JP3196556B2 - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JP3196556B2
JP3196556B2 JP04290495A JP4290495A JP3196556B2 JP 3196556 B2 JP3196556 B2 JP 3196556B2 JP 04290495 A JP04290495 A JP 04290495A JP 4290495 A JP4290495 A JP 4290495A JP 3196556 B2 JP3196556 B2 JP 3196556B2
Authority
JP
Japan
Prior art keywords
lead
conductive material
active material
barium
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04290495A
Other languages
Japanese (ja)
Other versions
JPH08241718A (en
Inventor
剛 畑中
勝弘 高橋
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04290495A priority Critical patent/JP3196556B2/en
Publication of JPH08241718A publication Critical patent/JPH08241718A/en
Application granted granted Critical
Publication of JP3196556B2 publication Critical patent/JP3196556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は鉛蓄電池の活物質導電性
向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the conductivity of an active material of a lead storage battery.

【0002】[0002]

【従来の技術】鉛蓄電池は二次電池として比較的安価で
安定な性能を有しているため一般に普及している。また
近年ではポータブル機器や電動車の電源に用いられるサ
イクル使用の移動用電源、コンピューターなどのバック
アップに用いる据え置き用電源としても普及してきた。
2. Description of the Related Art Lead storage batteries are widely used because they have relatively low cost and stable performance as secondary batteries. In recent years, it has also been widely used as a portable power supply for use in portable devices and electric vehicles, and a stationary power supply used as a backup for computers and the like.

【0003】近年、自動車用の無公害対策として電気自
動車が脚光を浴びている。またポータブル機器のコード
レス化も進んでおり、これにつれて電源として価格の安
い鉛蓄電池の高性能化への要望が高まってきている。こ
の鉛蓄電池の高性能化にはとりわけ高エネルギー密度
化、長寿命化が大きな課題となっている。
In recent years, electric vehicles have been spotlighted as non-pollution measures for vehicles. In addition, the trend toward cordless portable devices is progressing, and with this trend, demands for higher performance of inexpensive lead-acid batteries as power sources are increasing. In order to improve the performance of the lead storage battery, it is particularly important to increase the energy density and extend the service life.

【0004】これらの課題は活物質の導電性によるとこ
ろが大きい。鉛蓄電池は正極に二酸化鉛(PbO2)、
負極に鉛(Pb)、電解液に硫酸(H2SO4)水溶液を
用いておりその電池放電反応は以下に示す通りである。
[0004] These problems largely depend on the conductivity of the active material. Lead acid batteries use lead dioxide (PbO 2 ) as the positive electrode,
Lead (Pb) is used for the negative electrode, and sulfuric acid (H 2 SO 4 ) aqueous solution is used for the electrolytic solution. The battery discharge reaction is as follows.

【0005】 正極:PbO2+2H++H2SO4+2e-→PbSO4+2H2O 負極:Pb+SO4 2-→PbSO4+2e- 上記の反応式から明らかなように、正極、負極とも活物
質が硫酸鉛(PbSO 4)に変化していく。硫酸鉛は
鉛、二酸化鉛に比べ電気抵抗がはるかに大きくほとんど
導電性をもたない。そのため放電反応が進むにつれて極
板自身の導電性が劣化してくる。このようなことが、電
池電圧の低下ならびに活物質利用率の低下につながって
いる。また、充電時はこの硫酸鉛を正極では二酸化鉛に
負極では鉛に変化させるため極板の導電性の悪さは、充
電効率の低下につながる。このように、極板の導電性の
悪さが鉛蓄電池の高エネルギー密度化や長寿命化への大
きな課題となっている。
[0005] Positive electrode: PbOTwo+ 2H++ HTwoSOFour+ 2e-→ PbSOFour+ 2HTwoO Negative electrode: Pb + SOFour 2-→ PbSOFour+ 2e- As is clear from the above reaction formula, both the positive electrode and the negative electrode
The quality is lead sulfate (PbSO Four). Lead sulfate
Electric resistance is much higher than lead and lead dioxide, almost
It has no conductivity. As the discharge reaction progresses,
The conductivity of the plate itself deteriorates. Such a thing
Of battery voltage and active material utilization rate
I have. During charging, this lead sulfate is converted to lead dioxide at the positive electrode.
Since the negative electrode changes to lead, the poor conductivity of the electrode plate
This leads to a decrease in power efficiency. Thus, the conductivity of the electrode plate
Badness is the key to increasing the energy density and extending the life of lead-acid batteries
Has become a critical issue.

【0006】これらの課題を解決するための方策として
従来種々の導電材を添加する手法が提案されている。一
例として鉛酸バリウム(BaPbO3)という材料が導
電材として近年注目を集めている(例えば特開平4−2
06268号公報、「J.Electrochem,S
oc」139(1992)第41〜43頁)。鉛酸バリ
ウムは比較的良導電性を示すと言われており、硫酸中で
安定であり且つ充放電でほとんど変化しないという性質
を持つ。そこで、この鉛酸バリウムを活物質ペーストに
混合、分散することで極板に導電性を持たせ電気抵抗を
低減させようというものである。
As a measure for solving these problems, there has been proposed a method of adding various conductive materials. As an example, a material called barium plumbate (BaPbO 3 ) has attracted attention as a conductive material in recent years (for example, see Japanese Patent Application Laid-Open No. Hei 4-2).
No. 06268, J. Electrochem, S
oc "139 (1992) pp. 41-43). Barium plumbate is said to have relatively good conductivity, and is stable in sulfuric acid and hardly changes during charge and discharge. Then, by mixing and dispersing the barium lead acid into the active material paste, the electrode plate is made conductive and the electric resistance is reduced.

【0007】[0007]

【発明が解決しようとする課題】上記のように鉛酸バリ
ウムの導電材を活物質中に添加することによって導電性
を向上させる手法において、その導電材自身の導電性が
鉛蓄電池の充放電性能を大きく左右する。しかし鉛酸バ
リウムは金属並みの導電性を持つとはいえ、金属鉛や二
酸化鉛に比べるとやはり導電性は低い。そのため鉛酸バ
リウムに換わる、さらに高導電性能を持ち活物質利用率
の優れた導電材が必要である。
SUMMARY OF THE INVENTION As described above, in a technique for improving conductivity by adding a barium lead oxide conductive material to an active material, the conductivity of the conductive material itself is determined by the charge / discharge performance of a lead-acid battery. Greatly affect However, although barium plumbate has the same conductivity as metal, it still has lower conductivity than metal lead or lead dioxide. Therefore, there is a need for a conductive material having a higher conductivity and an excellent utilization rate of the active material in place of barium plumbate.

【0008】本発明は、このような課題を解決するもの
で、導電性が高く、活物質利用率ならびにサイクル寿命
の優れた鉛蓄電池用の導電材を見出すことを目的とす
る。
An object of the present invention is to solve such a problem, and an object of the present invention is to find a conductive material for a lead storage battery having high conductivity, excellent active material utilization rate and excellent cycle life.

【0009】[0009]

【課題を解決するための手段】これらの課題を解決する
ため本発明は、鉛蓄電池において正,負極の少くとも一
方にペロブスカイト構造を持ち、化学式がBaPb1-x
3(0<x≦0.05)なる導電材を添加させるとい
う構成を備えたものである。
In order to solve these problems, the present invention relates to a lead-acid battery having at least one of a positive electrode and a negative electrode having a perovskite structure and a chemical formula of BaPb 1-x
It has a configuration in which a conductive material of O 3 (0 <x ≦ 0.05) is added.

【0010】さらに導電材の添加量が活物質の鉛換算重
量に対して2〜10重量%の範囲とするものである。
Further, the amount of the conductive material to be added is in the range of 2 to 10% by weight based on the weight of the active material in terms of lead.

【0011】[0011]

【作用】鉛酸バリウムの結晶構造は図1に示すように、
Aサイトにバリウムイオンが位置し、Bサイトに鉛イオ
ン、立方体の12の稜の中心に酸素イオンが存在するい
わゆるペロブスカイト構造をしている。本発明の導電材
料はこのペロブスカイト構造はそのままに、Bサイトの
鉛の一部が欠損し空孔となった構造を持つ。
[Action] The crystal structure of barium plumbate is shown in FIG.
It has a so-called perovskite structure in which barium ions are located at the A site, lead ions are located at the B site, and oxygen ions are present at the center of the 12 ridges of the cube. The conductive material of the present invention has a structure in which part of lead at the B site is lost to form pores, while maintaining this perovskite structure.

【0012】これは鉛酸バリウムのBサイトの鉛イオン
欠損するとそれにつれて相対的にバリウムイオンが増加
することになる。するとバリウムイオンに関与する酸素
の割合が増加し、結果として鉛イオンの(5d)10閉核
構造からの電子の一部欠損が生じるか、もしくは酸素2
P軌道にホールが生じる。このように電子の不足してい
る鉛イオンまたは酸素イオンが導電性を向上させる原因
と思われる。
[0012] This is because, when lead ions are deficient at the B site of barium plumbate, barium ions are relatively increased. Then, the proportion of oxygen involved in barium ions increases, and as a result, a partial loss of electrons from the (5d) 10 closed nucleus structure of lead ions occurs, or oxygen 2
A hole occurs in the P orbit. It is considered that lead ions or oxygen ions, which lack electrons, cause the improvement in conductivity.

【0013】本発明による材料を導電材として活物質中
に添加すると、従来の鉛酸バリウムを添加する場合に比
べ活物質利用率およびサイクル寿命が向上する。
When the material according to the present invention is added to the active material as a conductive material, the active material utilization and the cycle life are improved as compared with the case where barium plumbate is conventionally added.

【0014】[0014]

【実施例】以下、本発明の一実施例を説明する。An embodiment of the present invention will be described below.

【0015】ペロブスカイト構造を持つ鉛酸バリウムで
は単位格子の中心はバリウムイオンであるが、本発明品
ではペロブスカイト構造はそのままに鉛の一部(5%以
下)を抜き取り空孔とする。この構造を化学式で表すと
次のようになる。
In barium plumbate having a perovskite structure, the center of the unit cell is a barium ion. In the present invention, however, a part (5% or less) of lead is extracted from the perovskite structure as it is to form a hole. This structure is represented by the following chemical formula.

【0016】 BaPb1-x3(0<x≦0.05) (a) ここで本発明の導電材は二酸化鉛と硝酸バリウムとのモ
ル数比を種々変化させ、酸素雰囲気中で500〜800
℃にて約8時間焼成して作製した。
BaPb 1-x O 3 (0 <x ≦ 0.05) (a) Here, the conductive material of the present invention is obtained by changing the molar ratio of lead dioxide to barium nitrate in various ways, and 800
It was manufactured by firing at about 8 hours.

【0017】本実施例での鉛蓄電池の活物質ペーストは
次のように作製した。まず酸化度70%〜80%の鉛粉
6kgに希硫酸(比重:1.20、20℃)1.4lを
徐々に加えながら練合し活物質ペーストを作製する。そ
して本発明の導電材((a)式:x=0.03)と従来の
導電材(鉛酸バリウム)をそれぞれ鉛換算重量に対し
て、0、2、5、7、10、15wt%添加したものを
作りさらに練合した。この時の導電材は100mesh
以下に粉砕している。それぞれのペーストをシール電池
用の鋳造格子に充填しこの極板を正極として化成した。
なお極板のサイズは縦40mm×横13mm.厚さ1.
3mmであり、この極板に充填されたペースト重量は約
2.3gであった。
The active material paste for the lead-acid battery in this embodiment was prepared as follows. First, 1.4 l of dilute sulfuric acid (specific gravity: 1.20, 20 ° C) is gradually added to 6 kg of lead powder having an oxidation degree of 70% to 80% to prepare an active material paste. Then, the conductive material of the present invention (formula (a): x = 0.03) and the conventional conductive material (barium plumbate) are added in an amount of 0, 2, 5, 7, 10, and 15 wt%, respectively, based on the weight in terms of lead. Was made and further kneaded. The conductive material at this time is 100 mesh
It is crushed below. Each paste was filled in a casting grid for a sealed battery, and this electrode plate was formed as a positive electrode.
The size of the electrode plate is 40 mm long × 13 mm wide. Thickness 1.
3 mm, and the weight of the paste filled in this electrode plate was about 2.3 g.

【0018】充填電気量は各ペーストに含まれる鉛原子
のモル数を計算し、それらが化成により全て二酸化鉛に
変化したとして算出した。この充填電気量を基準とし
0.2Cおよび1Cの定電流放電によって放電容量を調
べた。その結果を(表1)(表2)に示す。なお、対極
には、正極容量に対して2倍の容量を持つシール電池用
の負極を用い正極容量制限によって性能が劣化するよう
に調整した。
The amount of electricity charged was calculated by calculating the number of moles of lead atoms contained in each paste, and assuming that all of them were converted to lead dioxide by formation. The discharge capacity was examined by constant current discharge at 0.2 C and 1 C based on the charged amount of electricity. The results are shown in (Table 1) and (Table 2). As a counter electrode, a negative electrode for a sealed battery having twice the capacity of the positive electrode capacity was used, and the performance was deteriorated due to the positive electrode capacity limitation.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】(表1)(表2)から明らかなように、本
発明の導電材を添加した極板は従来の導電材(鉛酸バリ
ウム)を添加したものに比べ利用率およびサイクル寿命
が向上している。
As is clear from Tables 1 and 2, the electrode plate to which the conductive material of the present invention is added has an improved utilization factor and cycle life as compared with the conventional electrode material to which the conductive material (barium lead oxide) is added. are doing.

【0022】そして導電材添加量が2%より優位性が現
われ、7〜10%の範囲で利用率,サイクル寿命共にピ
ーク値を示している。10%以上添加しても利用率,サ
イクル寿命は向上せず、逆に活物質量が減少するため放
電容量が劣化する。
The superiority appears when the amount of the conductive material added is 2%, and both the utilization factor and the cycle life show peak values in the range of 7 to 10%. Even if 10% or more is added, the utilization factor and the cycle life are not improved, and conversely, the discharge capacity is deteriorated because the amount of the active material is reduced.

【0023】以上の結果より総合的にみて、導電材添加
量は2〜10wt%の範囲が良好であり更に7〜10w
t%が優れている。
In view of the above results, the amount of the conductive material added is preferably in the range of 2 to 10 wt%, and more preferably 7 to 10 w%.
t% is excellent.

【0024】次に(a)式で表される本発明の導電材でx
の値を変化させた場合の活物質利用率とサイクル寿命の
性能を(表3)に示す。導電材の添加量は鉛換算重量に
対して7wt%であり、極板のサイズや試験方法などは
上記と同様である。
Next, with the conductive material of the present invention represented by the formula (a), x
(Table 3) shows the performance of the active material utilization rate and the cycle life when the value of was changed. The amount of the conductive material added is 7 wt% with respect to the lead conversion weight, and the size of the electrode plate and the test method are the same as described above.

【0025】[0025]

【表3】 [Table 3]

【0026】(表3)から分かるように、0<x≦0.
05であれば利用率、サイクル寿命共に改善されてお
り、従来の鉛酸バリウム(即ち表3のx=0の場合)に
比べて優位性が明らかである。
As can be seen from Table 3, 0 <x ≦ 0.
In the case of 05, both the utilization factor and the cycle life are improved, and the superiority is clear as compared with the conventional barium lead oxide (that is, when x = 0 in Table 3).

【0027】なお、xの値が0.05を超えるとペロブ
スカイトとしての構造を保てなくなり、導電性が急激に
劣化するため利用率が低下するものと思われる。
When the value of x exceeds 0.05, the structure as a perovskite cannot be maintained, and the conductivity is rapidly deteriorated, so that the utilization factor is considered to be reduced.

【0028】なお本実施例では導電材を正極中に添加し
たが、負極あるいは正極、負極両方に添加しても同様の
効果が得られた。
In this example, the conductive material was added to the positive electrode. However, the same effect was obtained by adding the conductive material to the negative electrode or both the positive electrode and the negative electrode.

【0029】[0029]

【発明の効果】以上のように、本発明の導電材は従来の
導電材として提案されている鉛酸バリウムに比べ活物質
利用率ならびにサイクル寿命の向上に効果がある。
As described above, the conductive material of the present invention is more effective in improving the utilization rate of the active material and the cycle life than barium plumbate proposed as a conventional conductive material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鉛酸バリウムの結晶構造を示す図FIG. 1 is a diagram showing the crystal structure of barium plumbate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−225711(JP,A) 特開 平4−206268(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/62 H01M 4/14 - 4/23 C04B 35/00 H01B 1/16 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-225711 (JP, A) JP-A-4-206268 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/62 H01M 4/14-4/23 C04B 35/00 H01B 1/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極活物質が鉛、正極活物質が二酸化鉛で
ある鉛蓄電池であって、正,負極の少くとも一方にペロ
ブスカイト構造を持ち、化学式がBaPb1-x3(O<
x≦0.05)なる導電材を添加した鉛蓄電池。
1. A lead-acid battery in which the negative electrode active material is lead and the positive electrode active material is lead dioxide, wherein at least one of the positive and negative electrodes has a perovskite structure and the chemical formula is BaPb 1-x O 3 (O <
(x ≦ 0.05).
【請求項2】上記導電材の添加量が活物質の鉛換算重量
に対して2〜10重量%の範囲である請求項1記載の鉛
蓄電池。
2. The lead-acid battery according to claim 1, wherein the amount of the conductive material added is in the range of 2 to 10% by weight based on the weight of the active material in terms of lead.
JP04290495A 1995-03-02 1995-03-02 Lead storage battery Expired - Fee Related JP3196556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04290495A JP3196556B2 (en) 1995-03-02 1995-03-02 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04290495A JP3196556B2 (en) 1995-03-02 1995-03-02 Lead storage battery

Publications (2)

Publication Number Publication Date
JPH08241718A JPH08241718A (en) 1996-09-17
JP3196556B2 true JP3196556B2 (en) 2001-08-06

Family

ID=12649028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04290495A Expired - Fee Related JP3196556B2 (en) 1995-03-02 1995-03-02 Lead storage battery

Country Status (1)

Country Link
JP (1) JP3196556B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035433B1 (en) 2014-12-18 2020-02-19 GS Yuasa International Ltd. Lead-acid battery

Also Published As

Publication number Publication date
JPH08241718A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
EP0931360B1 (en) Method of manufacturing a lead acid cell paste having tin compounds
US20240186652A1 (en) Absorbent glass mat battery
KR20170129238A (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
JP2003123760A (en) Negative electrode for lead-acid battery
WO1995003636A1 (en) Improved utilization efficiences by using high sulfate starting materials
JP3196556B2 (en) Lead storage battery
JP4802358B2 (en) Negative electrode plate for control valve type lead-acid battery
JP2002313332A (en) Control valve type lead-acid battery
JP2949772B2 (en) Liquid-filled lead-acid battery
JP2949773B2 (en) Lead storage battery
JP3047463B2 (en) Lead storage battery
KR20090045483A (en) Composition of electrolyte of lead storage battery
JP4411860B2 (en) Storage battery
JP3038995B2 (en) Lead storage battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JP2596273B2 (en) Anode plate for lead-acid battery
JP2819201B2 (en) Lithium secondary battery
JP3013623B2 (en) Sealed lead-acid battery
JP2913482B2 (en) Lead storage battery
JP3379331B2 (en) Lead storage battery
JP4742424B2 (en) Control valve type lead acid battery
JP3498560B2 (en) Lead storage battery
JPH06140042A (en) Sealed lead-acid battery
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery
JP2004171872A (en) Lead-acid battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees