3mL/g以下;
・ 容積基準での細孔径の中央値は0.5μm以下で、特に0.25μm以上0.5μm以下;
・ カーボンブラック含有量は、1.0mass%以上で2.5mass%以下;
・ ビスフェノール縮合物含有量は0.1mass%以上で0.9mass%以下、特に0.3mass%以上で0.7mass%以下。
From the above, the configuration of the negative electrode plate is preferably as follows.
The density of the pre-formed negative electrode active material is 2.0 g / cm 3 or more and 3.2 g / cm 3 or less, particularly 2.5 g / cm 3 or more and 3.2 g / cm 3 or less;
-The porosity of the preformed negative electrode active material is 0.22 mL / g or more and 0.4 mL / g or less, particularly 0.22 mL / g or more and 0.3 mL / g or less;
-The median pore diameter on a volume basis is 0.5 μm or less, especially 0.25 μm or more and 0.5 μm or less;
-Carbon black content is 1.0mass% or more and 2.5mass% or less;
-The bisphenol condensate content is 0.1 mass% or more and 0.9 mass% or less, particularly 0.3 mass% or more and 0.7 mass% or less.

実施例では制御弁式鉛蓄電池を示したが、液式でも良い。表1と同じ負極板を用いて、液式に変えた際の性能を表2に示す。低温高率放電性能は制御弁式でも液式でも同様に向上するが、サイクル寿命性能は液式では向上の程度が小さい。これは、液式の鉛蓄電池では負極板への圧迫が加わっていないため、低密度の負極活物質が脱落し易いため、と推定できる。   Although the control valve type lead storage battery is shown in the embodiment, a liquid type may be used. Table 2 shows the performance when using the same negative electrode plate as in Table 1 and changing to the liquid type. The low-temperature, high-rate discharge performance is improved in the same manner in both the control valve type and the liquid type, but the cycle life performance is less improved in the liquid type. It can be estimated that this is because the liquid-type lead-acid battery does not apply pressure to the negative electrode plate, so that the low-density negative electrode active material is easily dropped.

負極板には上記以外の物質を含有させても良い。例えばカルボキシメチルセルロース、ポリアクリル酸、アルギン酸、及びこれらのアルカリ金属塩、等の水溶性高分子を負極活物質に含有させても良い。   The negative electrode plate may contain substances other than those described above. For example, water-soluble polymers such as carboxymethyl cellulose, polyacrylic acid, alginic acid, and alkali metal salts thereof may be contained in the negative electrode active material.

Claims (3)

海綿状鉛を主成分とする負極活物質と集電体とから成る、鉛蓄電池用負極板において、
前記負極活物質は化成済みの段階において、
前記海綿状鉛100mass%当たりで、カーボンブラックを1.0mass%以上2.5mass%以下とビスフェノール縮合物を0.1mass%以上0.9mass%以下含有し、
容積基準での細孔径の中央値が0.5μm以下で、かつ多孔度が0.22mL/g以上0.4mL/g以下であることを特徴とする、鉛蓄電池用負極板。
In the negative electrode plate for a lead storage battery, comprising a negative electrode active material mainly composed of spongy lead and a current collector,
In the stage where the negative electrode active material is already formed,
Per 100 mass% of the spongy lead, containing 1.0 mass% to 2.5 mass% of carbon black and 0.1 mass% to 0.9 mass% of bisphenol condensate,
A negative electrode plate for a lead storage battery, wherein the median pore diameter on a volume basis is 0.5 µm or less and the porosity is 0.22 mL / g or more and 0.4 mL / g or less.
前記負極活物質は、細孔径の中央値が0.25μm以上0.5μm以下で、密度が2.0g/cm3以上3.2g/cm3以下であることを特徴とする、請求項1の鉛蓄電池用負極板。 2. The negative electrode for a lead storage battery according to claim 1, wherein the negative electrode active material has a median pore diameter of 0.25 μm to 0.5 μm and a density of 2.0 g / cm 3 to 3.2 g / cm 3. Board. 海綿状鉛を主成分とする負極活物質と集電体とから成る、鉛蓄電池用負極板の製造方法において、
カーボンブラックとビスフェノール縮合物と水とを含有するカーボンペーストを、練合により製造するステップと、
カーボンペーストと鉛粉と硫酸と水とを練合し、密度が4.1g/cm3以下で3.0g/cm3以上の負極活物質ペーストとするステップと、
負極活物質ペーストを鉛格子に充填し、熟成し、乾燥し、化成するステップとを行うことにより、
前記海綿状鉛100mass%当たりで、カーボンブラックを1.0mass%以上2.5mass%以下とビスフェノール縮合物を0.1mass%以上0.9mass%以下含有し、容積基準での細孔径の中央値が0.5μm以下で、かつ多孔度が0.22mL/g以上0.4mL/g以下である化成済みの負極板とすること
を特徴とする、鉛蓄電池用負極板の製造方法。

In the method for producing a negative electrode plate for a lead storage battery, comprising a negative electrode active material mainly composed of spongy lead and a current collector,
Producing a carbon paste containing carbon black, a bisphenol condensate and water by kneading;
A step of kneading carbon paste, lead powder, sulfuric acid and water into a negative electrode active material paste having a density of 4.1 g / cm 3 or less and 3.0 g / cm 3 or more;
By filling the negative electrode active material paste into the lead lattice, aging, drying, and forming,
Per 100 mass% of spongy lead, carbon black is contained in an amount of 1.0 mass% to 2.5 mass% and a bisphenol condensate is contained in an amount of 0.1 mass% to 0.9 mass%, and the median pore diameter on a volume basis is 0.5 μm or less. A method for producing a negative electrode plate for a lead storage battery, wherein the negative electrode plate is formed with a porosity of 0.22 mL / g or more and 0.4 mL / g or less.

JP2012279999A 2012-12-21 2012-12-21 Negative electrode plate for lead acid battery and method for producing the same Active JP6015427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012279999A JP6015427B2 (en) 2012-12-21 2012-12-21 Negative electrode plate for lead acid battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012279999A JP6015427B2 (en) 2012-12-21 2012-12-21 Negative electrode plate for lead acid battery and method for producing the same

Publications (3)

Publication Number Publication Date
JP2014123525A JP2014123525A (en) 2014-07-03
JP2014123525A5 JP2014123525A5 (en) 2015-11-05
JP6015427B2 true JP6015427B2 (en) 2016-10-26

Family

ID=51403848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012279999A Active JP6015427B2 (en) 2012-12-21 2012-12-21 Negative electrode plate for lead acid battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6015427B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014006702T5 (en) * 2014-05-26 2017-02-16 Gs Yuasa International Ltd. Lead acid battery
EP3252863A4 (en) * 2015-01-28 2018-11-14 Hitachi Chemical Co., Ltd. Lead storage cell and automobile provided with same
JP6601654B2 (en) * 2015-03-17 2019-11-06 株式会社Gsユアサ Control valve type lead acid battery
JP2016189297A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid storage battery
EP3279980B1 (en) 2015-03-30 2021-11-03 GS Yuasa International Ltd. Lead acid storage battery
JP6652133B2 (en) 2015-05-29 2020-02-19 株式会社Gsユアサ Lead storage battery and method of manufacturing lead storage battery
JP6781365B2 (en) * 2015-10-23 2020-11-04 昭和電工マテリアルズ株式会社 Lead-acid battery
JP6870207B2 (en) * 2016-03-08 2021-05-12 昭和電工マテリアルズ株式会社 Lead-acid battery
JP6766504B2 (en) * 2016-07-29 2020-10-14 株式会社Gsユアサ Lead-acid battery
JP6642832B2 (en) * 2016-07-29 2020-02-12 株式会社Gsユアサ Lead storage battery
JP6950365B2 (en) * 2017-08-30 2021-10-13 昭和電工マテリアルズ株式会社 Negative electrode material paste, negative electrode and lead acid battery, and their manufacturing method
US11367906B2 (en) 2018-05-23 2022-06-21 Gs Yuasa International Ltd. Lead-acid battery
JP7363288B2 (en) * 2019-09-27 2023-10-18 株式会社Gsユアサ Negative electrode plate for lead-acid battery, lead-acid battery, and manufacturing method of negative electrode plate for lead-acid battery
TW202114286A (en) 2019-09-27 2021-04-01 日商傑士湯淺國際股份有限公司 Lead-acid battery
EP4231381A1 (en) 2020-11-27 2023-08-23 GS Yuasa International Ltd. Lead-acid battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279568A (en) * 1987-05-09 1988-11-16 Yuasa Battery Co Ltd Lead storage battery
US6074782A (en) * 1996-03-29 2000-06-13 Aisin Seiki Kabushiki Kaisha Lead storage battery containing a negative electrode active substance including a negative electrode additive
JP3468492B2 (en) * 1996-08-28 2003-11-17 松下電器産業株式会社 Plate for lead-acid battery
JP2001043849A (en) * 1999-08-02 2001-02-16 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2003308836A (en) * 2002-04-15 2003-10-31 Shin Kobe Electric Mach Co Ltd Method of manufacturing pasty active material for negative electrode and lead-acid battery using it
JP4492024B2 (en) * 2002-05-21 2010-06-30 パナソニック株式会社 Lead acid battery
TWI333290B (en) * 2004-06-16 2010-11-11 Panasonic Corp Lead-acid battery
JP4910277B2 (en) * 2004-10-14 2012-04-04 パナソニック株式会社 Lead acid battery
JP4396527B2 (en) * 2005-01-11 2010-01-13 新神戸電機株式会社 Lead acid battery
MX2012012944A (en) * 2010-05-10 2012-12-17 Shin Kobe Electric Machinery Lead storage battery.
WO2012017702A1 (en) * 2010-08-05 2012-02-09 新神戸電機株式会社 Lead-acid battery

Also Published As

Publication number Publication date
JP2014123525A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP6015427B2 (en) Negative electrode plate for lead acid battery and method for producing the same
JP5892429B2 (en) Liquid lead-acid battery
JP5884528B2 (en) Liquid lead-acid battery
JP6544649B2 (en) Lead storage battery
JP6413703B2 (en) Lead acid battery and negative electrode plate thereof
JP6400016B2 (en) Composition for enhancing deep cycle performance of sealed lead-acid battery filled with gel electrolyte
KR102323025B1 (en) Negative electrode plate for secondary battery and secondary battery comprising the same
JPWO2015079668A1 (en) Lead acid battery
JP6153074B2 (en) Liquid lead-acid battery
JP2010192257A (en) Manufacturing method of lead-acid battery, and paste type negative electrode plate for lead-acid battery
JP6060909B2 (en) Positive electrode plate for lead acid battery, method for producing the electrode plate, and lead acid battery using the positive electrode plate
JP5780106B2 (en) Lead-acid battery and method for manufacturing the same
JP5211681B2 (en) Method for producing lead-acid battery
JP6701600B2 (en) Lead acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
WO2009093464A1 (en) Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery
JP4293130B2 (en) Positive electrode plate for lead acid battery and lead acid battery
JP5578123B2 (en) Liquid lead-acid battery
JP2019053998A (en) Lead acid storage battery
JP5787181B2 (en) Lead acid battery
JP6283996B2 (en) Negative electrode plate for lead acid battery and lead acid battery
JP2016189298A (en) Lead acid storage battery
JP2014137970A (en) Lead-acid battery
JP2013048082A (en) Lead acid battery
JP6041221B2 (en) Liquid lead-acid battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150