JP3468492B2 - Plate for lead-acid battery - Google Patents

Plate for lead-acid battery

Info

Publication number
JP3468492B2
JP3468492B2 JP22624296A JP22624296A JP3468492B2 JP 3468492 B2 JP3468492 B2 JP 3468492B2 JP 22624296 A JP22624296 A JP 22624296A JP 22624296 A JP22624296 A JP 22624296A JP 3468492 B2 JP3468492 B2 JP 3468492B2
Authority
JP
Japan
Prior art keywords
lead
region
pore
electrode plate
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22624296A
Other languages
Japanese (ja)
Other versions
JPH1069900A (en
Inventor
剛 畑中
勝弘 高橋
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP22624296A priority Critical patent/JP3468492B2/en
Publication of JPH1069900A publication Critical patent/JPH1069900A/en
Application granted granted Critical
Publication of JP3468492B2 publication Critical patent/JP3468492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池用極板の
改良に関するものであり、特に高出力充放電特性に優れ
た長寿命の鉛蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved lead-acid battery electrode plate, and more particularly to a long-life lead-acid battery excellent in high-power charge / discharge characteristics.

【0002】[0002]

【従来の技術】鉛蓄電池は、二次電池として比較的安価
で安定な性能を有しているため、自動車用をはじめとし
て、近年ではポータブル機器用の電源やコンピュータの
バックアップ用にも広く普及してきた。さらに最近で
は、電気自動車の主力電源としてだけでなく、起動電源
や回生電流の回収用としても新しく機能が見直されてい
る。これらの用途では、とりわけ高出力性と共に寿命の
安定化の両立が重要な課題となっている。
2. Description of the Related Art Lead-acid batteries are relatively inexpensive and have stable performance as secondary batteries, and have been widely used in automobiles as well as in recent years as power sources for portable devices and computer backups. It was Furthermore, recently, new functions have been reviewed not only as a main power source for electric vehicles, but also as a starting power source and for recovering regenerative current. In these applications, it is an important issue to achieve both high output and stable life.

【0003】高率放電特性は、電解液の活物質への供給
に支配されるところが大きい。鉛蓄電池では、放電反応
により正極、負極とも活物質が硫酸鉛(PbSO4)に
変化していく。鉛、二酸化鉛が硫酸鉛に変化するとその
体積は約2倍に増加する。そのため、放電反応が進むに
つれて極板中の空孔が析出した硫酸鉛によって塞がれ、
硫酸イオンの拡散機能が低下する。逆に、この硫酸鉛
は、充電時には正極で二酸化鉛に、負極では鉛にそれぞ
れ変化するが、電極内への電解液供給能力が乏しい場合
には、この反応が円滑に進まず充電効率が低下する。特
に、高電流密度での充放電ほどこの影響が大きくなる。
これらの課題を解決するための方策として、従来は活物
質のもとになる鉛粉に添加する水や硫酸の量を調整し
て、活物質の充填密度を低下させ、極板内に電解液を保
持あるいは拡散できる空隙を多く形成させるという手法
が実用化されている。
The high rate discharge characteristics are largely controlled by the supply of the electrolytic solution to the active material. In a lead-acid battery, the active material of both the positive electrode and the negative electrode changes to lead sulfate (PbSO 4 ) due to the discharge reaction. When lead and lead dioxide are converted to lead sulfate, the volume increases about twice. Therefore, as the discharge reaction proceeds, the holes in the electrode plate are blocked by the precipitated lead sulfate,
The diffusion function of sulfate ions is reduced. Conversely, this lead sulfate changes to lead dioxide at the positive electrode and lead at the negative electrode during charging, but if the electrolyte supply capacity into the electrode is poor, this reaction does not proceed smoothly and charging efficiency decreases. To do. In particular, the higher the current density and the higher the charge / discharge, the greater this effect.
As a measure to solve these problems, conventionally, by adjusting the amount of water or sulfuric acid added to the lead powder that is the base of the active material, the packing density of the active material is reduced, and the electrolyte solution in the electrode plate is reduced. A technique of forming a large number of voids capable of holding or diffusing has been put into practical use.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
手法では、高率放電特性は初期的には向上するものの、
サイクル寿命が著しく低下し、適切なバランスが達成で
きないのが現状である。本発明は、高率放電特性の向上
を図ると同時に高多孔化による寿命の低下を抑制し、バ
ランスのとれた真に高性能な鉛蓄電池を与える極板を提
供することを目的とする。
However, in the above method, although the high rate discharge characteristic is initially improved,
At present, the cycle life is significantly reduced, and an appropriate balance cannot be achieved. It is an object of the present invention to provide an electrode plate that provides a well-balanced and truly high performance lead storage battery while improving the high rate discharge characteristics and suppressing the decrease in the life due to the high porosity.

【0005】[0005]

【課題を解決するための手段】本発明は、極板の細孔構
造を最適化することによって上記の課題を解決しようと
するものである。すなわち、本発明の鉛蓄電池用極板
は、充電状態における活物質の細孔分布が、細孔径0.
8〜10μmの範囲の細孔領域Aと、細孔径0.01〜
0.2μmの範囲の細孔領域Bにそれぞれ極大値を持
ち、少なくとも2つに明確に分離された分布状態の細孔
構造を有し、細孔径0.2μm〜0.8μmの範囲の細
孔領域Cに極小値を備え、前記極小値は領域Aの極大値
の30%以下であることを特徴とするものである。
The present invention is intended to solve the above problems by optimizing the pore structure of the electrode plate. That is, in the lead-acid battery electrode plate of the present invention, the pore distribution of the active material in the charged state is 0.
Pore area A in the range of 8 to 10 μm and pore diameter of 0.01 to
Has its own maximum at pore region B ranging from 0.2 [mu] m, have a clearly separated pore structure distribution in at least two, having a pore diameter of from 0.2μm~0.8μm fine
The hole area C has a minimum value, and the minimum value is the maximum value of the area A.
Of 30% or less .

【0006】[0006]

【発明の実施の形態】本発明は、単に極板を増孔すると
いう従来の概念を超えて、各種細孔分布を有する極板を
形成し、実験を重ねた結果、寿命と高率放電特性のバラ
ンスのとれる細孔分布を見いだしたことに基づくもので
ある。ここで領域Aの細孔部は、高率放電時の利用率を
高め、領域Bの細孔部は、低率放電も含めた放電容量の
限界を決定する。本発明により、寿命と高率放電特性の
バランスのとれた鉛電池が得られる理由については、明
確ではないが次のように考えられる。放電で発生した領
域Bの鉛イオンは、より大きい細孔領域に拡散し、外部
から拡散する硫酸イオンと反応し硫酸鉛として析出す
る。このとき領域Bに連続して領域Aとの間に中間的な
細孔領域Cが存在すると、その部分での硫酸鉛の析出が
起こり、いずれのイオンの拡散にも障害となる。領域C
を少なくすると、細孔径の大きい領域Aに硫酸鉛が析出
することになり、高率放電時の拡散障害が少なくなる。
また、この領域Cの少ない構造を形成する状態が、活物
質の粒子間結合の強固な状態にあると思われる。本発明
の上記構造は、従来のように広い粒度分布の鉛粉を水と
硫酸で練合したペーストからでは形成困難であり、粒径
をできるだけ±10μmの範囲に統一した鉛粉の適用
や、硫酸ナトリウムあるいは硫酸バリウム等の水溶性塩
を混合する手段を併用する方法によって得ることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention goes beyond the conventional concept of simply perforating an electrode plate to form electrode plates having various pore distributions, and after repeated experiments, the service life and high rate discharge characteristics were improved. It is based on the finding of a well-balanced pore distribution. Here, the pores in the region A increase the utilization rate during high-rate discharge, and the pores in the region B determine the limit of discharge capacity including low-rate discharge. The reason why a lead battery having a well-balanced life and high rate discharge characteristics can be obtained by the present invention is considered as follows, although it is not clear. The lead ions in the region B generated by the discharge diffuse into the larger pore region, react with the sulfate ions diffused from the outside, and are deposited as lead sulfate. At this time, if there is an intermediate pore region C continuous with the region A in the region B, precipitation of lead sulfate occurs at that portion, which hinders the diffusion of any ions. Area C
If the content is reduced, lead sulfate will be deposited in the region A having a large pore diameter, and the diffusion obstacle at the time of high rate discharge will be reduced.
Further, it is considered that the state in which the structure having a small number of regions C is formed is the state in which the interparticle bond of the active material is strong. The above-described structure of the present invention is difficult to form from a paste obtained by kneading lead powder having a wide particle size distribution with water and sulfuric acid as in the conventional case, and the application of lead powder having a uniform particle size within a range of ± 10 μm, It can be obtained by a combined method with a means for mixing a water-soluble salt such as sodium sulfate or barium sulfate.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。まず、極板の作製に際して、正極用および負極用原
料として、重量比で金属鉛25%、一酸化鉛75%から
なる酸化度75%の鉛粉で、粒径30±10μmの範囲
に分級したものに硫酸ナトリウム粉末2wt%を添加し
た。負極には、この他重量比2%の硫酸バリウムと1%
の炭素粉末、および0.5%のリグニンを添加して活物
質混合物を調製した。この混合物に対し重量比10%の
水と同じく重量比15%の希硫酸を加えて練合しペース
トとした。
Embodiments of the present invention will be described below with reference to the drawings. First, in the production of the electrode plate, as a raw material for the positive electrode and the negative electrode, a lead powder having a weight ratio of 25% metallic lead and 75% lead monoxide and an oxidation degree of 75% was classified into a particle size range of 30 ± 10 μm. 2 wt% of sodium sulfate powder was added to the product. For the negative electrode, in addition to this, 2% by weight of barium sulfate and 1%
Carbon powder and 0.5% lignin were added to prepare an active material mixture. To this mixture, 10% by weight of water and 15% by weight of dilute sulfuric acid were added and kneaded to form a paste.

【0008】上記ペーストを鉛−カルシウム系合金製の
鋳造格子に充填し、常法に従って高温高湿中で熟成し、
ついで化成を行って正極板および負極板を作製した。比
較のために、従来の無差別な粒径の鉛粉に同様にして水
と硫酸を混合したペーストを使用した極板(比較例1)
を構成した。さらに、水量を15wt%増加して得た極
板を(比較例2)を作製した。図1は、実施例および比
較例における正極板の活物質層の細孔分布を示す。本実
施例による極板における活物質層の細孔の分布形態は、
大きく2つに分離して形成されている。これに対して、
比較例1では0.1から0.8μmの領域、すなわち本実
施例によるものの領域Cに大きな極大値が存在する。ま
た、比較例2では、本実施例によるものの領域Cを含め
て広い範囲で細孔が形成されている。なお、細孔分布の
測定は、水銀ポロシメータによるもので、細孔径0.0
03μm以上のものを測定した。次に、上記の各々の正
極板2枚と負極板3枚を、その間にガラス繊維からなる
マット状のセパレータを介在させて組み合わせ、電解液
として希硫酸を含浸させて正極容量規制の2Ah、2V
の電池を作製した。
The above-mentioned paste was filled in a casting grid made of a lead-calcium alloy and aged in a high temperature and high humidity according to a conventional method.
Then, chemical conversion was performed to prepare a positive electrode plate and a negative electrode plate. For comparison, an electrode plate using a paste obtained by mixing water and sulfuric acid in the same manner as conventional lead powder having an indiscriminate particle size (Comparative Example 1).
Configured. Further, an electrode plate (Comparative Example 2) obtained by increasing the amount of water by 15 wt% was manufactured. FIG. 1 shows the pore distribution of the active material layers of the positive electrode plates in Examples and Comparative Examples. The distribution form of the pores of the active material layer in the electrode plate according to this example is
It is divided into two parts. On the contrary,
In Comparative Example 1, there is a large maximum value in the region of 0.1 to 0.8 μm, that is, in the region C of the present embodiment. Further, in Comparative Example 2, the pores are formed in a wide range including the region C of the present example. In addition, the measurement of the pore distribution is performed by a mercury porosimeter, and the pore diameter is 0.0
Those having a size of 03 μm or more were measured. Next, each of the above-mentioned two positive electrode plates and three negative electrode plates are combined with a mat-shaped separator made of glass fiber interposed therebetween and impregnated with dilute sulfuric acid as an electrolytic solution to regulate the positive electrode capacity of 2Ah, 2V.
The battery of was produced.

【0009】なお、記載した容量は、充填されたペース
トに含まれる鉛原子のモル数を算出し、それらが全て2
電子反応を行ったと仮定した場合の理論容量を用いた。
本実施例による電池と比較例1、2の電池を比較的高率
の1Cの定電流で放電した放電容量を表1に示す。ま
た、各電池を2.25Vの準定電圧(最高電流1C)で
2時間充電し、1Cで終止電圧1.3Vまで放電する充
放電を繰り返し、放電容量が初期放電容量の50%に低
下するまでのサイクル寿命の比較を表1に示す。
The stated capacity is calculated by calculating the number of moles of lead atoms contained in the filled paste, and all of them are 2
The theoretical capacity when assuming that an electronic reaction was performed was used.
Table 1 shows the discharge capacities obtained by discharging the battery of this example and the batteries of Comparative Examples 1 and 2 with a constant current of 1 C, which is a relatively high rate. In addition, each battery is charged with a quasi-constant voltage of 2.25V (maximum current 1C) for 2 hours, and the charging / discharging is repeated until the final voltage is 1.3V at 1C, and the discharge capacity decreases to 50% of the initial discharge capacity. Table 1 shows the comparison of the cycle lives up to.

【0010】[0010]

【表1】 [Table 1]

【0011】表1から明らかなように、本実施例による
極板を用いた電池は、比較例2と同様に、比較例1より
高率放電特性が著しく優れている。一方、サイクル寿命
に関しては、本実施例による極板を用いた電池は、比較
例1と同様に、比較例2よりも優れている。これらのこ
とから、本発明を適用することにより優れた高率放電特
性と長寿命を兼ね備えた鉛蓄電池を構成できることが実
証された。
As is clear from Table 1, the battery using the electrode plate according to the present example is significantly superior to Comparative Example 1 in high rate discharge characteristics, as in Comparative Example 2. On the other hand, regarding the cycle life, the battery using the electrode plate according to the present example is superior to the comparative example 2 as in the comparative example 1. From these facts, it was proved that by applying the present invention, a lead storage battery having both excellent high rate discharge characteristics and long life can be constructed.

【0012】次に、活物質層の細孔分布において、総細
孔体積を一定にして、領域Aでの極大値に対する、領域
Cの極小値の割合を変化させた場合のサイクル寿命を図
2に示した。図から明らかなように、総細孔体積が同じ
でも寿命に差が生じた。このように、領域Aと領域Bに
極大値が存在すると同時に、明確な分離がされるように
領域Cの細孔体積が制限されることが好ましい。さら
に、図1のように2つの領域A、Bに分離する細孔分布
を有しながら、細孔の総体積は一定のまま、各領域の細
孔体積の比を変化させて放電容量を測定した。その結果
を図3に示した。この結果は、高率放電容量は上記比率
25%を超えると、本発明の効果が薄れることを示し
ている。
Next, in the pore distribution of the active material layer, the cycle life when the total pore volume is kept constant and the ratio of the minimum value in the region C to the maximum value in the region A is changed is shown in FIG. It was shown to. As is clear from the figure, there was a difference in life even with the same total pore volume. As described above, it is preferable that the maximum volume exists in the region A and the region B, and at the same time, the pore volume of the region C is limited so that the regions are clearly separated. Further, as shown in FIG. 1, the discharge capacity is measured by changing the ratio of the pore volume of each area while keeping the total volume of the pores constant while having the pore distribution that separates into two areas A and B. did. The results are shown in Fig. 3. This result shows that the effect of the present invention is diminished when the above ratio exceeds 25 % in the high rate discharge capacity.

【0013】域Aの細孔体積と寿命ならびに1Cでの
放電容量の関係を調べた結果を図4に示した 4か
ら、領域Aの総細孔体積が0.07cc/g以下になる
と放電容量が著しく劣化し、0.14cc/g以上にな
るとサイクル特性が劣化することがわかる。この結果か
ら、高率放電特性と寿命性能のバランスのとれた高性能
な鉛蓄電池を得るには、領域Aの総細孔体積は0.07
cc/gから0.14cc/gの範囲にあることが好ま
しい。
[0013] shows the results of examining the relationship between the discharge capacity at the pore volume of the realm A and longevity and 1C in FIG. It can be seen from FIG. 4 that the discharge capacity remarkably deteriorates when the total pore volume of the region A is 0.07 cc / g or less, and the cycle characteristics deteriorate when the total pore volume is 0.14 cc / g or more. From this result, in order to obtain a high-performance lead-acid battery in which high rate discharge characteristics and life performance are well balanced, the total pore volume of the region A is 0.07.
It is preferably in the range of cc / g to 0.14 cc / g.

【0014】上記の実施例では、正極用の添加剤として
硫酸ナトリウムを用いたが、この他に、鉛丹や塩基性硫
酸鉛、二酸化鉛などの鉛化合物を用いることができる。
また、実施例では集電体に鋳造格子を用いたが、エキス
パンド格子を用いてもよい。さらに、本発明の極板は、
各種粒度の鉛粉を組み合わせて溶剤系の結着剤、たとえ
ばポリフッ化ビニリデンとN−メチルピロリドンなどを
用いた練合物や無硫酸練合物でも形成可能であり、この
場合は薄型極板での細孔設計ができる利点がある。ま
た、上記の実施例では、正極についての効果を説明した
が、同様の方法で負極についても細孔設計の効果を調査
したところ、正極の場合と類似の結果が得られ、本発明
が負極に対しても効果があることが確認された。また、
実施例では2つの細孔領域について述べたが、さらに大
きな領域や小さな領域に別の極大値を形成することは本
発明の効果を妨げない。
In the above embodiments, sodium sulfate was used as the additive for the positive electrode, but lead compounds such as red lead, basic lead sulfate and lead dioxide can be used in addition to this.
Further, although a cast grid is used as the current collector in the embodiment, an expanded grid may be used. Furthermore, the electrode plate of the present invention,
It is possible to form lead powders of various particle sizes in combination with a solvent-based binder, for example, a kneaded product using polyvinylidene fluoride and N-methylpyrrolidone or a sulfuric acid-free kneaded product. In this case, a thin electrode plate is used. There is an advantage that the pores can be designed. Further, in the above examples, the effect on the positive electrode was described, but when the effect of the pore design was investigated for the negative electrode by the same method, similar results to those for the positive electrode were obtained, and the present invention was applied to the negative electrode. It was confirmed that it was also effective. Also,
Although two pore regions are described in the examples, forming another maximum value in a larger region or a smaller region does not prevent the effect of the present invention.

【0015】[0015]

【発明の効果】以上のように本発明によれば、優れた高
率放電特性とサイクル寿命を兼ね備えた鉛蓄電池を得る
ことができる。
As described above, according to the present invention, it is possible to obtain a lead acid battery having both excellent high rate discharge characteristics and cycle life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による正極板の充電状態におけ
る細孔分布を示す図である。
FIG. 1 is a diagram showing a pore distribution in a charged state of a positive electrode plate according to an example of the present invention.

【図2】領域Aの極大値に対する領域Cの極小値の比率
とサイクル寿命の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the ratio of the minimum value of the region C to the maximum value of the region A and the cycle life.

【図3】領域Aの総細孔体積に対する領域Bの総細孔体
積の比率と1C放電容量の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a ratio of a total pore volume of a region B to a total pore volume of a region A and a 1C discharge capacity.

【図4】領域Aの総細孔体積と、放電容量およびサイク
ル寿命との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a total pore volume in a region A, a discharge capacity and a cycle life.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−82159(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-4-82159 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 活物質が鉛あるいは二酸化鉛であって、
充電状態における活物質層の細孔分布が、細孔径0.8
〜10μmの範囲の細孔領域Aと、細孔径0.01〜
0.2μmの範囲の細孔領域Bにそれぞれ極大値を備
え、少なくとも2つに明確に分離された分布状態の細孔
構造を有し、細孔径0.2μm〜0.8μmの範囲の細
孔領域Cに極小値を備え、前記極小値は領域Aの極大値
の30%以下であることを特徴とする鉛蓄電池用極板。
1. The active material is lead or lead dioxide,
The pore size distribution of the active material layer in the charged state is 0.8.
Pore area A in the range of 10 μm and pore diameter of 0.01 to
Each includes a maximum value at the pore region B ranging from 0.2 [mu] m, have a clearly separated pore structure distribution in at least two, having a pore diameter of from 0.2μm~0.8μm fine
The hole area C has a minimum value, and the minimum value is the maximum value of the area A.
30% or less of the lead-acid battery electrode plate.
【請求項2】 充電状態において領域Aの細孔体積の積
分値が0.07cc/g〜0.14cc/gであり、領
域Bの細孔体積の積分値が領域Aの積分値の25%以下
である請求項1に記載の鉛蓄電池用極板
2. In the charged state, the integrated value of the pore volume of the region A is 0.07 cc / g to 0.14 cc / g, and the integrated value of the pore volume of the region B is 25% of the integrated value of the region A. The electrode plate for a lead storage battery according to claim 1, which is as follows .
JP22624296A 1996-08-28 1996-08-28 Plate for lead-acid battery Expired - Fee Related JP3468492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22624296A JP3468492B2 (en) 1996-08-28 1996-08-28 Plate for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22624296A JP3468492B2 (en) 1996-08-28 1996-08-28 Plate for lead-acid battery

Publications (2)

Publication Number Publication Date
JPH1069900A JPH1069900A (en) 1998-03-10
JP3468492B2 true JP3468492B2 (en) 2003-11-17

Family

ID=16842129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22624296A Expired - Fee Related JP3468492B2 (en) 1996-08-28 1996-08-28 Plate for lead-acid battery

Country Status (1)

Country Link
JP (1) JP3468492B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014052753A1 (en) * 2012-09-28 2014-04-03 Cabot Corporation Active material compositions comprising high surface area carbonaceous materials
US11367906B2 (en) 2018-05-23 2022-06-21 Gs Yuasa International Ltd. Lead-acid battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211681B2 (en) * 2007-12-26 2013-06-12 株式会社Gsユアサ Method for producing lead-acid battery
JP5780106B2 (en) * 2011-10-19 2015-09-16 株式会社Gsユアサ Lead-acid battery and method for manufacturing the same
JP6015427B2 (en) * 2012-12-21 2016-10-26 株式会社Gsユアサ Negative electrode plate for lead acid battery and method for producing the same
JP6176180B2 (en) 2013-07-19 2017-08-09 株式会社Gsユアサ Liquid lead acid battery and idling stop vehicle using liquid lead acid battery
JP6766811B2 (en) * 2015-07-21 2020-10-14 株式会社Gsユアサ Lead-acid battery
CN111570299B (en) * 2020-05-22 2022-04-22 邱鑫梅 Performance detection and analysis system for production and processing of storage battery
JP6984779B1 (en) 2021-06-08 2021-12-22 株式会社Gsユアサ A power storage system including a control valve type lead acid battery and its manufacturing method, and a control valve type lead acid battery.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014052753A1 (en) * 2012-09-28 2014-04-03 Cabot Corporation Active material compositions comprising high surface area carbonaceous materials
US11367906B2 (en) 2018-05-23 2022-06-21 Gs Yuasa International Ltd. Lead-acid battery

Also Published As

Publication number Publication date
JPH1069900A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
JP3468492B2 (en) Plate for lead-acid battery
JP2002313332A (en) Control valve type lead-acid battery
JP4186197B2 (en) Positive electrode plate for lead acid battery
JP2949773B2 (en) Lead storage battery
JP2002100347A (en) Lead-acid battery
JP4857894B2 (en) Lead acid battery
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP4066509B2 (en) Manufacturing method of lead acid battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JPH11162456A (en) Lead-acid battery
JPH09147841A (en) Negative electrode plate for lead acid battery and its manufacture
JPH10247491A (en) Lead-acid battery and its manufacture
JPS59173961A (en) Organic electrolyte secondary battery
JP2006202584A (en) Lead-acid battery and its manufacturing method
JP2004079198A (en) Lead accumulator
JP4984786B2 (en) Lead acid battery
JPH0850896A (en) Manufacture of lead-acid battery
JP2003086178A (en) Sealed lead-acid battery and method of manufacturing the same
JP3414941B2 (en) Electrode plate for lead storage battery and method of manufacturing the same
JP3196556B2 (en) Lead storage battery
JP2003346790A (en) Lead acid storage battery
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery
JP3013623B2 (en) Sealed lead-acid battery
JP2000149932A (en) Lead-acid battery and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees