WO2009093464A1 - Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery - Google Patents

Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery Download PDF

Info

Publication number
WO2009093464A1
WO2009093464A1 PCT/JP2009/000259 JP2009000259W WO2009093464A1 WO 2009093464 A1 WO2009093464 A1 WO 2009093464A1 JP 2009000259 W JP2009000259 W JP 2009000259W WO 2009093464 A1 WO2009093464 A1 WO 2009093464A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode composition
carbon
secondary battery
Prior art date
Application number
PCT/JP2009/000259
Other languages
French (fr)
Japanese (ja)
Inventor
Hidehiro Takakusa
Minoru Okada
Haruki Wada
Masaji Haneda
Masashi Iwata
Original Assignee
Ntt Data Ex Techno Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Data Ex Techno Corporation filed Critical Ntt Data Ex Techno Corporation
Priority to CN200980000027A priority Critical patent/CN101689634A/en
Priority to TW098121972A priority patent/TW201029250A/en
Publication of WO2009093464A1 publication Critical patent/WO2009093464A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode composition for a secondary battery, a method for producing the same, and a secondary battery using the positive electrode composition for a secondary battery.
  • various secondary batteries are known.
  • lead storage batteries as inexpensive ones and lithium ion batteries as high energy density ones.
  • a secondary battery that is both inexpensive and has a high energy density is ideal.
  • an inexpensive and high energy density storage battery in applications such as a hybrid vehicle or an electric vehicle that performs start-up drive by the storage battery.
  • the price of a storage battery is most dependent on its material cost.
  • an expensive nickel metal hydride storage battery is used, but nickel used for the positive electrode of the nickel metal hydride storage battery and noble metal used for the negative electrode are very expensive materials.
  • the lithium ion secondary battery is also forced to use an expensive material.
  • dilute sulfuric acid is added to an active material raw material called lead powder obtained by oxidizing lead to make a paste-like composition, and this paste is filled into a grid-shaped current collector to form an electrode plate.
  • the manufacturing method to form is common.
  • the positive electrode contains an active material called lead dioxide and the negative electrode contains spongy lead.
  • These active materials change to lead sulfate (discharge active material) when the battery is discharged. Since the particle volume increases with the change to the discharge active material, the pores of the porous structure in the electrode plate become small, making it difficult to diffuse the electrolytic solution into the active material.
  • Lead storage batteries are preferable in that the raw materials are inexpensive, but the amount of lead used has to be increased due to the low utilization rate of the active material. As a result, the weight of lead, which has a higher weight density than other materials, has to be increased. This further increases the energy density with respect to the weight. The current energy density of lead-acid batteries is insufficient for hybrid vehicles and electric vehicles and cannot be used.
  • patent document 1 As a prior art regarding the positive electrode plate of a lead storage battery, there exists patent document 1, for example.
  • patent document 1 the manufacturing method of the lead storage battery positive electrode plate excellent in chemical conversion efficiency is disclosed.
  • the positive electrode paste is a mixture of lead oxide, metal lead and lead sulfate, water, dilute sulfuric acid, and a conductive material prepared in advance on a lattice made of a lead alloy containing no antimony.
  • 2 g (0.17 mol) or less of carbon black treated at a predetermined pressure and temperature is used as a conductive material with respect to 1 mol of lead.
  • Patent Document 1 carbon black is added to improve conductivity, and the improvement of the active material utilization rate due to the porosity is not a problem.
  • the main cause of the low energy density of lead-acid batteries is that the electrical resistance increases, so that the active material utilization rate cannot be raised to the upper limit theoretical value of about 70%.
  • the utilization rate of the active material is further lowered in the usage mode in which the discharge is performed with a large current.
  • the present invention improves the utilization ratio of the positive electrode active material by adding a material not conventionally used to the lead powder as the active material raw material as the positive electrode composition for the secondary battery.
  • the positive electrode composition for a secondary battery according to claim 1 is: Bulk density after drying and unformed state of a kneaded material filled in a grid-like current collector or coated on a sheet-like current collector and containing an active material material mainly composed of metal oxide and carbon and silica porous material Is 2.6 ⁇ 10 ⁇ 1 ml / g or more.
  • the positive electrode composition for a secondary battery according to claim 2 is characterized in that in claim 1, A first kneaded material produced by kneading the carbon with an aqueous polyvinyl alcohol solution is a kneaded material produced by mixing and kneading the active material raw material and the porous silica material.
  • the positive electrode composition for a secondary battery according to claim 3 is, in claim 1, It is a kneaded product produced by mixing and kneading the active material raw material with a first kneaded product produced by kneading the carbon and the silica porous body with an aqueous polyvinyl alcohol solution. .
  • the positive electrode composition for a secondary battery according to claim 4 is: It is characterized by comprising a kneaded material in which carbon and silica porous material are contained in an active material raw material mainly composed of a metal oxide.
  • the positive electrode composition for a secondary battery according to claim 5 is, in claim 4, A first kneaded material produced by kneading the carbon with an aqueous polyvinyl alcohol solution is a kneaded material produced by mixing and kneading the active material raw material and the porous silica material.
  • the positive electrode composition for a secondary battery according to claim 6 is, in claim 4, It is a kneaded product produced by mixing and kneading the active material raw material with a first kneaded product produced by kneading the carbon and the silica porous body with an aqueous polyvinyl alcohol solution. .
  • the positive electrode composition for a secondary battery according to claim 7 is: After drying a kneaded material filled with a grid-like current collector or coated on a sheet-like current collector, containing a porous silica in an active material raw material mainly composed of metal oxide and not containing carbon, the bulk in an unformed state The density is 2.5 ⁇ 10 ⁇ 1 ml / g or more.
  • the positive electrode composition for a secondary battery according to claim 8 is: It is characterized by comprising a kneaded material containing a porous silica in an active material raw material mainly composed of a metal oxide and containing no carbon.
  • the positive electrode composition for a secondary battery according to claim 9 is any one of claims 1 to 8, It is a kneaded material containing 7.3 mole percent or more of the porous silica in the active material raw material.
  • the positive electrode composition for a secondary battery according to claim 10 is any one of claims 1 to 9,
  • the silica porous material contained in the kneaded material is diatomaceous earth, perlite, or shirasu balloon.
  • a positive electrode composition for a secondary battery according to an eleventh aspect is characterized in that in any one of the first to tenth aspects, the kneaded material contains a trace amount of sulfuric acid.
  • the positive electrode composition for a secondary battery according to claim 12 is It is characterized by comprising a kneaded material in which carbon and hollow fibers are contained in an active material raw material mainly composed of a metal oxide.
  • the positive electrode composition for a secondary battery according to claim 13 is, in claim 12, A kneaded product produced by kneading the carbon with an aqueous polyvinyl alcohol solution is produced by mixing and kneading an active material raw material mainly composed of a metal oxide and the hollow fiber.
  • the positive electrode composition for a secondary battery according to claim 14 is, in claim 12, It is produced by mixing and kneading the active material raw material in a kneaded product produced by kneading carbon and hollow fibers with a polyvinyl alcohol aqueous solution.
  • a method for producing a positive electrode composition for a secondary battery according to claim 15 comprises: A first kneaded material produced by kneading the carbon with an aqueous polyvinyl alcohol solution is a kneaded material produced by mixing and kneading the active material raw material and the porous silica material.
  • a method for producing a positive electrode composition for a secondary battery according to claim 16 comprises: It is a kneaded product produced by mixing and kneading the active material raw material with a first kneaded product produced by kneading the carbon and the silica porous body with an aqueous polyvinyl alcohol solution. .
  • the method for producing a positive electrode composition for a secondary battery according to claim 17 is characterized in that, in claim 15 or 16, the porous silica contained in the kneading is diatomaceous earth, pearlite or shirasu balloon. To do.
  • the method for producing a positive electrode composition for a secondary battery according to claim 18 is characterized in that in any one of claims 15 to 17, the kneaded product contains a trace amount of sulfuric acid.
  • a secondary battery according to claim 19 is provided.
  • a positive electrode composition for use is used.
  • the positive electrode composition for a secondary battery according to the first aspect of the present invention is filled in a grid-like current collector or coated on a sheet-like current collector, and carbon is used as an active material raw material mainly composed of a metal oxide. And the kneaded product containing the porous silica is dried and in an unformed state, the bulk density is 2.6 ⁇ 10 ⁇ 1 ml / g or more, and the bulk density is increased, so the porosity is increased. The utilization rate of the positive electrode active material improved.
  • a positive electrode composition for a secondary battery according to a second aspect of the present invention the first kneaded material produced by kneading the carbon with an aqueous polyvinyl alcohol solution, the active material raw material and the porous silica material, Is mixed and kneaded to produce a kneaded product, in which carbon is dispersed in water, and the porous density is increased due to the inclusion of a porous silica, so that the porosity of the cathode active material using this is increased. Utilization rate is improved.
  • the positive electrode composition for a secondary battery according to the third aspect of the present invention is obtained by adding the active material raw material to the first kneaded material produced by kneading the carbon and the porous silica with an aqueous polyvinyl alcohol solution. Is a kneaded product produced by mixing and kneading the carbon, and since the carbon is dispersed in water and the silica porous material is included, the bulk density is increased and the porosity is increased. The utilization rate of substances is improved.
  • the positive electrode composition for a secondary battery according to the fourth aspect of the present invention is a metal oxide in which the positive electrode composition for a secondary battery is filled in a grid-like current collector or coated on a sheet-like current collector.
  • the bulk density of the kneaded product containing the silica porous material in the active material raw material mainly composed of carbon and not containing carbon is 2.5 ⁇ 10 ⁇ 1 ml / g or more after drying, and the bulk density is increased. Therefore, the porosity is increased, and the utilization rate of the positive electrode active material using the same is improved.
  • the positive electrode composition for a secondary battery according to the fifth aspect of the present invention is a positive electrode composition for a secondary battery in which a metal oxide is added to a kneaded product produced by kneading the carbon with an aqueous polyvinyl alcohol solution.
  • the active material raw material and the hollow fiber are mixed and kneaded to produce carbon, and the carbon is dispersed in water. Since the hollow fiber is contained, the bulk density is increased and the porosity is increased. The utilization rate of is improved.
  • the positive electrode composition for a secondary battery according to the sixth aspect of the present invention is the above-described kneaded product produced by kneading carbon and hollow fibers with an aqueous polyvinyl alcohol solution. Produced by mixing and kneading the active material, carbon is dispersed in water, and hollow fibers are included, so the bulk density increases and the porosity increases, and the utilization rate of the positive electrode active material using this increases. .
  • a porous body mainly composed of silicon dioxide is referred to as “silica porous body” or abbreviated as “silica”.
  • Silca porous body or abbreviated as “silica”.
  • Pearlite made of vitreous pearlite that has been rapidly heated and expanded is simply called “pearlite”.
  • the positive electrode composition for secondary batteries according to the present invention is substantially intended for lead acid batteries.
  • This positive electrode composition is a paste-like kneaded product in which an active material raw material is a main component and other necessary components are added.
  • the paste-like kneaded product is filled in a positive electrode plate which is a grid-like current collector, aged and dried (unformed state), and then the positive electrode plate is incorporated into a storage battery case, and a chemical conversion process is performed to obtain an active material raw material. It becomes an active material and is completed as a lead-acid battery. Therefore, the “active material raw material” in the claims and the specification of the present application refers to the raw material.
  • the “active material raw material” refers to a raw material that is a target product that is converted into an active material.
  • the kneaded product of the positive electrode composition mainly composed of the active material raw material according to the present invention contains the active material material mainly composed of the metal oxide and the porous silica without containing carbon and silica or carbon. Moreover, as a porous body, it is set as a silica porous body or a hollow fiber (it calls a hollow fiber in an Example). Further, the porous silica material has diatomaceous earth, pearlite, shirasu balloon, or similar properties.
  • the active material raw material is lead powder.
  • the bulk density is 2.6 ⁇ 10 ⁇ 1 ml / g or more.
  • the bulk density is 2.5 ⁇ 10 ⁇ 1 ml / g or more.
  • porous silica material for improving the bulk density is contained in an amount of 7.3 mole percent or more based on the active material raw material.
  • the positive electrode composition produced by kneading is usually filled in a grid-like current collector before chemical conversion or applied to a sheet-like current collector, and then aged and dried.
  • acetylene black or furnace carbon can be used, and these may be mixed and used.
  • the kneaded material in Examples 1 to 3 of the positive electrode composition according to the present invention contained a trace amount of sulfuric acid, whereas the kneaded material in Example 4 showed an example in which no sulfuric acid was contained, but in Examples 1 to 3, sulfuric acid was added. It may not be contained, and in Example 4, a trace amount of sulfuric acid may be contained. This small amount of sulfuric acid is used to slightly increase the viscosity of the paste and make it easier to fill the grid-shaped current collector with the paste, and is irrelevant to the basic performance of the battery.
  • polyvinyl alcohol (PVA) is contained with respect to said kneaded material.
  • Polyvinyl alcohol is added for the purpose of improving the dispersibility of carbon or the like, but also contributes to increasing the adhesion strength and shape retention strength of the positive electrode composition when the kneaded product is filled in a grid-like current collector. Furthermore, it has a coating action to prevent oxidation of carbon in the positive electrode.
  • warm water is added to PVA in advance to dissolve it in order to facilitate kneading with carbon, and the temperature of the warm water is about 90 ° C., which assists in dissolving PVA.
  • PVA polyvinyl alcohol
  • the kneaded product produced in one step and another step is mixed and kneaded, but the kneaded product produced in the one step is mixed with the raw material before kneaded product to be produced in another step May be mixed and kneaded.
  • the manufacturing method of the positive electrode composition of Examples 1, 3 and 4 is as follows.
  • carbon is kneaded with water to obtain a product.
  • lead powder as an active material raw material and diatomaceous earth (Example 1), diatomaceous earth, perlite or shirasu balloon (Example 3) or hollow fiber for the product in the one kneading process. (Example 4) is added and further kneaded to obtain a kneaded product.
  • the obtained kneaded material is the above positive electrode composition.
  • PVA is contained, it is added in the one kneading step.
  • Example 2 In the method for producing the positive electrode composition of Example 2, the two kinds of kneading steps in Examples 1, 3 and 4 were not carried out, and lead powder as an active material raw material was kneaded.
  • the kneaded material obtained in this way is undried and can be filled into the grid-like current collector, and in the following examples, it is referred to as “paste”.
  • kneading in two steps as in Example 1 was not performed.
  • a positive electrode composition having a suitable bulk density could be obtained through two kneading steps.
  • the one kneading step can be replaced by means such as stirring and mixing.
  • the utilization rate of the active material made of the positive electrode composition according to Example 1 is about 44% to 65% for a low rate discharge (equivalent to about 40 hour rate discharge) of 0.06 ampere discharge when a grid-like current collector is used.
  • a high rate discharge corresponding to a rate discharge of about 10 minutes
  • the discharge rate was about 20% to 38%. See Table 1-2 for both.
  • the active material utilization rate was about 1.3 to 2 times that of the comparative paste No. 1 of the prior art.
  • the utilization rate of the active material comprising the positive electrode composition according to Example 2 that does not contain carbon is about 38% to 65%, 6 amperes in a low rate discharge (equivalent to about 40 hours rate discharge) that is 0.06 ampere discharge.
  • a high rate discharge (equivalent to a rate discharge for about 10 minutes) which is a discharge, it was about 18% to 43%.
  • active material utilization rates are compared using various porous silica materials. It is about 54% to 73% for low rate discharge (equivalent to about 40 hour rate discharge) which is 0.06 ampere discharge, and about 21% to 29% for high rate discharge (equivalent to about 10 minute rate discharge) which is 6 ampere discharge. there were.
  • Example 4 See Table 4 for both.
  • the active material utilization of Example 4 using hollow fibers is about 55% to 73% for a low rate discharge (equivalent to about 40 hour rate discharge) of 0.06 ampere discharge, and a high rate discharge (about about 6 ampere discharge). 10% rate discharge) was about 27% to 48%.
  • the current collector As the current collector, a conventional lattice can be used, or the positive electrode composition can be applied to a sheet-like material such as a lead sheet.
  • a certain degree of viscosity is required, so that the amount of water as the kneading medium is set to be small relative to the other components to obtain a paste-like kneaded product.
  • the quantity of water is increased and viscosity is made low and it is set as a slurry-like kneaded material. Whether the kneaded product before application to the electrode plate is a paste or a slurry, the effects of the present invention can be obtained similarly.
  • the paste of the prior art kneads lead powder with sulfuric acid, it was necessary to strictly control the amount of water added to this, but the amount of water in the paste of the present invention does not affect the active material utilization rate, By making it easy to fill the current collector with the paste, the amount of water can be adjusted flexibly, and any desired value can be taken.
  • An electrode plate in which a grid current collector is filled with paste can basically be used for all uses of conventional lead-acid batteries, and can be lighter with the same battery capacity.
  • a lead-acid battery using a sheet electrode can form a cylindrical battery. In that case, by winding the electrode plate in a spiral, a battery having excellent high-rate discharge and strong vibration resistance is obtained. This is particularly suitable for hybrid vehicles and electric vehicles.
  • nickel hydride secondary batteries and lithium ion secondary batteries are being used or studied in hybrid vehicles, but they all have a problem of high cost.
  • the lead storage battery according to the present invention is much lower in cost than a nickel hydride secondary battery and a lithium ion secondary battery, and is suitable for practical use because of simple charge / discharge management.
  • the lead-acid battery using the positive electrode composition according to the present invention can be discharged by a large current, has a high active material utilization rate, has a small amount of lead powder used, and is low in cost.
  • charge / discharge management is simple. Its optimal use is the hybrid use of engine and storage battery in automotive applications. In this application, regenerative electric power during braking of an automobile is charged into a storage battery, and electric power is taken out from the storage battery at the time of starting, thereby reducing gasoline consumption. Since automobile companies are environmentally favorable due to energy saving and exhaust gas reduction, they are focusing on hybrid cars now and in the future, and it can be said that the industrial applicability of the present invention is extremely high.
  • a general storage battery is often used for float charging. This is a system that supplies power from a storage battery to a load in the event of a power failure, and is generally discharged at a rate of about 10 minutes.
  • a short-time discharge that is, a large current discharge is generated, so that the utilization factor of the active material which is not originally high further decreases. Therefore, a lead storage battery having a large rated capacity must be prepared, which is large and heavy.
  • the lead storage battery using the positive electrode composition of the present invention has an active material utilization rate as high as about twice that of a conventional lead storage battery, is suitable for discharging by a large current, and has a high utilization rate, so the amount of lead is high. Reduced and lighter.
  • the demand for lead storage batteries in data centers has increased, and there has been a demand for an improvement in the utilization rate in such a large current discharge.
  • lattice-like collector is described.
  • Example 1 when manufacturing a paste which is a positive electrode composition (a mixture of various substances in lead powder which is an active material raw material mainly composed of metal oxide), the amount of carbon added as an additive is set as a parameter. As such, various test results such as active material utilization rate when the amount of diatomaceous earth added is mainly changed will be described.
  • Table 1 is for preparing a positive electrode composition (a paste-like material, a dried material, or constituents of each raw material before kneading. The same applies hereinafter) subjected to the test in Example 1. It is a list which shows an ingredient composition and quantity.
  • the paste referred to in the description of the present invention means a kneaded product in a paste state after kneading these components and before drying.
  • lead powder is set to a constant amount of 200 g, the amount of carbon is changed to 3 g, 6 g, and 9 g, and the bulk density is measured by changing the amount of diatomaceous earth within the same amount of carbon.
  • the bulk density increases as the amount of diatomaceous earth increases at the same carbon amount, and the bulk density increases as the carbon amount increases.
  • the amount of water is increased as the amount of carbon and the amount of diatomaceous earth increase. This is because the amount of carbon to be kneaded and the amount of diatomaceous earth increase, and the amount of PVA is also increased in conjunction with the amount of carbon. Further, the upper limit value of the diatomaceous earth content addition is decreased as the carbon amount increases.
  • the amount of water in Table 1 is the same as that used to dissolve polyvinyl alcohol (same as in Example 1, Example 3 and Example 4) and when lead powder is mixed (same as in Examples 1 to 4). However, the amount of water is not strict, and water may be appropriately poured in consideration of the paste viscosity at the time of kneading. The same applies to other embodiments.
  • Lead powder is an active material raw material which is a main constituent of the positive electrode composition, and has an oxidation degree of about 75 to 80 percent.
  • Acetylene black having an oil absorption of 160 ml / 100 g was used for carbon, and a degree of polymerization of 2400 was used for polyvinyl alcohol (manufactured by Kuraray Co., Ltd.).
  • the oil absorption amount indicates the DBP oil absorption amount. This indicates the amount of dibutyl phthalate absorbed per 100 grams of carbon.
  • Diatomaceous earth is baked and refined what is called diatomaceous earth shell. It is made of silica component and is a porous body with fine pores of about 1 ⁇ , so we thought it could contribute to the improvement of the bulk density of the electrode plate. . Moreover, since it is a silica, it is excellent in acid resistance and oxidation resistance.
  • Radiolite # 300 was used as diatomaceous earth.
  • polyvinyl alcohol is dissolved in warm water having a temperature of about 90 ° C., and when the dissolution is completed, an aqueous solution having a polyvinyl alcohol concentration of about 6% is manufactured.
  • the upper part of the container is covered with a sheet such as a wrap in the container to be dissolved so that the water does not evaporate during the dissolution.
  • Carbon is added to this polyvinyl alcohol aqueous solution and kneaded for about 30 minutes. Thereafter, 200 g of lead powder is mixed into the kneaded product, and a small amount of sulfuric acid (1.3 g of sulfuric acid in Table 1) and 0.3 g of cut fiber are added.
  • diatomaceous earth was added and kneading was continued for about 5 minutes.
  • the kneading time of about 30 minutes, 25 minutes and 5 minutes is an approximate guide, and the kneading for the last 5 minutes varies depending on the amount of diatomaceous earth.
  • the addition time of diatomaceous earth may be mixed. That is, diatomaceous earth may be mixed when carbon is added to a polyvinyl alcohol aqueous solution and kneaded. Alternatively, diatomaceous earth may be mixed when the lead powder is mixed in the subsequent process.
  • the paste No. according to the prior art prepared for comparison with the present invention. 1 is simply kneaded according to the amount in Table 1, and contains 11 grams of pure sulfuric acid.
  • the paste thus prepared was filled in a 3.7 mm thick grid-shaped current collector, then aged at 98% humidity and a temperature of 45 ° C. for 24 hours, and then dried at 60 ° C. for 24 hours.
  • a positive electrode unformed plate was formed.
  • a paste that is a positive electrode composition filled in a grid current collector, aged and dried, and further formed is collectively referred to as a positive electrode active material or an active material, or a positive electrode plate or an electrode plate.
  • FIG. 1 shows the relationship between the amount of carbon and diatomaceous earth of 2 to 16 and the amount of the paste filled into the grid as the positive electrode current collector.
  • FIG. 1 there are three types of plot rows (carbon amount, 3 g, 6 g, and 9 g) and a line connecting them, which uses the carbon amount as a parameter.
  • the horizontal axis represents the change in the amount of diatomaceous earth.
  • the diatomaceous earth amount of 4 g to 31 g is plotted 6 points, when the carbon amount is 6 g, the diatomaceous earth amount is 4 g to 26 g of plot 5 It becomes a point.
  • shaft represents the filling amount of the paste to the grating
  • Comparison paste No1 which is a prior art has the largest filling amount.
  • the upper limit of the amount of diatomaceous earth is 31 g, 26 g, and 20 g depending on the amount of carbon (3 g, 6 g, and 9 g), which can be confirmed in FIG. This is because the diatomaceous earth is bulky and the oil absorption amount of carbon is large, so as shown in the bulk density column of Table 1, comparative paste No. It means that it is a bulky positive electrode composition compared with 1. Therefore, the lower limit of the bulk density in the claims is set to 0.26 ml / g based on 3 g of carbon and 4 g of diatomaceous earth in Table 1. Being a bulky positive electrode active material means that the amount of lead powder used is of course physically reduced.
  • the filling amount of the positive electrode composition is the filling result shown in FIG. 1, and Table 1 shows the preparation and bulk density of the paste raw material, so the filling amount is not shown in Table 1.
  • a fine glass fiber separator was brought into contact with both sides of one positive electrode plate in which each paste prepared in Table 1 was filled in a grid, and further, one negative electrode plate was brought into contact with each outside.
  • the negative electrode plate uses a conventional technique. By setting it as such a structure, the theoretical capacity
  • the electrode plate group was inserted into the battery case, and the gap between the battery case and the electrode plate group was filled with an ABS resin spacer.
  • the dilute sulfuric acid having a specific gravity of 1.223 was injected into the battery case, and 300% of the amount of electricity of the theoretical capacity of the positive electrode was passed to perform chemical conversion.
  • the specific gravity of the electrolytic solution after chemical conversion was set to 1.320.
  • a capacity test (discharge test) was performed in order to calculate the positive electrode active material utilization rate and measure the capacity (Ah) of the lead storage battery.
  • Two types of capacity tests were performed: 0.06 amp discharge and 6 amp discharge.
  • the 0.06 ampere discharge corresponds to a rate of about 40 hours, and the 6 ampere discharge corresponds to a rate discharge of about 10 minutes.
  • Each discharge end voltage was set to 1.7 volts and 1.2 volts per cell.
  • the temperature is 25 ° C.
  • Table 1-2 show the measurement results of the utilization rate of the positive electrode active material of 0.06 ampere discharge, which is a low rate, and 6 ampere discharge, which is a high rate, with respect to changes in the amount of diatomaceous earth using the carbon amount as a parameter.
  • lead powder as a raw material is mainly lead oxide, but also includes lead that is not oxidized and in a metallic state.
  • Lead oxide reacts with sulfuric acid in the electrolytic solution, and changes to lead dioxide, which is a positive electrode active material, by chemical conversion. Lead dioxide thus produced is regarded as an active material. Whether or not the metal lead originally contained is regarded as an active material is debated. Here, the utilization rate of the active material in the discharge was calculated on the assumption that the metal lead originally contained in the raw material became an active material.
  • F E ⁇ 239/223 ⁇ (1 / 4.463)
  • F the capacity when it is assumed that the lead powder has all changed to lead dioxide by chemical conversion, that is, the theoretical capacity
  • 239 is the molecular weight of lead dioxide (PbO 2 )
  • 223 is the molecular weight of lead oxide (PbO) Yes
  • 4.463 is the amount of lead dioxide required to discharge 1 ampere hour (Ah), assuming that all lead dioxide has been discharged to lead sulfate.
  • Table 1-2 describes the measurement and calculation of the active material utilization rate in each blend of the carbon amount and diatomaceous earth amount of the present invention according to Table 1.
  • FIG. 2 is a graph of Table 1-2, where the mass of diatomaceous earth is changed from a minimum of 4 g to a maximum of 31 g when the carbon mass is 3 g, 6 g, and 9 g, respectively. Represents changes in diatomite content.
  • the vertical axis represents the active material utilization rate (%).
  • the active material utilization shown in Table 1-2 is not a percentage (%) notation but only a rate.
  • the active material utilization shown on the vertical axis in FIG. 2 is expressed in percentage (%).
  • the utilization rate shown in the table for other examples is not expressed in percentage (%), and the utilization rate shown on the vertical axis in each figure of other examples is expressed in percentage (%).
  • the plot group ⁇ (carbon 3 g), ⁇ (carbon 6 g), and ⁇ (carbon 9 g) at the top of the graph are the utilization rate of the positive electrode active material of the low rate discharge (0.06 ampere discharge) of the present invention
  • Plot groups ((carbon 3 g), ⁇ (carbon 6 g), and ⁇ (carbon 9 g) at the bottom of the graph are the positive electrode active material utilization rate of the high rate discharge (6 ampere discharge) of the present invention.
  • the amount of diatomaceous earth 0 g is a comparative paste No. of the prior art 1.
  • the utilization rate of the low rate discharge active material increases as carbon and diatomaceous earth increase, and shows a maximum value of about 65% with 6 g of carbon and 14 g of diatomaceous earth. The value was much higher than 1.
  • the active material utilization rate increased as carbon and diatomaceous earth increased, and the maximum value of the active material utilization rate was about 38% when the carbon amount was 9 g and the diatomaceous earth amount was 20 g.
  • the bulk density of 0.26 ml / g (see Table 1) in the blending of the carbon amount and the diatomaceous earth amount is set as the lower limit value of the bulk density of the present invention in which the positive electrode active material utilization rate of the present invention is suitable. It was described in the scope of claims.
  • paste No. which is a prior art with respect to the lower limit of the bulk density and the positive electrode active material utilization rate in the carbon amount 3 g and the diatomaceous earth amount 4 g of the invention.
  • the ratio between the bulk density of 1 and the utilization ratio of the positive electrode active material is calculated as follows.
  • the comparative paste No. 1 of the prior art is used. While the bulk density of No. 1 was 0.24 ml / g, The pastes 2 to 16 showed high values from 0.26 ml / g to 0.44 ml / g. That is, it is judged that the high bulk density due to carbon and diatomaceous earth led to a high utilization rate. Conventional paste No. If the bulk density is higher than the bulk density of 0.24 ml / g, it means that the utilization rate is higher than that of the conventional paste.
  • the bulk density is small, the porosity is small, and it is necessary to supply more sulfuric acid electrolyte necessary for discharging the active material from the outside of the electrode plate. Since a large amount of sulfuric acid electrolyte can be retained, it becomes easier to discharge, resulting in a high utilization rate as shown in FIG.
  • the utilization factor is an absolutely necessary item for improving the energy density of the battery. Moreover, since the active material raw material (lead powder) of a battery can be decreased if a utilization factor is high, the meaning as a cost reduction has a big thing.
  • FIG. 3 is a graph of Table 1-3, which uses the same positive electrode active material as the utilization factor shown in Table 1-2. For this reason, the lead storage battery capacity (Ah) can be compared with the utilization rate of the positive electrode active material.
  • the 3 is a graph in which the mass of carbon is a parameter according to Table 1, and the diatomaceous earth mass is discretely changed from 4 g to a maximum of 31 g in the case of 3 g, 6 g, and 9 g, respectively.
  • the ⁇ is the low rate discharge
  • the plot group ⁇ , ⁇ , ⁇ at the bottom of the graph is the high rate discharge.
  • the capacity at low rate discharge is the positive paste No. Some were below 1.
  • the high rate discharge capacity is the same as that of the comparative paste No. of the prior art in the entire range tested.
  • the value of a battery is evaluated by how efficiently it is discharged with a large current.
  • the lead storage battery of the present invention since carbon and diatomaceous earth mixed in the active material contain a large amount of dilute sulfuric acid that is the electrolyte of the lead storage battery, the electrolyte in the vicinity of the active material is immediately supplied to the active material, so that a large current Good characteristics. Since the positive electrode active material of the prior art has only lead as the active material, it is supplied from an electrolyte solution outside the active material, so that the large current discharge characteristics are poor. Therefore, a positive electrode composition in which the amount of carbon and the amount of diatomaceous earth are increased when the high current characteristic is emphasized is exactly suitable.
  • Example 1 the bulk density of the electrode plate was increased with carbon and diatomaceous earth, but in order to evaluate the effect of diatomaceous earth alone, a test was conducted with a positive electrode composition having the contents shown in Table 3.
  • Table 3 is a list of compositions of each positive electrode paste subjected to the test, and also describes the bulk density of each paste. In Table 3, since there is no carbon, the amount of diatomaceous earth is increased accordingly.
  • No. No. 1 paste is the same prior art as in Table 1. 17 to 23 are pastes of the present invention in which the amount of diatomaceous earth is changed.
  • Lead powder which is an active material raw material mainly composed of metal oxide, is the main constituent material of the active material, and has an oxidation degree of about 75 to 80 percent.
  • Acetylene black having an oil absorption of 160 ml / 100 g was used for carbon, and a degree of polymerization of 2400 was used for polyvinyl alcohol (manufactured by Kuraray Co., Ltd.).
  • Radiolite # 300 was used as diatomaceous earth.
  • ⁇ Manufacturing method> First, a small amount of sulfuric acid (1.3 g of sulfuric acid in Table 3) was added to the lead powder and water in the mass shown in Table 3 and kneaded for 40 minutes, then diatomaceous earth was added, and the kneading was continued for 5 minutes. I did it. However, diatomaceous earth may be mixed from the beginning. The kneading time of 40 minutes is an approximate guide, and the kneading for the last 5 minutes varies depending on the amount of diatomaceous earth.
  • Positive electrode paste No. 1 prepared for comparison. 1 is simply kneaded according to the amount of Table 3, and contains 11 grams of pure sulfuric acid. This paste is the same as in Table 1.
  • the paste thus prepared was filled in a 3.7 mm thick grid-shaped current collector, aged at 98% humidity and at a temperature of 45 ° C. for 24 hours, and then dried at 60 ° C. for 24 hours to form a positive electrode unformed plate. Formed.
  • a fine glass fiber separator was brought into contact with both sides of one positive electrode plate, and a conventional negative electrode plate was brought into contact with the outside one by one. With such a structure, the theoretical capacity of the active material is excessively large for the negative electrode, and the active material utilization rate of the target positive electrode can be evaluated.
  • the electrode plate group was inserted into the battery case, and the gap between the battery case and the electrode plate group was filled with an ABS resin spacer.
  • the dilute sulfuric acid having a specific gravity of 1.223 was injected into the battery case, and a 300% electric quantity of the theoretical capacity of the positive electrode was passed to perform chemical conversion.
  • the specific gravity of the electrolytic solution after chemical conversion was set to 1.320.
  • a capacity test (discharge test) was performed in order to calculate the positive electrode active material utilization rate and measure the lead-acid battery capacity.
  • Two types of capacity tests were performed: 0.06 amp discharge and 6 amp discharge.
  • the 0.06 ampere discharge is equivalent to a rate of about 40 hours, and the 6 ampere discharge is equivalent to a rate of about 10 minutes.
  • Each discharge end voltage was set to 1.7 volts and 1.2 volts per cell.
  • the temperature is 25 ° C.
  • Table 3-2 and FIG. 4 show the positive electrode active material utilization rates of 0.06 ampere discharge and 6 ampere discharge.
  • diatomaceous earth is plotted at 0 g (low rate discharge plot ⁇ and high rate discharge plot ⁇ ). A value of 1 is shown.
  • FIG. 4 is a graph of Table 3-2.
  • the utilization rate of the positive electrode active material when the mass of diatomaceous earth in Table 3 is discretely changed from 4 g to 43 g is shown.
  • the plot group ⁇ at the top of the graph is low rate discharge, and the plot group ⁇ at the bottom of the graph is high rate discharge.
  • the lead storage battery capacity of the present invention and the prior art at the time of low rate discharge is equivalent in the amount of diatomaceous earth of 37 g of the lead storage battery capacity (Ah) shown in Table 3-3 and FIG.
  • the lead storage battery capacity at the rate discharge is slightly larger in the present invention.
  • Table 3-3 shows the lead storage battery capacity for the positive electrode composition shown in Table 3.
  • FIG. 5 is a graph of Table 3-3.
  • the graph of FIG. If the amount of diatomaceous earth added to 200 g of the lead powder of the paste is 4 g or more, the utilization rate of the positive electrode active material and the lead storage battery capacity at the time of low rate discharge and high rate discharge are compared with the paste No. It can be seen that it can be higher than 1.
  • the positive electrode active material utilization rate and lead acid battery capacity when only diatomaceous earth of Example 2 is added are substantially the same as the positive electrode active material utilization rate and lead acid battery capacity of Example 1 where carbon is also added (however, actually In Example 1, in which carbon was also added, the positive electrode active material utilization rate and the lead-acid battery capacity are slightly larger due to the contribution of the bulk density of carbon. Prior art paste no. It was confirmed that the utilization rate of the positive electrode active material of 1 was exceeded and the performance of the lead storage battery capacity was also exceeded. Carbon was cheaper than lead powder, and diatomaceous earth was cheaper than carbon, realizing a low-cost lead acid battery.
  • Example 2 since it is not necessary to use polyvinyl alcohol and a manufacturing process can be simplified, the lead acid battery further reduced in cost was implement
  • the maximum positive electrode active material utilization rate is the same as that of the past paste No. Therefore, the amount of lead could be reduced to about 1 ⁇ 2.
  • lead-acid batteries have been easy to handle, safe (no fire hazard compared to lithium-ion secondary batteries, etc.) and large-capacity storage batteries, but their weight was the biggest drawback. .
  • floor weighting has been a problem. In the present invention, all of these are solved and an ideal lead storage battery is realized as described above.
  • the diatomaceous earth described above can be said to be one type of porous silica. Since there are various types and varieties of porous silica, the active material utilization rate was tested.
  • Lead powder which is an active material raw material mainly composed of metal oxide, is a main constituent material of the active material raw material, and has an oxidation degree of about 75 to 80 percent.
  • Acetylene black having an oil absorption of 160 ml / 100 g was used for carbon, and a degree of polymerization of 2400 was used for polyvinyl alcohol (manufactured by Kuraray Co., Ltd.).
  • the silica porous body shown in Table 4 was tested.
  • Diatomaceous earth is different in pores, particle size (radiolite grades), manufacturer (Spidix and Dicalite), or naturally produced. Cell Pure S300) was tested. Further, pearlite made porous by expanding and crushing vitreous rock, and shirasu balloon expanded with vitreous rock were tested. These are all materials mainly composed of silicon dioxide. Table 4 shows a list of these various porous silica materials and the test results of adding them. Table 4 mainly describes the types of porous silica and the active material utilization rate (%) corresponding to this, and the polyvinyl alcohol dissolved in 3 g of carbon and 63 ml of hot water as an additive to the active material material. .1g is omitted in Table 4 but is actually included.
  • each silica porous body may be mixed when carbon is added to a polyvinyl alcohol aqueous solution and kneaded. Or when mixing lead powder in a subsequent process, each porous silica may be mixed.
  • the paste thus prepared was filled in a 3.7 mm thick grid-shaped current collector, then aged at 98% humidity and a temperature of 45 ° C. for 24 hours, and then dried at 60 ° C. for 24 hours. A positive electrode unformed plate was formed.
  • a fine glass fiber separator was brought into contact with both sides of one positive electrode plate, and a conventional negative electrode plate was brought into contact with each outside.
  • the electrode plate group was inserted into the battery case, and the gap between the battery case and the electrode plate group was filled with an ABS resin spacer.
  • Dilute sulfuric acid having a specific gravity of 1.223 was injected into the battery case, and 300% of the amount of electricity of the theoretical capacity of the positive electrode was supplied to perform chemical conversion.
  • the specific gravity of the electrolytic solution after chemical conversion was set to 1.320.
  • a capacity test (discharge test) was performed to calculate the utilization ratio of the positive electrode active material.
  • Two types of capacity tests were performed: 0.06 amp discharge and 6 amp discharge.
  • the 0.06 ampere discharge is equivalent to a rate of about 40 hours, and the 6 ampere discharge is equivalent to a rate of about 10 minutes.
  • Each discharge end voltage was set to 1.7 volts and 1.2 volts per cell.
  • the temperature is 25 ° C.
  • Table 4 shows the positive electrode composition subjected to the test and the results. In Table 4, the active material utilization rate is expressed in%. Except for what is described as “added by adding water to silica” in the remarks column of Table 4, the silica is added without containing water. Since the results in Table 4 have different test lots, it is better to roughly evaluate them.
  • the porous material to be added to the paste is hollow fiber (in Table 5, Table 5-2 and Table 5-3, hollow fiber)
  • Table 5 is a list of positive electrode compositions subjected to the test.
  • Paste No. 1 is the same as in Examples 1 and 2.
  • the paste of the present invention is No. 24 to 29.
  • Lead powder which is an active material raw material mainly composed of metal oxide, is the main constituent material of the active material, and has an oxidation degree of about 75 to 80 percent.
  • Acetylene black having an oil absorption of 160 ml / 100 g was used for carbon, and a degree of polymerization of 2400 was used for polyvinyl alcohol (manufactured by Kuraray Co., Ltd.).
  • the hollow fiber is a fiber having a hole in the center, and a slit of about 0.1 to 0.25 ⁇ is opened on the side of the fiber. When this is added to the active material, the electrolytic solution can be stored in the central hole, and the electrolytic solution can be moved through the side slit in discharging and charging.
  • ⁇ Manufacturing method> polyvinyl alcohol is dissolved in warm water having a temperature of about 90 ° C., and when the dissolution is completed, an aqueous solution having a polyvinyl alcohol concentration of about 6% is manufactured.
  • the upper part of the container is covered with a sheet such as a wrap in the container to be dissolved so that the water does not evaporate during the dissolution.
  • Carbon is added to this polyvinyl alcohol aqueous solution and kneaded for about 30 minutes. Thereafter, 200 g of lead powder is mixed into the kneaded product, 0.3 g of cut fiber is added and kneaded for about 25 minutes, and further hollow fibers are added. The kneading was continued for 5 minutes.
  • the kneading time of about 30 minutes, 25 minutes, and 5 minutes is an approximate guide, and the kneading for the last 5 minutes varies depending on the amount of hollow fiber.
  • the addition time of the hollow fiber may be mixed. That is, the hollow fiber may be mixed when carbon is added to the aqueous polyvinyl alcohol solution and kneaded. Alternatively, the hollow fiber may be mixed when the lead powder is mixed in the subsequent process.
  • Positive electrode paste No. 1 prepared for comparison. No. 1 is simply kneaded according to the amounts in Table 5 and contains 11 grams of pure sulfuric acid.
  • a fine glass fiber separator was brought into contact with both sides of one positive electrode plate, and a conventional negative electrode plate was brought into contact with each outside.
  • the theoretical capacity of the active material is that the negative electrode is excessively large, and the utilization rate of the target positive electrode can be evaluated.
  • the electrode plate group was inserted into the battery case, and the gap between the battery case and the electrode plate group was filled with an ABS resin spacer. Dilute sulfuric acid having a specific gravity of 1.223 was injected into the battery case, and 300% of the amount of electricity of the theoretical capacity of the positive electrode was supplied to perform chemical conversion.
  • the specific gravity of the electrolytic solution after chemical conversion was set to 1.320.
  • a capacity test (discharge test) was performed in order to obtain the positive electrode active material utilization rate and the lead storage battery capacity.
  • Two types of capacity tests were performed: 0.06 amp discharge and 6 amp discharge.
  • the 0.06 ampere discharge is equivalent to a rate of about 40 hours, and the 6 ampere discharge is equivalent to a rate of about 10 minutes.
  • Each discharge end voltage was set to 1.7 volts and 1.2 volts per cell.
  • the temperature is 25 ° C.
  • Tables 5-2 and 5-3 show the positive electrode active material utilization rate and the lead-acid battery capacity obtained in this test, respectively.
  • FIG. 6 is a graph of Table 5-2. 24 to paste no. For 29, the utilization rate of the low rate 0.06 ampere discharge is shown by the upper plot groups ⁇ and ⁇ (high utilization rate) in FIG. 6, and the high rate 6 by the lower plot group ⁇ and ⁇ (small utilization rate) in FIG. The utilization rate of ampere discharge is indicated.
  • FIG. 7 is a graph of Table 5-3. In FIG. 24 to paste no. 7 shows the lead storage battery capacity of low rate 0.06 ampere discharge by upper plot groups ⁇ and ⁇ (large capacity) in FIG.
  • both the positive electrode active material utilization rate and the lead acid battery capacity are comparative paste Nos.
  • the utilization rate of the positive electrode active material by the paste of the present invention is low and high. It was about twice that of 1. Since the density of the material of diatomaceous earth is about twice that of hollow fiber, Table 5-2, which is a test result of the utilization rate of hollow fiber, is compared with Table 1-2, which is the result of using diatomaceous earth of Example 1. Then, for example, in comparison with the example of carbon 3g and hollow fiber 9g (paste No. 24), the hollow fiber 9g corresponds to about 18 g of diatomaceous earth when the volumes of both are made uniform.
  • the hollow fiber added low rate discharge utilization rate is about 55 percent (see Table 5-2. In FIG. 6, the leftmost / top plot), and the high rate discharge utilization rate is about 28 percent (see Table 5-2).
  • the lower rate discharge utilization rate of diatomaceous earth addition of Example 1 is about 56% (in Table 1-2, 20 g of diatomaceous earth is substituted.
  • high-rate discharge utilization rate is approximately 28% (in Table 1-2, diatomite amount 20 g is used as a substitute, and in FIG. 2, the central and lower plots ⁇ (diatomaceous earth amount 20 g)) To do. That is, even if there is a difference in material, if the bulk density is the same, the utilization factor is considered to be almost the same.
  • the utilization factor of the active material was greatly increased. From this test, it was found that a porous material that increases the bulk density contributes greatly to the improvement of the active material utilization rate universally. Therefore, the use of the positive electrode composition to which the hollow fiber is added also makes the active material utilization rate the paste No. of the prior art. It was found that the lead powder raw material can be reduced to almost 1 ⁇ 2. It was found that reducing the lead powder raw material is effective as it is as a reduction in the cost of the storage battery, and the energy density can be greatly improved. Thereby, the weight reduction of the conventionally used storage battery was possible, and the possibility as an automobile hybrid storage battery became clear simultaneously. Although a significant improvement in utilization has not been possible for nearly 100 years, the present invention has made it possible for the first time. Its industrial value is extremely high.

Abstract

Disclosed is a secondary battery in which the coefficient of use of a positive electrode active material is improved and the amount of a raw material for an active material is reduced, and which can be produced at a low cost and has a reduced weight. Specifically disclosed is a positive electrode composition for a secondary battery, which comprises a kneading product produced by kneading a raw material for an active material mainly composed of a metal oxide with a carbon and a silica porous material, wherein the kneading product has a bulk density of 2.6 x 10-1 ml/g or more after the kneading product is filled in a grid-like current collector or applied on a sheet-like current collector and the filled or applied kneading product is dried and before the dried kneading product is chemically converted.

Description

二次電池用正極組成物、その製造方法及び二次電池用正極組成物を使用した二次電池Secondary battery positive electrode composition, manufacturing method thereof, and secondary battery using secondary battery positive electrode composition
 本発明は、二次電池用正極組成物、その製造方法及び二次電池用正極組成物を使用した二次電池に関する。 The present invention relates to a positive electrode composition for a secondary battery, a method for producing the same, and a secondary battery using the positive electrode composition for a secondary battery.
 従来、種々の二次電池が知られており、例えば、安価なものとしては鉛蓄電池があり、高エネルギー密度のものとしてはリチウムイオン電池がある。いうまでもなく、安価であることと高エネルギー密度であることを兼ね備えた二次電池が理想的である。特に、蓄電池による発進駆動を行うハイブリッド自動車や電気自動車のような用途では、安価で高エネルギー密度の蓄電池に対する要望が大きい。蓄電池の価格は、その材料コストに最も大きく依存する。例えば、ハイブリッド自動車では、高価なニッケル水素蓄電池が使用されているが、ニッケル水素蓄電池の正極に使われるニッケルや負極に使用される貴金属は非常に高価な材料である。また、リチウムイオン二次電池も高価な材料を用いることを余儀なくされている。 Conventionally, various secondary batteries are known. For example, there are lead storage batteries as inexpensive ones and lithium ion batteries as high energy density ones. Needless to say, a secondary battery that is both inexpensive and has a high energy density is ideal. In particular, there is a great demand for an inexpensive and high energy density storage battery in applications such as a hybrid vehicle or an electric vehicle that performs start-up drive by the storage battery. The price of a storage battery is most dependent on its material cost. For example, in a hybrid vehicle, an expensive nickel metal hydride storage battery is used, but nickel used for the positive electrode of the nickel metal hydride storage battery and noble metal used for the negative electrode are very expensive materials. In addition, the lithium ion secondary battery is also forced to use an expensive material.
 一方、従来の鉛蓄電池は、鉛を酸化した鉛粉と言われる活物質原料に希硫酸を添加してペースト状態の組成物とし、このペーストを格子状の集電体に充填して極板を形成する製造方法が一般的である。その後、これを化成することで、正極は二酸化鉛、負極は海綿状鉛と言われる活物質を含むものとなる。これらの活物質は電池が放電されると硫酸鉛(放電活物質)へと変化する。放電活物質への変化に伴い粒子体積が増加するために極板における多孔質構造の孔が小さくなり、電解液の活物質への拡散が困難となる。 On the other hand, in a conventional lead-acid battery, dilute sulfuric acid is added to an active material raw material called lead powder obtained by oxidizing lead to make a paste-like composition, and this paste is filled into a grid-shaped current collector to form an electrode plate. The manufacturing method to form is common. Then, by forming this, the positive electrode contains an active material called lead dioxide and the negative electrode contains spongy lead. These active materials change to lead sulfate (discharge active material) when the battery is discharged. Since the particle volume increases with the change to the discharge active material, the pores of the porous structure in the electrode plate become small, making it difficult to diffuse the electrolytic solution into the active material.
 また、電気的絶縁物である硫酸鉛へ変化することで電気抵抗が増大する。一般的には、硫酸鉛が70%を越えると電気抵抗は急激に増加する。従って、活物質を70%以上放電させること、つまり活物質の利用率を70%以上とすることは、理論的に不可能とされてきた。実際には、放電電流の大きさにも影響されるので、低率放電の利用率は一般的には35%程度、高率放電の利用率は17%程度が現状である。すなわち、理論上利用率は70%程度までとれる訳であるが、通常の使用においては、これには程遠いものとなっている。 Also, electrical resistance increases by changing to lead sulfate, which is an electrical insulator. Generally, when lead sulfate exceeds 70%, the electrical resistance increases rapidly. Therefore, it has been theoretically impossible to discharge the active material by 70% or more, that is, to set the utilization factor of the active material to 70% or more. Actually, since it is also affected by the magnitude of the discharge current, the utilization rate of low-rate discharge is generally about 35%, and the utilization rate of high-rate discharge is about 17%. That is, theoretically, the utilization rate can be taken up to about 70%, but it is far from this in normal use.
 活物質の利用率を上げるためには、活物質を含む極板の嵩密度、すなわち、多孔度を上げることが必要条件である。 In order to increase the utilization factor of the active material, it is a necessary condition to increase the bulk density of the electrode plate containing the active material, that is, the porosity.
 鉛蓄電池は、原料が安価である点では好ましいが、活物質の利用率が低いために鉛の使用量を増やさざるを得ず、その結果、他の材料に比べて重量密度の大きい鉛の重量がさらに増えて重量に対するエネルギー密度の低下を招いている。現状の鉛蓄電池のエネルギー密度では、ハイブリッド車や電気自動車には不十分であり使用できない。 Lead storage batteries are preferable in that the raw materials are inexpensive, but the amount of lead used has to be increased due to the low utilization rate of the active material. As a result, the weight of lead, which has a higher weight density than other materials, has to be increased. This further increases the energy density with respect to the weight. The current energy density of lead-acid batteries is insufficient for hybrid vehicles and electric vehicles and cannot be used.
 鉛蓄電池の正極板に関する従来技術としては、例えば特許文献1がある。
 特許文献1では、化成効率の優れた鉛蓄電池正極板の製造方法を開示する。
As a prior art regarding the positive electrode plate of a lead storage battery, there exists patent document 1, for example.
In patent document 1, the manufacturing method of the lead storage battery positive electrode plate excellent in chemical conversion efficiency is disclosed.
 特許文献1について具体的には、正極ペーストが、アンチモンを含まない鉛合金からなる格子体に予め準備した酸化鉛と金属鉛と硫酸鉛の混合物、水、希硫酸および導電材を根練したものであって、導電材として所定の圧力及び温度で処理されたカーボンブラックを鉛1モルに対して2g(0.17モル)以下用いるものである。
特開2002-324552号公報
Specifically, for Patent Document 1, the positive electrode paste is a mixture of lead oxide, metal lead and lead sulfate, water, dilute sulfuric acid, and a conductive material prepared in advance on a lattice made of a lead alloy containing no antimony. In this case, 2 g (0.17 mol) or less of carbon black treated at a predetermined pressure and temperature is used as a conductive material with respect to 1 mol of lead.
JP 2002-324552 A
安価であることと高エネルギー密度であることを兼ね備えた二次電池が要望されているが、従来これらは背反的関係にある概念とされており、未だ実現されていない。特許文献1は導電性向上のためにカーボンブラックを添加しており、多孔度による活物質利用率の向上を課題としたものではない。 There is a demand for a secondary battery that is both inexpensive and has a high energy density, but these have been considered to have a contradictory relationship and have not yet been realized. In Patent Document 1, carbon black is added to improve conductivity, and the improvement of the active material utilization rate due to the porosity is not a problem.
 上記のとおり、鉛蓄電池のエネルギー密度が低い主要な原因は、その電気抵抗が増大するために活物質利用率を上限理論値である70%程度に上げることができない。加えて、大電流で放電する使用形態では活物質利用率はさらに低下する。 As described above, the main cause of the low energy density of lead-acid batteries is that the electrical resistance increases, so that the active material utilization rate cannot be raised to the upper limit theoretical value of about 70%. In addition, the utilization rate of the active material is further lowered in the usage mode in which the discharge is performed with a large current.
 一方、ニッケル水素二次電池やリチウムイオン二次電池のコストが高いのはその必須材料に起因するため、コスト低減は困難である。 On the other hand, the high cost of nickel-metal hydride secondary batteries and lithium ion secondary batteries is due to their essential materials, so it is difficult to reduce costs.
 以上により、本発明は、二次電池用正極組成物として活物質原料である鉛粉に、従来使用されなかった物質を添加し正極活物質利用率を向上させた。 As described above, the present invention improves the utilization ratio of the positive electrode active material by adding a material not conventionally used to the lead powder as the active material raw material as the positive electrode composition for the secondary battery.
上記の目的を実現するべく本発明は以下の構成を提供する。
(1)請求項1に係る二次電池用正極組成物は、
格子状集電体に充填され又はシート状集電体に塗布され、金属酸化物を主体とした活物質原料にカーボン及びシリカ多孔体を含有させた混練物の乾燥後かつ未化成状態の嵩密度が2.6×10-1ml/g以上であることを特徴とする。
(2)請求項2に係る二次電池用正極組成物は、請求項1において、
前記カーボンをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料及び前記シリカ多孔体とが混合され混練されて生成される混練物であることを特徴とする。
(3)請求項3に係る二次電池用正極組成物は、請求項1において、
前記カーボンと前記シリカ多孔体とをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料を混合して混練することで生成される混練物であることを特徴とする。
(4)請求項4に係る二次電池用正極組成物は、
金属酸化物を主体する活物質原料にカーボン及びシリカ多孔体を含有させた混練物から成ることを特徴とする。
(5)請求項5に係る二次電池用正極組成物は、請求項4において、
前記カーボンをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料及び前記シリカ多孔体とが混合され混練されて生成される混練物であることを特徴とする。
(6)請求項6に係る二次電池用正極組成物は、請求項4において、
前記カーボンと前記シリカ多孔体とをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料を混合して混練することで生成される混練物であることを特徴とする。
(7)請求項7に係る二次電池用正極組成物は、
格子状集電体に充填され又はシート状集電体に塗布され、金属酸化物を主体とした活物質原料にシリカ多孔体を含有させカーボンを含有しない混練物の乾燥後かつ未化成状態の嵩密度が2.5×10-1ml/g以上であることを特徴とする。
(8)請求項8に係る二次電池用正極組成物は、
金属酸化物を主体とした活物質原料にシリカ多孔体を含有させカーボンを含有しない混練物から成ることを特徴とする。
(9)請求項9に係る二次電池用正極組成物は、請求項1~8のいずれかにおいて、
前記活物質原料に対して前記シリカ多孔体を7.3モルパーセント以上含有させた混練物であることを特徴とする。
(10)請求項10に係る二次電池用正極組成物は、請求項1~9のいずれかにおいて、
前記混練物に含まれる前記シリカ多孔体は、珪藻土、パーライト又はシラスバルーンであることを特徴とする。
(11)請求項11に係る二次電池用正極組成物は、請求項1~10のいずれかにおいて、前記混練物は微量の硫酸を含むことを特徴とする。
(12)請求項12に係る二次電池用正極組成物は、
金属酸化物を主体する活物質原料にカーボン及び中空繊維を含有させた混練物から成ることを特徴とする。
(13)請求項13に係る二次電池用正極組成物は、請求項12において、
前記カーボンをポリビニルアルコール水溶液で混練して生成された混練物に、金属酸化物を主体とした活物質原料及び前記中空繊維とが混合され混練されて生成されることを特徴とする。
(14)請求項14に係る二次電池用正極組成物は、請求項12において、
カーボンと中空繊維とをポリビニルアルコール水溶液で混練して生成された混練物に、前記活物質原料を混合して混練することで生成されることを特徴とする。
(15)請求項15に係る二次電池用正極組成物の製造方法は、
前記カーボンをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料及び前記シリカ多孔体とが混合され混練されて生成される混練物であることを特徴とする。
(16)請求項16に係る二次電池用正極組成物の製造方法は、
前記カーボンと前記シリカ多孔体とをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料を混合して混練することで生成される混練物であることを特徴とする。
(17)請求項17に係る二次電池用正極組成物の製造方法は、請求項15又は16において、前記混練に含まれる前記シリカ多孔体は、珪藻土、パーライト又はシラスバルーンであることを特徴とする。
(18)請求項18に係る二次電池用正極組成物の製造方法は、請求項15~17のいずれかにおいて、前記混練物には微量の硫酸を含ませることを特徴とする。
(19)請求項19に係る二次電池は、
請求項1~14のいずれかに記載の二次電池用正極組成物を使用し又は請求項15~18のいずれかに記載の二次電池用正極組成物の製造方法によって生成された二次電池用正極組成物を使用することを特徴とする。
In order to achieve the above object, the present invention provides the following configuration.
(1) The positive electrode composition for a secondary battery according to claim 1 is:
Bulk density after drying and unformed state of a kneaded material filled in a grid-like current collector or coated on a sheet-like current collector and containing an active material material mainly composed of metal oxide and carbon and silica porous material Is 2.6 × 10 −1 ml / g or more.
(2) The positive electrode composition for a secondary battery according to claim 2 is characterized in that in claim 1,
A first kneaded material produced by kneading the carbon with an aqueous polyvinyl alcohol solution is a kneaded material produced by mixing and kneading the active material raw material and the porous silica material.
(3) The positive electrode composition for a secondary battery according to claim 3 is, in claim 1,
It is a kneaded product produced by mixing and kneading the active material raw material with a first kneaded product produced by kneading the carbon and the silica porous body with an aqueous polyvinyl alcohol solution. .
(4) The positive electrode composition for a secondary battery according to claim 4 is:
It is characterized by comprising a kneaded material in which carbon and silica porous material are contained in an active material raw material mainly composed of a metal oxide.
(5) The positive electrode composition for a secondary battery according to claim 5 is, in claim 4,
A first kneaded material produced by kneading the carbon with an aqueous polyvinyl alcohol solution is a kneaded material produced by mixing and kneading the active material raw material and the porous silica material.
(6) The positive electrode composition for a secondary battery according to claim 6 is, in claim 4,
It is a kneaded product produced by mixing and kneading the active material raw material with a first kneaded product produced by kneading the carbon and the silica porous body with an aqueous polyvinyl alcohol solution. .
(7) The positive electrode composition for a secondary battery according to claim 7 is:
After drying a kneaded material filled with a grid-like current collector or coated on a sheet-like current collector, containing a porous silica in an active material raw material mainly composed of metal oxide and not containing carbon, the bulk in an unformed state The density is 2.5 × 10 −1 ml / g or more.
(8) The positive electrode composition for a secondary battery according to claim 8 is:
It is characterized by comprising a kneaded material containing a porous silica in an active material raw material mainly composed of a metal oxide and containing no carbon.
(9) The positive electrode composition for a secondary battery according to claim 9 is any one of claims 1 to 8,
It is a kneaded material containing 7.3 mole percent or more of the porous silica in the active material raw material.
(10) The positive electrode composition for a secondary battery according to claim 10 is any one of claims 1 to 9,
The silica porous material contained in the kneaded material is diatomaceous earth, perlite, or shirasu balloon.
(11) A positive electrode composition for a secondary battery according to an eleventh aspect is characterized in that in any one of the first to tenth aspects, the kneaded material contains a trace amount of sulfuric acid.
(12) The positive electrode composition for a secondary battery according to claim 12 is
It is characterized by comprising a kneaded material in which carbon and hollow fibers are contained in an active material raw material mainly composed of a metal oxide.
(13) The positive electrode composition for a secondary battery according to claim 13 is, in claim 12,
A kneaded product produced by kneading the carbon with an aqueous polyvinyl alcohol solution is produced by mixing and kneading an active material raw material mainly composed of a metal oxide and the hollow fiber.
(14) The positive electrode composition for a secondary battery according to claim 14 is, in claim 12,
It is produced by mixing and kneading the active material raw material in a kneaded product produced by kneading carbon and hollow fibers with a polyvinyl alcohol aqueous solution.
(15) A method for producing a positive electrode composition for a secondary battery according to claim 15 comprises:
A first kneaded material produced by kneading the carbon with an aqueous polyvinyl alcohol solution is a kneaded material produced by mixing and kneading the active material raw material and the porous silica material.
(16) A method for producing a positive electrode composition for a secondary battery according to claim 16 comprises:
It is a kneaded product produced by mixing and kneading the active material raw material with a first kneaded product produced by kneading the carbon and the silica porous body with an aqueous polyvinyl alcohol solution. .
(17) The method for producing a positive electrode composition for a secondary battery according to claim 17 is characterized in that, in claim 15 or 16, the porous silica contained in the kneading is diatomaceous earth, pearlite or shirasu balloon. To do.
(18) The method for producing a positive electrode composition for a secondary battery according to claim 18 is characterized in that in any one of claims 15 to 17, the kneaded product contains a trace amount of sulfuric acid.
(19) A secondary battery according to claim 19 is provided.
A secondary battery produced by using the positive electrode composition for a secondary battery according to any one of claims 1 to 14 or by the method for producing a positive electrode composition for a secondary battery according to any one of claims 15 to 18. A positive electrode composition for use is used.
(A)本発明の第1の観点による二次電池用正極組成物は、格子状集電体に充填され又はシート状集電体に塗布され、金属酸化物を主体とした活物質原料にカーボン及びシリカ多孔体を含有させた混練物の乾燥後かつ未化成状態の嵩密度が2.6×10-1ml/g以上であり、嵩密度が増しているため多孔性が高まり、これを使用した正極活物質の利用率が向上する。
(B)本発明の第2の観点による二次電池用正極組成物は、前記カーボンをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料及び前記シリカ多孔体とが混合され混練されて生成される混練物であり、カーボンが水に分散され、また、シリカ多孔体が含まれるため嵩密度が増しているため多孔性が高まり、これを使用した正極活物質の利用率が向上する。
(C)本発明の第3の観点による二次電池用正極組成物は、前記カーボンと前記シリカ多孔体とをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料を混合して混練することで生成される混練物であり、カーボンが水に分散され、また、シリカ多孔体が含まれるため嵩密度が増しているため多孔性が高まり、これを使用した正極活物質の利用率が向上する。
(D)本発明の第4の観点による二次電池用正極組成物は、二次電池用正極組成物は、格子状集電体に充填され又はシート状集電体に塗布され、金属酸化物を主体とした活物質原料にシリカ多孔体を含有させカーボンを含有しない混練物の乾燥後かつ未化成状態の嵩密度が2.5×10-1ml/g以上であり、嵩密度が増しているため多孔性が高まり、これを使用した正極活物質の利用率が向上する。
(E)本発明の第5の観点による二次電池用正極組成物は、二次電池用正極組成物は、前記カーボンをポリビニルアルコール水溶液で混練して生成された混練物に、金属酸化物を主体とした活物質原料及び前記中空繊維とが混合され混練されて生成され、カーボンが水に分散され、中空繊維が含まれるため嵩密度が増して多孔性が高まり、これを使用した正極活物質の利用率が向上する。
(F)本発明の第6の観点による二次電池用正極組成物は、二次電池用正極組成物は、カーボンと中空繊維とをポリビニルアルコール水溶液で混練して生成された混練物に、前記活物質原料を混合して混練することで生成され、カーボンが水に分散され、中空繊維が含まれるため嵩密度が増して多孔性が高まり、これを使用した正極活物質の利用率が向上する。
(A) The positive electrode composition for a secondary battery according to the first aspect of the present invention is filled in a grid-like current collector or coated on a sheet-like current collector, and carbon is used as an active material raw material mainly composed of a metal oxide. And the kneaded product containing the porous silica is dried and in an unformed state, the bulk density is 2.6 × 10 −1 ml / g or more, and the bulk density is increased, so the porosity is increased. The utilization rate of the positive electrode active material improved.
(B) A positive electrode composition for a secondary battery according to a second aspect of the present invention, the first kneaded material produced by kneading the carbon with an aqueous polyvinyl alcohol solution, the active material raw material and the porous silica material, Is mixed and kneaded to produce a kneaded product, in which carbon is dispersed in water, and the porous density is increased due to the inclusion of a porous silica, so that the porosity of the cathode active material using this is increased. Utilization rate is improved.
(C) The positive electrode composition for a secondary battery according to the third aspect of the present invention is obtained by adding the active material raw material to the first kneaded material produced by kneading the carbon and the porous silica with an aqueous polyvinyl alcohol solution. Is a kneaded product produced by mixing and kneading the carbon, and since the carbon is dispersed in water and the silica porous material is included, the bulk density is increased and the porosity is increased. The utilization rate of substances is improved.
(D) The positive electrode composition for a secondary battery according to the fourth aspect of the present invention is a metal oxide in which the positive electrode composition for a secondary battery is filled in a grid-like current collector or coated on a sheet-like current collector. The bulk density of the kneaded product containing the silica porous material in the active material raw material mainly composed of carbon and not containing carbon is 2.5 × 10 −1 ml / g or more after drying, and the bulk density is increased. Therefore, the porosity is increased, and the utilization rate of the positive electrode active material using the same is improved.
(E) The positive electrode composition for a secondary battery according to the fifth aspect of the present invention is a positive electrode composition for a secondary battery in which a metal oxide is added to a kneaded product produced by kneading the carbon with an aqueous polyvinyl alcohol solution. The active material raw material and the hollow fiber are mixed and kneaded to produce carbon, and the carbon is dispersed in water. Since the hollow fiber is contained, the bulk density is increased and the porosity is increased. The utilization rate of is improved.
(F) The positive electrode composition for a secondary battery according to the sixth aspect of the present invention is the above-described kneaded product produced by kneading carbon and hollow fibers with an aqueous polyvinyl alcohol solution. Produced by mixing and kneading the active material, carbon is dispersed in water, and hollow fibers are included, so the bulk density increases and the porosity increases, and the utilization rate of the positive electrode active material using this increases. .
 先ず、本発明の実施形態の概要を説明する。詳細については、以下の各実施例にて説明する。
 なお、説明に先立って各実施例等以下の説明における用語について定義をする。
(1) 二酸化珪素を主体とする多孔体を「シリカ多孔体」又は略して「シリカ」と言う。
(2) ガラス質から成る真珠岩を急熱・膨張させて膨らませたパーライトを単に「パーライト」と言う。
 本発明による二次電池用正極組成物は、実質的には鉛蓄電池を対象とする。この正極組成物は、活物質原料を主要成分としその他の必要な成分を添加してペースト状の混練物としたものである。このペースト状の混練物を格子状集電体である正極板に充填し、熟成及び乾燥し(未化成状態)、その後この正極板を蓄電池ケースに組み込み、化成工程を行うことにより活物質原料が活物質となり、鉛蓄電池として完成する。従って、本出願の特許請求の範囲及び明細書における「活物質原料」は、未化成状態のものを指す。そして、「活物質原料」とは、化成されて活物質となる目的物である原料をいう。
First, an outline of an embodiment of the present invention will be described. Details will be described in the following embodiments.
Prior to the description, terms in the following description such as each example will be defined.
(1) A porous body mainly composed of silicon dioxide is referred to as “silica porous body” or abbreviated as “silica”.
(2) Pearlite made of vitreous pearlite that has been rapidly heated and expanded is simply called “pearlite”.
The positive electrode composition for secondary batteries according to the present invention is substantially intended for lead acid batteries. This positive electrode composition is a paste-like kneaded product in which an active material raw material is a main component and other necessary components are added. The paste-like kneaded product is filled in a positive electrode plate which is a grid-like current collector, aged and dried (unformed state), and then the positive electrode plate is incorporated into a storage battery case, and a chemical conversion process is performed to obtain an active material raw material. It becomes an active material and is completed as a lead-acid battery. Therefore, the “active material raw material” in the claims and the specification of the present application refers to the raw material. The “active material raw material” refers to a raw material that is a target product that is converted into an active material.
 本発明による活物質原料を主体とする正極組成物の混練物は、金属酸化物を主体とした活物質原料と、カーボン及びシリカ多孔体、又はカーボンを含有しないでシリカ多孔体を含有する。また、多孔体としてはシリカ多孔体又は中空繊維(実施例では中空糸と称す。)とする。さらに、シリカ多孔体は珪藻土、パーライト、シラスバルーン又はこれらに類する性質を有するものである。活物質原料は鉛粉とする。そして、格子状集電体に充填され又はシート状集電体に塗布された金属酸化物を主体とした活物質原料に少なくともカーボン及びシリカ多孔体を含有させた混練物の乾燥後かつ未化成状態の嵩密度が2.6×10-1ml/g以上とする。また、カーボンを含有させない上記混練物の場合は嵩密度が2.5×10-1ml/g以上とする。 The kneaded product of the positive electrode composition mainly composed of the active material raw material according to the present invention contains the active material material mainly composed of the metal oxide and the porous silica without containing carbon and silica or carbon. Moreover, as a porous body, it is set as a silica porous body or a hollow fiber (it calls a hollow fiber in an Example). Further, the porous silica material has diatomaceous earth, pearlite, shirasu balloon, or similar properties. The active material raw material is lead powder. Then, after drying the kneaded material containing at least carbon and silica porous body in the active material raw material mainly composed of metal oxide filled in the grid-shaped current collector or coated on the sheet-shaped current collector and in an unformed state The bulk density is 2.6 × 10 −1 ml / g or more. In the case of the kneaded product not containing carbon, the bulk density is 2.5 × 10 −1 ml / g or more.
 また、嵩密度を向上させるシリカ多孔体は活物質原料に対して7.3モルパーセント以上含有する。なお、混練により生成された正極組成物は、通常、化成前に格子状集電体に充填され、又はシート状集電体に塗布された後、熟成及び乾燥される。 Further, the porous silica material for improving the bulk density is contained in an amount of 7.3 mole percent or more based on the active material raw material. The positive electrode composition produced by kneading is usually filled in a grid-like current collector before chemical conversion or applied to a sheet-like current collector, and then aged and dried.
 カーボンとしては、例えば、アセチレンブラック又はファーネスカーボンを用いることができ、これらを混合して用いてもよい。 As carbon, for example, acetylene black or furnace carbon can be used, and these may be mixed and used.
 本発明による正極組成物の実施例1~3における混練物は微量の硫酸を含有し、一方、実施例4における混練物は硫酸を含有しない事例を示したが、実施例1~3において硫酸を含有しなくともよく、また、実施例4において微量の硫酸を含有してもよい。この微量の硫酸は、ペーストの粘性を若干高め該ペーストを格子状集電体に充填し易くするためのもので、電池の基本性能には無関係である。 The kneaded material in Examples 1 to 3 of the positive electrode composition according to the present invention contained a trace amount of sulfuric acid, whereas the kneaded material in Example 4 showed an example in which no sulfuric acid was contained, but in Examples 1 to 3, sulfuric acid was added. It may not be contained, and in Example 4, a trace amount of sulfuric acid may be contained. This small amount of sulfuric acid is used to slightly increase the viscosity of the paste and make it easier to fill the grid-shaped current collector with the paste, and is irrelevant to the basic performance of the battery.
 さらに、カーボンを添加する場合上記の混練物に対しポリビニルアルコール(PVA)を含有させる。ポリビニルアルコールは、カーボン等の分散性向上を目的として添加するが、混練物を格子状集電体に充填したときにその付着強度及び正極組成物の形状保持強度を高めることにも寄与する。さらには、正極におけるカーボンの酸化を防止する被覆作用がある。
 なお、ポリビニルアルコールを含有させる場合は、カーボンとの混練を容易にすべく、あらかじめPVAに温水を加えて溶解するが、その温水の温度は90℃程度でありPVAの溶解を支援する。以下、PVAを含有する各実施例においてもこのような条件は同様である。
 前記、一つの工程及び別の工程で生成された混練物を混合して混練したが、前記一つの工程で生成された混練物に、別の工程で生成されるべき混練物の混練前の原料を混合してから混練してもよい。
Furthermore, when adding carbon, polyvinyl alcohol (PVA) is contained with respect to said kneaded material. Polyvinyl alcohol is added for the purpose of improving the dispersibility of carbon or the like, but also contributes to increasing the adhesion strength and shape retention strength of the positive electrode composition when the kneaded product is filled in a grid-like current collector. Furthermore, it has a coating action to prevent oxidation of carbon in the positive electrode.
When polyvinyl alcohol is included, warm water is added to PVA in advance to dissolve it in order to facilitate kneading with carbon, and the temperature of the warm water is about 90 ° C., which assists in dissolving PVA. Hereinafter, such conditions are the same also in each Example containing PVA.
The kneaded product produced in one step and another step is mixed and kneaded, but the kneaded product produced in the one step is mixed with the raw material before kneaded product to be produced in another step May be mixed and kneaded.
 実施例1、3及び4の正極組成物の製造方法は次のとおりである。一つの混練工程では、カーボンを水とともに混練し、生成物を得る。また、他の混練工程では、前記一つの混練工程での生成物に対し活物質原料である鉛粉と、珪藻土(実施例1)、あるいは珪藻土、パーライト又はシラスバルーン(実施例3)又は中空繊維(実施例4)を加えてさらに混練し、混練物を得る。得られた混練物が、上記の正極組成物である。PVAを含有させる場合は、前記一つの混練工程で加える。 The manufacturing method of the positive electrode composition of Examples 1, 3 and 4 is as follows. In one kneading step, carbon is kneaded with water to obtain a product. In another kneading process, lead powder as an active material raw material and diatomaceous earth (Example 1), diatomaceous earth, perlite or shirasu balloon (Example 3) or hollow fiber for the product in the one kneading process. (Example 4) is added and further kneaded to obtain a kneaded product. The obtained kneaded material is the above positive electrode composition. When PVA is contained, it is added in the one kneading step.
 実施例2の正極組成物の製造方法では、実施例1、3及び4における2種類の混練工程は無く活物質原料である鉛粉を混練し、その後、珪藻土を加え少し混練を継続する。 In the method for producing the positive electrode composition of Example 2, the two kinds of kneading steps in Examples 1, 3 and 4 were not carried out, and lead powder as an active material raw material was kneaded.
 なお、こうして得られた混練物において、未乾燥で格子状集電体に充填できる状態のものを、以下の実施例では「ペースト」を称している。従来の正極組成物では、実施例1のような2つ工程での混練は行っていなかった。本発明の実施例1では、2つ工程の混練工程を経ることによって好適な嵩密度をもつ正極組成物を得ることができた。なお、前記1つの混練工程は、攪拌混合等の手段で置き換えることも可能である。 The kneaded material obtained in this way is undried and can be filled into the grid-like current collector, and in the following examples, it is referred to as “paste”. In the conventional positive electrode composition, kneading in two steps as in Example 1 was not performed. In Example 1 of the present invention, a positive electrode composition having a suitable bulk density could be obtained through two kneading steps. The one kneading step can be replaced by means such as stirring and mixing.
 実施例1による正極組成物からなる活物質の利用率は、格子状集電体を用いた場合、0.06アンペアー放電である低率放電(約40時間率放電相当)では約44%~65%、6アンペアー放電である高率放電(約10分間率放電相当)では約20%~38%であった。いずれも表1-2参照。低率放電及び高率放電におけるどの放電率においても、従来の鉛蓄電池に比べて利用率が格段に向上した。
低率放電から高率放電において従来技術の比較ペーストNo.1のおおよそ1.3倍~2倍程度の活物質利用率が得られた。
これらの値は、カーボン量、珪藻土量の配合により変化するので概略値である。
The utilization rate of the active material made of the positive electrode composition according to Example 1 is about 44% to 65% for a low rate discharge (equivalent to about 40 hour rate discharge) of 0.06 ampere discharge when a grid-like current collector is used. In the case of a high rate discharge (corresponding to a rate discharge of about 10 minutes) that is 6%, the discharge rate was about 20% to 38%. See Table 1-2 for both. At any discharge rate in the low rate discharge and the high rate discharge, the utilization rate was remarkably improved as compared with the conventional lead acid battery.
In the low-rate discharge to the high-rate discharge, the active material utilization rate was about 1.3 to 2 times that of the comparative paste No. 1 of the prior art.
These values are approximate because they vary depending on the amount of carbon and the amount of diatomaceous earth.
 また、カーボンを含まない実施例2による正極組成物からなる活物質の利用率は、0.06アンペアー放電である低率放電(約40時間率放電相当)では約38%~65%、6アンペアー放電である高率放電(約10分間率放電相当)では約18%~43%であった。いずれも表3-2参照。
 実施例3では、多種のシリカ多孔体を用い活物質利用率比較している。0.06アンペアー放電である低率放電(約40時間率放電相当)では概ね54%~73%、6アンペアー放電である高率放電(約10分間率放電相当)では概ね21%~29%であった。いずれも表4参照。
中空糸を用いる実施例4の活物質利用率は、0.06アンペアー放電である低率放電(約40時間率放電相当)では約55%~73%、6アンペアー放電である高率放電(約10分間率放電相当)では約27%~48%であった。いずれも表5-2参照。
低率放電、高率放電で、従来技術の比較ペーストNo.1に対しそれぞれ、2.1倍程度、2.7倍程度の活物質利用率が得られた。
Further, the utilization rate of the active material comprising the positive electrode composition according to Example 2 that does not contain carbon is about 38% to 65%, 6 amperes in a low rate discharge (equivalent to about 40 hours rate discharge) that is 0.06 ampere discharge. In a high rate discharge (equivalent to a rate discharge for about 10 minutes) which is a discharge, it was about 18% to 43%. Refer to Table 3-2 for both.
In Example 3, active material utilization rates are compared using various porous silica materials. It is about 54% to 73% for low rate discharge (equivalent to about 40 hour rate discharge) which is 0.06 ampere discharge, and about 21% to 29% for high rate discharge (equivalent to about 10 minute rate discharge) which is 6 ampere discharge. there were. See Table 4 for both.
The active material utilization of Example 4 using hollow fibers is about 55% to 73% for a low rate discharge (equivalent to about 40 hour rate discharge) of 0.06 ampere discharge, and a high rate discharge (about about 6 ampere discharge). 10% rate discharge) was about 27% to 48%. Refer to Table 5-2 for both.
With low rate discharge and high rate discharge, the comparative paste No. The active material utilization rate of about 2.1 times and 2.7 times of 1 was obtained, respectively.
 集電体としては、従来通りの格子を用いることが可能であり、あるいは、鉛シートのようなシート状物に正極組成物を塗布することも可能である。格子状集電体に充填する場合は、ある程度の粘性が必要なので、混練媒体である水の量をその他の成分に対して少なく設定してペースト状の混練物とする。一方、シートに塗布する場合は、水の量を多くして粘性を低くしスラリー状の混練物とする。極板に適用する前の混練物がペーストであってもスラリーであっても、本発明の効果は同様に得られる。
従来技術のペーストは鉛粉を硫酸で混練するため、これに加える水の量は厳しく管理する必要があったが、本発明のペーストでは水の量は活物質利用率に影響を及ぼさないため、集電体にペーストを充填し易くすることにおいて柔軟に水量を調整でき、望まれる任意の値をとることができる。
As the current collector, a conventional lattice can be used, or the positive electrode composition can be applied to a sheet-like material such as a lead sheet. When filling the grid-like current collector, a certain degree of viscosity is required, so that the amount of water as the kneading medium is set to be small relative to the other components to obtain a paste-like kneaded product. On the other hand, when applying to a sheet | seat, the quantity of water is increased and viscosity is made low and it is set as a slurry-like kneaded material. Whether the kneaded product before application to the electrode plate is a paste or a slurry, the effects of the present invention can be obtained similarly.
Since the paste of the prior art kneads lead powder with sulfuric acid, it was necessary to strictly control the amount of water added to this, but the amount of water in the paste of the present invention does not affect the active material utilization rate, By making it easy to fill the current collector with the paste, the amount of water can be adjusted flexibly, and any desired value can be taken.
 格子状集電体にペーストを充填した極板は、基本的には、従来の鉛蓄電池の全用途に用いることができ、しかも同じ電池容量において、より軽量とすることができる。シート状にした極板を用いた鉛蓄電池は、円筒形状の電池を形成できる。その場合、極板をスパイラルに巻くことにより高率放電に優れ、耐振動性の強い電池となる。これは、特にハイブリッド自動車用、電気自動車用として適している。ハイブリッド自動車では、現在、ニッケル水素二次電池やリチウムイオン二次電池が使用されあるいは検討されているが、いずれもコストが高いという問題があった。本発明による鉛蓄電池は、ニッケル水素二次電池やリチウムイオン二次電池より格段に低コストである上、充放電の管理が簡易であるため実用化に適している。 An electrode plate in which a grid current collector is filled with paste can basically be used for all uses of conventional lead-acid batteries, and can be lighter with the same battery capacity. A lead-acid battery using a sheet electrode can form a cylindrical battery. In that case, by winding the electrode plate in a spiral, a battery having excellent high-rate discharge and strong vibration resistance is obtained. This is particularly suitable for hybrid vehicles and electric vehicles. Currently, nickel hydride secondary batteries and lithium ion secondary batteries are being used or studied in hybrid vehicles, but they all have a problem of high cost. The lead storage battery according to the present invention is much lower in cost than a nickel hydride secondary battery and a lithium ion secondary battery, and is suitable for practical use because of simple charge / discharge management.
 以上のように、本発明による正極組成物を用いた鉛蓄電池は、大電流による放電が可能なこと、活物質利用率が高いこと、鉛粉の使用量が少なく低コストであることに加えて、リチウムイオン二次電池やニッケル水素蓄電池に比べて充放電の管理が簡易である。その最適な用途は、自動車用途におけるエンジンと蓄電池のハイブリッド的な使い方である。この用途では、自動車の制動時の回生電力を蓄電池へ充電し、発進時には蓄電池から電力を取り出すことで、ガソリンの消費を節減する。自動車企業では、省エネルギーや排ガス減少により環境的に好ましいことから、現在及び将来的にハイブリッド自動車に注力しており、本発明の産業上の利用性は極めて高いといえる。 As described above, the lead-acid battery using the positive electrode composition according to the present invention can be discharged by a large current, has a high active material utilization rate, has a small amount of lead powder used, and is low in cost. Compared to lithium ion secondary batteries and nickel metal hydride storage batteries, charge / discharge management is simple. Its optimal use is the hybrid use of engine and storage battery in automotive applications. In this application, regenerative electric power during braking of an automobile is charged into a storage battery, and electric power is taken out from the storage battery at the time of starting, thereby reducing gasoline consumption. Since automobile companies are environmentally favorable due to energy saving and exhaust gas reduction, they are focusing on hybrid cars now and in the future, and it can be said that the industrial applicability of the present invention is extremely high.
また、一般的な蓄電池はフロート充電使用されることも多い。これは、停電発生の非常時に蓄電池から負荷へ給電するシステムであり、一般的には10分間率程度で放電されるケースが多い。このような蓄電池として従来の鉛蓄電池と用いると、短時間放電すなわち大電流放電となるので、元々高くない活物質の利用率がさらに低下する。従って、大きな定格容量の鉛蓄電池を用意しなければならず、大きくかつ重いものとなる。本発明の正極組成物を用いた鉛蓄電池は、活物質の利用率が従来の鉛蓄電池の約2倍と高く、かつ大電流による放電が好適で、かつ、利用率が高い分、鉛量が減少し軽量とすることができる。
最近は、インターネットの発展により、データセンタでの鉛蓄電池需要が増し、このような大電流放電での利用率の向上が要望されている。
 以下、格子状集電体を用いた鉛蓄電池の正極板に関する本発明の各実施例を説明する。
Moreover, a general storage battery is often used for float charging. This is a system that supplies power from a storage battery to a load in the event of a power failure, and is generally discharged at a rate of about 10 minutes. When such a storage battery is used with a conventional lead storage battery, a short-time discharge, that is, a large current discharge is generated, so that the utilization factor of the active material which is not originally high further decreases. Therefore, a lead storage battery having a large rated capacity must be prepared, which is large and heavy. The lead storage battery using the positive electrode composition of the present invention has an active material utilization rate as high as about twice that of a conventional lead storage battery, is suitable for discharging by a large current, and has a high utilization rate, so the amount of lead is high. Reduced and lighter.
Recently, with the development of the Internet, the demand for lead storage batteries in data centers has increased, and there has been a demand for an improvement in the utilization rate in such a large current discharge.
Hereinafter, each Example of this invention regarding the positive electrode plate of the lead acid battery using a grid | lattice-like collector is described.
 実施例1では、正極組成物(金属酸化物主体とした活物質原料である鉛粉に種々の物質を添加・混合したもの)であるペーストを製造するにあたり、添加材であるカーボン添加量をパラメータとして主に珪藻土添加量を変化させた場合の活物質利用率等、各種試験結果を説明する。 In Example 1, when manufacturing a paste which is a positive electrode composition (a mixture of various substances in lead powder which is an active material raw material mainly composed of metal oxide), the amount of carbon added as an additive is set as a parameter. As such, various test results such as active material utilization rate when the amount of diatomaceous earth added is mainly changed will be described.
<試料の調製>
 表1は、実施例1における試験に供した正極組成物(ペースト状のもの、これを乾燥させたもの又は混練する前の各原料そのものの構成要素を含む。以下同様。)を調製する際の成分組成及び量を示す一覧である。本発明の説明で称するペーストとは、これらの成分を混練した後の、乾燥前のペースト状態の混練物を意味する。
表1において、鉛粉は一定量の200gとして、カーボン量は、3g、6g、9gと量を変え、同一カーボン量内で珪藻土量を変化させ嵩密度を測定する。同一カーボン量において珪藻土量が多くなると嵩密度が大きくなっていき、また、カーボン量が多いほど嵩密度が大きくなることが確認される。なお、カーボン量及び珪藻土量が多くなるにしたがって水の量も増加させる。これは、混練するカーボン量、珪藻土量が多くなるためでありPVAの量もカーボン量に連動して増加させる。また、カーボン量が多くなるに従って珪藻土量添加の上限値が小さくなるようにする。
表1の水の量は、ポリビニルアルコールを溶解するために使用するものと(実施例1、実施例3及び実施例4も同様)、鉛粉を混合するとき(実施例1~4も同様)に使用するものを含むが水の量は厳密ではなく、混練時のペースト粘度を考慮して適宜注水してもよい。これは、他の実施例でも同様である。
<Preparation of sample>
Table 1 is for preparing a positive electrode composition (a paste-like material, a dried material, or constituents of each raw material before kneading. The same applies hereinafter) subjected to the test in Example 1. It is a list which shows an ingredient composition and quantity. The paste referred to in the description of the present invention means a kneaded product in a paste state after kneading these components and before drying.
In Table 1, lead powder is set to a constant amount of 200 g, the amount of carbon is changed to 3 g, 6 g, and 9 g, and the bulk density is measured by changing the amount of diatomaceous earth within the same amount of carbon. It is confirmed that the bulk density increases as the amount of diatomaceous earth increases at the same carbon amount, and the bulk density increases as the carbon amount increases. In addition, the amount of water is increased as the amount of carbon and the amount of diatomaceous earth increase. This is because the amount of carbon to be kneaded and the amount of diatomaceous earth increase, and the amount of PVA is also increased in conjunction with the amount of carbon. Further, the upper limit value of the diatomaceous earth content addition is decreased as the carbon amount increases.
The amount of water in Table 1 is the same as that used to dissolve polyvinyl alcohol (same as in Example 1, Example 3 and Example 4) and when lead powder is mixed (same as in Examples 1 to 4). However, the amount of water is not strict, and water may be appropriately poured in consideration of the paste viscosity at the time of kneading. The same applies to other embodiments.
表1における「No.」は、ペーストナンバーであり、ペーストNo.1は従来技術で製造されたものである。ペーストNo.2~16は本発明に係るペーストである。
 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
“No.” in Table 1 is a paste number. 1 is manufactured by the prior art. Paste No. 2 to 16 are pastes according to the present invention.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<主たる原料の説明>
鉛粉は正極組成物の主たる構成物質である活物質原料であり、酸化度は約75から80パーセントである。カーボンには吸油量160ml/100gのアセチレンブラックを、ポリビニルアルコール(株式会社クラレ製)は重合度2400を用いた。吸油量にはDBP吸油量を示す。これはカーボン100グラムあたりに吸液されるジブチルフタレートの量を示すものである。
<Description of main raw materials>
Lead powder is an active material raw material which is a main constituent of the positive electrode composition, and has an oxidation degree of about 75 to 80 percent. Acetylene black having an oil absorption of 160 ml / 100 g was used for carbon, and a degree of polymerization of 2400 was used for polyvinyl alcohol (manufactured by Kuraray Co., Ltd.). The oil absorption amount indicates the DBP oil absorption amount. This indicates the amount of dibutyl phthalate absorbed per 100 grams of carbon.
<製造方法>
珪藻土はケイソウ殻と言われるものを焼成・精製したもので、シリカ成分からなり、約1μ程度の微細な孔を有する多孔体であることから、極板の嵩密度の向上に寄与できると考えた。また、シリカである故に耐酸性や耐酸化性に優れている。ここでは、珪藻土として、ラヂオライト#300を用いた。正極板(正極組成物)の性状を示す要素として、嵩密度、活物質利用率及び電池容量の関係を調べた。嵩密度の制御はカーボンと水量によっておこなった。嵩密度については表1に記載した。
<Manufacturing method>
Diatomaceous earth is baked and refined what is called diatomaceous earth shell. It is made of silica component and is a porous body with fine pores of about 1μ, so we thought it could contribute to the improvement of the bulk density of the electrode plate. . Moreover, since it is a silica, it is excellent in acid resistance and oxidation resistance. Here, Radiolite # 300 was used as diatomaceous earth. As an element indicating the properties of the positive electrode plate (positive electrode composition), the relationship between the bulk density, the active material utilization rate, and the battery capacity was examined. The bulk density was controlled by the amount of carbon and water. The bulk density is shown in Table 1.
まず、ポリビニルアルコールを温度約90℃の温水で溶解し、溶解が完了した時点でポリビニルアルコールの濃度が6%程度の水溶液を製造する。溶解させている間は水分が蒸発しないように、溶解させる容器にラップなどのようなシートで容器の上部を覆う。
このポリビニルアルコール水溶液にカーボンを加えて30分間程度混練し、その後、該混練物に鉛粉200gを混合し、微量の硫酸(表1における硫酸1.3g)とカットファイバー0.3gを添加して25分間程度混練した後、珪藻土を添加し、さらに5分間程度混練を継続した。ただし、この30分間、25分間及び5分間程度の混練時間はおおよその目安であり、特に最後の5分間の混練は珪藻土の量により変動する。また、珪藻土の添加時期も前後してもよい。すなわち、珪藻土は、ポリビニルアルコール水溶液にカーボンを加えて混練するときに混合してもよい。または、その後の工程で鉛粉を混合するときに珪藻土を混合してもよい。
 本発明との比較用として作製した従来技術によるペーストNo.1は表1の量に従って、単純に混練したものであり、純硫酸として、11グラムを含有している。
First, polyvinyl alcohol is dissolved in warm water having a temperature of about 90 ° C., and when the dissolution is completed, an aqueous solution having a polyvinyl alcohol concentration of about 6% is manufactured. The upper part of the container is covered with a sheet such as a wrap in the container to be dissolved so that the water does not evaporate during the dissolution.
Carbon is added to this polyvinyl alcohol aqueous solution and kneaded for about 30 minutes. Thereafter, 200 g of lead powder is mixed into the kneaded product, and a small amount of sulfuric acid (1.3 g of sulfuric acid in Table 1) and 0.3 g of cut fiber are added. After kneading for about 25 minutes, diatomaceous earth was added and kneading was continued for about 5 minutes. However, the kneading time of about 30 minutes, 25 minutes and 5 minutes is an approximate guide, and the kneading for the last 5 minutes varies depending on the amount of diatomaceous earth. Moreover, the addition time of diatomaceous earth may be mixed. That is, diatomaceous earth may be mixed when carbon is added to a polyvinyl alcohol aqueous solution and kneaded. Alternatively, diatomaceous earth may be mixed when the lead powder is mixed in the subsequent process.
The paste No. according to the prior art prepared for comparison with the present invention. 1 is simply kneaded according to the amount in Table 1, and contains 11 grams of pure sulfuric acid.
このようにして作製したペーストを厚さ3.7ミリメートルの格子状集電体に充填して、その後、湿度98パーセント、温度45℃で24時間熟成し、その後、60℃で24時間乾燥して、正極未化板を形成した。以後、正極組成物であるペーストが格子集電体に充填され熟成・乾燥されたもの、さらには化成されたものを総称して正極活物質若しくは活物質又は正極板若しくは極板という。 The paste thus prepared was filled in a 3.7 mm thick grid-shaped current collector, then aged at 98% humidity and a temperature of 45 ° C. for 24 hours, and then dried at 60 ° C. for 24 hours. A positive electrode unformed plate was formed. Hereinafter, a paste that is a positive electrode composition filled in a grid current collector, aged and dried, and further formed is collectively referred to as a positive electrode active material or an active material, or a positive electrode plate or an electrode plate.
次に、正極組成物の特性を示すために、未化性の極板について、嵩密度を測定した。嵩密度の測定方法を表2に示す。
 
Figure JPOXMLDOC01-appb-T000004
  未化成正極組成物の嵩密度は次式で算出される。
 未化成正極組成物の嵩密度=未化成正極組成物の体積/未化成正極組成物の重量
             =(D-B)/(C-A)
 表1に従って作製したペーストNo.2~16の15種類の、カーボン量及び珪藻土量と正極集電体である格子への該ペーストの充填量の関係を図1に示す。
図1には、3種類(カーボン量、3g、6g、9g)のプロット列とこれを結ぶ線があり、これがカーボン量をパラメータとしている。
横軸は珪藻土量の変化であり、カーボン量3gでは珪藻土量4g~31gのプロット6点、カーボン量6gでは珪藻土量4g~26gのプロット5点、カーボン量9gでは珪藻土量4g~20gのプロット4点となる。
縦軸は、嵩密度の変化に伴う格子へのペーストの充填量を表す。単位はいずれもgであり絶対値である。珪藻土やカーボンの添加量が増加すると、充填量が減少することがわかる。従来技術である比較ペーストNo1は、充填量が最も多い。
表1のとおり、カーボン量(3g、6g、9g)により、珪藻土量の上限値は、それぞれ31g、26g、20gとしているが、図1でこれが確認できる。これは珪藻土が嵩高いことと、カーボンの吸油量が大きいために表1の嵩密度欄に示したように、比較ペーストNo.1と比較して嵩高い正極組成物となっていることを意味している。したがって、特許請求の範囲における嵩密度の下限値は、表1におけるカーボン量3g、珪藻土量4gに基づく嵩密度0.26ml/gとする。
嵩高い正極活物質であることは、鉛粉の使用量が当然物理的に減少するということである。
なお、正極組成物の充填量は図1に示される充填結果であり、表1はペースト原料の調合及び嵩密度を示すため、充填量は表1には記載していない。
Next, in order to show the characteristics of the positive electrode composition, the bulk density of the non-chemical electrode plate was measured. Table 2 shows a method for measuring the bulk density.

Figure JPOXMLDOC01-appb-T000004
The bulk density of the unformed positive electrode composition is calculated by the following formula.
Bulk density of unformed positive electrode composition = volume of unformed positive electrode composition / weight of unformed positive electrode composition = (D−B) / (C−A)
Paste No. 1 prepared according to Table 1. FIG. 1 shows the relationship between the amount of carbon and diatomaceous earth of 2 to 16 and the amount of the paste filled into the grid as the positive electrode current collector.
In FIG. 1, there are three types of plot rows (carbon amount, 3 g, 6 g, and 9 g) and a line connecting them, which uses the carbon amount as a parameter.
The horizontal axis represents the change in the amount of diatomaceous earth. When the carbon amount is 3 g, the diatomaceous earth amount of 4 g to 31 g is plotted 6 points, when the carbon amount is 6 g, the diatomaceous earth amount is 4 g to 26 g of plot 5 It becomes a point.
A vertical axis | shaft represents the filling amount of the paste to the grating | lattice according to the change of bulk density. All units are g and are absolute values. It can be seen that as the addition amount of diatomaceous earth or carbon increases, the filling amount decreases. Comparison paste No1 which is a prior art has the largest filling amount.
As shown in Table 1, the upper limit of the amount of diatomaceous earth is 31 g, 26 g, and 20 g depending on the amount of carbon (3 g, 6 g, and 9 g), which can be confirmed in FIG. This is because the diatomaceous earth is bulky and the oil absorption amount of carbon is large, so as shown in the bulk density column of Table 1, comparative paste No. It means that it is a bulky positive electrode composition compared with 1. Therefore, the lower limit of the bulk density in the claims is set to 0.26 ml / g based on 3 g of carbon and 4 g of diatomaceous earth in Table 1.
Being a bulky positive electrode active material means that the amount of lead powder used is of course physically reduced.
The filling amount of the positive electrode composition is the filling result shown in FIG. 1, and Table 1 shows the preparation and bulk density of the paste raw material, so the filling amount is not shown in Table 1.
表1により作製された各ペーストを格子に充填した正極板1枚の両側に微細ガラス繊維セパレータを当接し、さらにその外側に1枚づつ負極板を当接した。なお、負極板は従来技術を用いたものである。このような構成とすることで、活物質の理論容量は負極が大過剰となり、目的とする本発明の正極活物質の利用率を評価できる。該極板群を電槽に挿入し、電槽と極板群の隙間はABS樹脂製スペーサで埋めた。電槽に比重1.223の希硫酸を注入して正極理論容量の300パーセントの電気量を流して化成をおこなった。化成後の電解液の比重は1.320とした。 A fine glass fiber separator was brought into contact with both sides of one positive electrode plate in which each paste prepared in Table 1 was filled in a grid, and further, one negative electrode plate was brought into contact with each outside. Note that the negative electrode plate uses a conventional technique. By setting it as such a structure, the theoretical capacity | capacitance of an active material becomes large excessively in a negative electrode, and the utilization factor of the target positive electrode active material of this invention can be evaluated. The electrode plate group was inserted into the battery case, and the gap between the battery case and the electrode plate group was filled with an ABS resin spacer. The dilute sulfuric acid having a specific gravity of 1.223 was injected into the battery case, and 300% of the amount of electricity of the theoretical capacity of the positive electrode was passed to perform chemical conversion. The specific gravity of the electrolytic solution after chemical conversion was set to 1.320.
次に、正極活物質利用率の算出と鉛蓄電池の容量(Ah)を測定するために容量試験(放電試験)をおこなった。容量試験は0.06アンペアー放電と6アンペアー放電の2種類とした。0.06アンペアー放電は約40時間率相当、6アンペアー放電は約10分間率放電相当である。それぞれの放電終止電圧はセル当たり、1.7ボルトと1.2ボルトとした。温度は25℃である。
 カーボン量をパラメータとした珪藻土量の変化について、低率である0.06アンペアー放電および高率である6アンペアー放電の正極活物質の利用率の測定結果を図2及び表1-2に示す。
Next, a capacity test (discharge test) was performed in order to calculate the positive electrode active material utilization rate and measure the capacity (Ah) of the lead storage battery. Two types of capacity tests were performed: 0.06 amp discharge and 6 amp discharge. The 0.06 ampere discharge corresponds to a rate of about 40 hours, and the 6 ampere discharge corresponds to a rate discharge of about 10 minutes. Each discharge end voltage was set to 1.7 volts and 1.2 volts per cell. The temperature is 25 ° C.
FIG. 2 and Table 1-2 show the measurement results of the utilization rate of the positive electrode active material of 0.06 ampere discharge, which is a low rate, and 6 ampere discharge, which is a high rate, with respect to changes in the amount of diatomaceous earth using the carbon amount as a parameter.
前述したように、原料である鉛粉は主体が酸化鉛であるが、酸化されていない金属状態の鉛も含む。酸化鉛が電解液の硫酸と反応して、化成により正極活物質である二酸化鉛に変化する。このようにしてできた二酸化鉛が活物質とみなされている。すると、元来含まれていた金属鉛を活物質とみなすかどうかは議論の分かれるところである。ここでは、原料に元来含まれていた金属鉛も活物質となったとして、放電における活物質の利用率を計算した。
つまり、極板に充填された鉛粉の重量をEとすると、
F=E×239/223×(1/4.463)
 ここで、Fは鉛粉が化成によりすべて二酸化鉛に変化したと仮定した場合の容量、つまり理論容量であり、239は二酸化鉛(PbO)の分子量、223は酸化鉛(PbO)の分子量であり、4.463は二酸化鉛がすべて放電して硫酸鉛に変化したと仮定した場合に、1アンペアーアワー(Ah)を放電するに必要な二酸化鉛量である。活物質の利用率(%)は
  活物質の利用率(%)=正極の放電容量/F×100
として算出することができる。本発明の利用率を表す各図にて活物質の利用率を表す場合は、この百分率表記をする。
なお、本明細書においては、利用率を表す各表にて活物質の利用率を表す場合は、
 活物質の利用率=正極の放電容量/F
としてパーセント(%)表記はしない。ただし、表4は%表記である。
 本発明において化成後は全て二酸化鉛になるとして計算したが、実際には、化成後の二酸化鉛は85%程度であることが一般的であるので、前述した活物質の利用率に100/85を乗じた値が実質的な利用率となる。
As described above, lead powder as a raw material is mainly lead oxide, but also includes lead that is not oxidized and in a metallic state. Lead oxide reacts with sulfuric acid in the electrolytic solution, and changes to lead dioxide, which is a positive electrode active material, by chemical conversion. Lead dioxide thus produced is regarded as an active material. Whether or not the metal lead originally contained is regarded as an active material is debated. Here, the utilization rate of the active material in the discharge was calculated on the assumption that the metal lead originally contained in the raw material became an active material.
In other words, when the weight of the lead powder filled in the electrode plate is E,
F = E × 239/223 × (1 / 4.463)
Here, F is the capacity when it is assumed that the lead powder has all changed to lead dioxide by chemical conversion, that is, the theoretical capacity, 239 is the molecular weight of lead dioxide (PbO 2 ), 223 is the molecular weight of lead oxide (PbO) Yes, 4.463 is the amount of lead dioxide required to discharge 1 ampere hour (Ah), assuming that all lead dioxide has been discharged to lead sulfate. Active material utilization rate (%) Active material utilization rate (%) = positive electrode discharge capacity / F × 100
Can be calculated as When the utilization factor of the active material is represented in each diagram representing the utilization factor of the present invention, this percentage is indicated.
In addition, in this specification, when representing the utilization factor of the active material in each table representing the utilization factor,
Active material utilization rate = positive electrode discharge capacity / F
As a percent (%) notation. However, Table 4 is in% notation.
In the present invention, the calculation was made assuming that all of the lead dioxide is formed after the chemical conversion, but in practice, the lead dioxide after the chemical conversion is generally about 85%, so that the utilization rate of the active material is 100/85. The value multiplied by is the actual utilization rate.
表1-2は表1に従い本発明のカーボン量、珪藻土量の各配合における活物質利用率の測定・算出を記載したものである。図2は表1-2をグラフ化したものであり、カーボン質量をパラメータとして、それぞれ3g、6g、9gの場合において、珪藻土質量を最小4gから最大31gまで変化させたグラフであり、横軸が珪藻土量の変化を表す。縦軸は活物質利用率(%)である。
なお、表1-2において示される活物質利用率は百分率(%)表記ではなく率のみである。図2の縦軸で示される活物質利用率は百分率(%)表記である。他の実施例(実施例4を除く)についても表で示す利用率は百分率(%)表記ではなく、他の実施例の各図の縦軸で示される利用率は百分率(%)表記である。
図2において、
(1)グラフ上部のプロット群◆(カーボン3g)、■(カーボン6g)、▲(カーボン9g)が本発明の低率放電(0.06アンペアー放電)の正極活物質利用率であり、
(2)グラフ下部のプロット群◇(カーボン3g)、□(カーボン6g)、△(カーボン9g)が本発明の高率放電(6アンペアー放電)の正極活物質利用率である。
(3)珪藻土量0gが従来技術の比較ペーストNo.1であり、低率放電プロット●、高率放電プロット○である。
図2において、
(4)低率放電活物質利用率はカーボンおよび珪藻土が増加するにつれて増加し、カーボン6g、珪藻土14gで極大値、約65%を示し、その後減少したが従来技術であるペーストNo.1より格段に高い値を示した。
(5)高率放電ではカーボンおよび珪藻土が増加するにつれて活物質利用率は増加し、カーボン量9g、珪藻土約量20gで約38%で活物質利用率の極大値を示した。
(6)高率放電において、サンプル平均ではカーボン量6g、珪藻土約量26gが活物質利用率が高い。
(7)低率放電の活物質利用率の極大値である嵩密度は0.37ml/g(表1のペーストNo.10)。
(8)高率放電の活物質利用率の極大値である嵩密度は0.44ml/g(表1のペーストNo.16)。
なお、活物質利用率の具体的数値は、表1-2参照。
従来の製造方法処方より成る比較ペーストNo.1と比べて、本発明のペースト全体として、いずれも高い利用率となり、低率および高率放電とも最大でおおよそ2倍の活物質利用率となった。
なお、従来技術の正極活物質である比較ペーストNo.1は、カーボン量が0gであり珪藻土量が0gの横軸に示される。これは、後述する図3(鉛蓄電池容量グラフ)も同様。この従来技術の正極活物質利用率は、表1-2及び図2に示されるように、
(9)低率放電で33.0%、34.5%
(10)高率放電では15.8%、17.6%である。
このように、本発明のカーボン量3g、珪藻土量4gである最低限の嵩密度における活物質利用率においても表1-2及び図2から判るよう、低率放電及び高率放電においても従来技術の正極活物質利用率を上回っている。
よって、前述したように、このカーボン量及び珪藻土量の配合における嵩密度0.26ml/g(表1参照)を本発明の正極活物質利用率を好適とする本発明の嵩密度の下限値として特許請求の範囲に記載した。
なお、発明のカーボン量3g、珪藻土量4gにおける嵩密度の下限値と正極活物質利用率に対する従来技術であるペーストNo.1の嵩密度と正極活物質利用率の比を計算すると以下のようになる。
(1)嵩密度比・・・0.26(本発明)/0.24(従来技術)=1.08
(2)低率放電利用率比・・・0.440/0.338=1.30
(3)高率放電利用率比・・・0.202/0.167=1.21
 このように、従来技術に対する本発明の比が、嵩密度比よりも、活物質利用率比の方がが大きい。これは、仮に本発明の嵩密度と従来技術の嵩密度が同一値であるとしても、本発明の方が従来技術より活物質利用率が高くなることも考えられる。
なお、上記(2)、(3)の活物質利用率は、2サンプル平均値である。
Table 1-2 describes the measurement and calculation of the active material utilization rate in each blend of the carbon amount and diatomaceous earth amount of the present invention according to Table 1. FIG. 2 is a graph of Table 1-2, where the mass of diatomaceous earth is changed from a minimum of 4 g to a maximum of 31 g when the carbon mass is 3 g, 6 g, and 9 g, respectively. Represents changes in diatomite content. The vertical axis represents the active material utilization rate (%).
In addition, the active material utilization shown in Table 1-2 is not a percentage (%) notation but only a rate. The active material utilization shown on the vertical axis in FIG. 2 is expressed in percentage (%). The utilization rate shown in the table for other examples (except for Example 4) is not expressed in percentage (%), and the utilization rate shown on the vertical axis in each figure of other examples is expressed in percentage (%). .
In FIG.
(1) The plot group ◆ (carbon 3 g), ■ (carbon 6 g), and ▲ (carbon 9 g) at the top of the graph are the utilization rate of the positive electrode active material of the low rate discharge (0.06 ampere discharge) of the present invention,
(2) Plot groups ((carbon 3 g), □ (carbon 6 g), and Δ (carbon 9 g) at the bottom of the graph are the positive electrode active material utilization rate of the high rate discharge (6 ampere discharge) of the present invention.
(3) The amount of diatomaceous earth 0 g is a comparative paste No. of the prior art 1. Low-rate discharge plot ● and high-rate discharge plot ○.
In FIG.
(4) The utilization rate of the low rate discharge active material increases as carbon and diatomaceous earth increase, and shows a maximum value of about 65% with 6 g of carbon and 14 g of diatomaceous earth. The value was much higher than 1.
(5) In the high rate discharge, the active material utilization rate increased as carbon and diatomaceous earth increased, and the maximum value of the active material utilization rate was about 38% when the carbon amount was 9 g and the diatomaceous earth amount was 20 g.
(6) In high rate discharge, the average amount of carbon is 6 g, and about 26 g of diatomaceous earth has a high active material utilization rate.
(7) The bulk density which is the maximum value of the active material utilization rate of low rate discharge is 0.37 ml / g (paste No. 10 in Table 1).
(8) The bulk density which is the maximum value of the active material utilization rate of high rate discharge is 0.44 ml / g (paste No. 16 in Table 1).
See Table 1-2 for specific values of active material utilization.
Comparison paste No. made of conventional manufacturing method recipe. Compared to 1, all of the pastes of the present invention had high utilization rates, and both the low rate and high rate discharges had an active material utilization rate of approximately twice the maximum.
In addition, comparative paste No. which is a positive electrode active material of the prior art. 1 is indicated on the horizontal axis where the carbon amount is 0 g and the diatomaceous earth amount is 0 g. This also applies to FIG. 3 (lead storage battery capacity graph) described later. As shown in Table 1-2 and FIG.
(9) 33.0%, 34.5% with low rate discharge
(10) 15.8% and 17.6% for high rate discharge.
Thus, as can be seen from Table 1-2 and FIG. 2, even in the active material utilization rate at the minimum bulk density of 3 g of carbon and 4 g of diatomaceous earth according to the present invention, the conventional technology is also used in low rate discharge and high rate discharge. The utilization rate of the positive electrode active material is exceeded.
Therefore, as described above, the bulk density of 0.26 ml / g (see Table 1) in the blending of the carbon amount and the diatomaceous earth amount is set as the lower limit value of the bulk density of the present invention in which the positive electrode active material utilization rate of the present invention is suitable. It was described in the scope of claims.
In addition, paste No. which is a prior art with respect to the lower limit of the bulk density and the positive electrode active material utilization rate in the carbon amount 3 g and the diatomaceous earth amount 4 g of the invention. The ratio between the bulk density of 1 and the utilization ratio of the positive electrode active material is calculated as follows.
(1) Bulk density ratio 0.26 (present invention) /0.24 (prior art) = 1.08
(2) Low rate discharge utilization ratio: 0.440 / 0.338 = 1.30
(3) High rate discharge utilization ratio: 0.202 / 0.167 = 1.21
Thus, the ratio of the present invention to the prior art is higher in the active material utilization ratio than in the bulk density ratio. This is because even if the bulk density of the present invention and the bulk density of the prior art are the same value, the active material utilization rate of the present invention is higher than that of the prior art.
In addition, the active material utilization factor of said (2) and (3) is an average value of 2 samples.
表1に示した嵩密度を対比してわかるように、従来技術の比較ペーストNo.1の嵩密度は0.24ml/gであったのに対して、試験に供したNo.2から16のペーストは0.26ml/gから0.44ml/gと高い値を示した。つまり、カーボンと珪藻土により高い嵩密度となったことが、高い利用率に繋がったと判断される。
比較した従来ペーストNo.1の嵩密度0.24ml/gよりも高い嵩密度であれば、従来ペーストよりも高い利用率となることを意味する。
As can be seen by comparing the bulk density shown in Table 1, the comparative paste No. 1 of the prior art is used. While the bulk density of No. 1 was 0.24 ml / g, The pastes 2 to 16 showed high values from 0.26 ml / g to 0.44 ml / g. That is, it is judged that the high bulk density due to carbon and diatomaceous earth led to a high utilization rate.
Conventional paste No. If the bulk density is higher than the bulk density of 0.24 ml / g, it means that the utilization rate is higher than that of the conventional paste.
嵩密度が小さいと多孔性が小さく、活物質が放電するのに必要な硫酸電解質を極板外からより多く供給する必要があるが、嵩密度が大きいと多孔性が大きく、活物質の近傍により多くの硫酸電解液を保持できるため、より放電しやすくなるので、図2に示すように高い利用率を示す結果となったものである。
利用率は電池のエネルギー密度を向上させるためには、絶対に必要な項目である。また、利用率が高ければ、電池の活物質原料(鉛粉)を少なくすることができるので、コストダウンとしての意味も大きなものがある。
If the bulk density is small, the porosity is small, and it is necessary to supply more sulfuric acid electrolyte necessary for discharging the active material from the outside of the electrode plate. Since a large amount of sulfuric acid electrolyte can be retained, it becomes easier to discharge, resulting in a high utilization rate as shown in FIG.
The utilization factor is an absolutely necessary item for improving the energy density of the battery. Moreover, since the active material raw material (lead powder) of a battery can be decreased if a utilization factor is high, the meaning as a cost reduction has a big thing.
 前述したように、利用率は極めて重要な要素であるが場合によっては、電池の絶対容量が欲しいという場合もあるかも知れない。カーボン質量(g)及び珪藻土質量(g)と鉛蓄電池容量(Ah)の関係について、低率放電である0.06アンペアー放電と高率放電である6アンペアー放電の鉛蓄電池容量を表1-3及び図3に示す。
図3は表1-3をグラフ化したものであり、表1-2における利用率を表す正極活物質と同じものを使用している。このため正極活物質利用率に対する鉛蓄電池容量(Ah)を対比できる。
図3は表1にしたがいカーボン質量をパラメータとし、それぞれ3g、6g、9gの場合において、珪藻土質量を離散的に4gから最大31gまで変化させたグラフであり、グラフ上部のプロット群◆、■、▲が低率放電であり、グラフ下部のプロット群◇、□、△が高率放電である。
 低率放電での容量は正極ペーストNo.1を下回るものもあった。嵩密度が大きい場合は、活物質原料である鉛粉が相対的に少なくなるので、利用率が高くても取り出せる容量が減少したものである。それに対して、高率放電容量は試験をした全範囲において、従来技術の比較ペーストNo.1よりも高い値となり、カーボンや珪藻土の添加量が異なっても、ほぼ一定の容量となった。
高率放電では、いかに効率良く大電流で放電するかで電池の価値を評価する。本発明の鉛蓄電池では、活物質に混在するカーボン及び珪藻土に鉛蓄電池の電解液である希硫酸を多量に含むため、活物質の近傍にある電解液が直ちに活物質に供給されるため大電流特性がよい。従来技術の正極活物質では活物質である鉛のみであるため、活物質の外部の電解液から供給されるため大電流放電特性が悪い。
したがって、大電流特性を重視するとカーボン量と珪藻土量を増加した正極組成物は正に好適である。
As mentioned above, utilization is a very important factor, but in some cases you may want the absolute capacity of the battery. Regarding the relationship between carbon mass (g) and diatomaceous earth mass (g) and lead storage battery capacity (Ah), the lead storage battery capacities of 0.06 ampere discharge which is low rate discharge and 6 ampere discharge which is high rate discharge are shown in Table 1-3. And shown in FIG.
FIG. 3 is a graph of Table 1-3, which uses the same positive electrode active material as the utilization factor shown in Table 1-2. For this reason, the lead storage battery capacity (Ah) can be compared with the utilization rate of the positive electrode active material.
FIG. 3 is a graph in which the mass of carbon is a parameter according to Table 1, and the diatomaceous earth mass is discretely changed from 4 g to a maximum of 31 g in the case of 3 g, 6 g, and 9 g, respectively. The ▲ is the low rate discharge, and the plot group ◇, □, △ at the bottom of the graph is the high rate discharge.
The capacity at low rate discharge is the positive paste No. Some were below 1. When the bulk density is large, the amount of lead powder as an active material raw material is relatively small, so that the capacity that can be taken out is reduced even when the utilization factor is high. In contrast, the high rate discharge capacity is the same as that of the comparative paste No. of the prior art in the entire range tested. The value was higher than 1, and the capacity was almost constant even when the addition amount of carbon or diatomaceous earth was different.
In high-rate discharge, the value of a battery is evaluated by how efficiently it is discharged with a large current. In the lead storage battery of the present invention, since carbon and diatomaceous earth mixed in the active material contain a large amount of dilute sulfuric acid that is the electrolyte of the lead storage battery, the electrolyte in the vicinity of the active material is immediately supplied to the active material, so that a large current Good characteristics. Since the positive electrode active material of the prior art has only lead as the active material, it is supplied from an electrolyte solution outside the active material, so that the large current discharge characteristics are poor.
Therefore, a positive electrode composition in which the amount of carbon and the amount of diatomaceous earth are increased when the high current characteristic is emphasized is exactly suitable.
実施例1ではカーボンと珪藻土で極板の嵩密度を上げたが、珪藻土のみの効果を評価するために、表3に示す内容の正極組成物での試験を行なった。
表3は試験に供した各正極ペーストの組成物一覧であり、各ペーストの嵩密度も記載している。
表3において、カーボンは存在しないため珪藻土量をその分多くしている。No.1のペーストは表1と同一の従来技術であり、No.17~23は珪藻土量を変化した本発明のペーストである。
 
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
<主たる原料の説明>
金属酸化物を主体とした活物質原料である鉛粉は活物質の主たる構成物質で、酸化度は約75から80パーセントである。カーボンには吸油量160ml/100gのアセチレンブラックを、ポリビニルアルコール(株式会社クラレ製)は重合度2400を用いた。珪藻土として、ラヂオライト#300を用いた。
In Example 1, the bulk density of the electrode plate was increased with carbon and diatomaceous earth, but in order to evaluate the effect of diatomaceous earth alone, a test was conducted with a positive electrode composition having the contents shown in Table 3.
Table 3 is a list of compositions of each positive electrode paste subjected to the test, and also describes the bulk density of each paste.
In Table 3, since there is no carbon, the amount of diatomaceous earth is increased accordingly. No. No. 1 paste is the same prior art as in Table 1. 17 to 23 are pastes of the present invention in which the amount of diatomaceous earth is changed.

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
<Description of main raw materials>
Lead powder, which is an active material raw material mainly composed of metal oxide, is the main constituent material of the active material, and has an oxidation degree of about 75 to 80 percent. Acetylene black having an oil absorption of 160 ml / 100 g was used for carbon, and a degree of polymerization of 2400 was used for polyvinyl alcohol (manufactured by Kuraray Co., Ltd.). Radiolite # 300 was used as diatomaceous earth.
<製造方法>
まず、表3に示される質量の鉛粉と水に微量の硫酸(表3における硫酸1.3g)を添加して40分間混練し、その後に珪藻土を添加し、さらに混練を5分間継続して行なった。ただし、珪藻土を最初から混合してもよい。また、混練時間40分はおおよその目安であり、特に最後の5分間の混練は珪藻土の量により変動する。
<Manufacturing method>
First, a small amount of sulfuric acid (1.3 g of sulfuric acid in Table 3) was added to the lead powder and water in the mass shown in Table 3 and kneaded for 40 minutes, then diatomaceous earth was added, and the kneading was continued for 5 minutes. I did it. However, diatomaceous earth may be mixed from the beginning. The kneading time of 40 minutes is an approximate guide, and the kneading for the last 5 minutes varies depending on the amount of diatomaceous earth.
比較用として作製した正極ペーストNo.1は表3の量に従って、単純に混練したものであり、純硫酸として、11グラムを含有している。このペーストは、表1のものと同一である。 Positive electrode paste No. 1 prepared for comparison. 1 is simply kneaded according to the amount of Table 3, and contains 11 grams of pure sulfuric acid. This paste is the same as in Table 1.
 このようにして作製したペーストを厚さ3.7ミリメートルの格子状集電体に充填し、湿度98パーセント、温度45℃で24時間熟成し、その後60℃で24時間乾燥して正極未化板を形成した。 The paste thus prepared was filled in a 3.7 mm thick grid-shaped current collector, aged at 98% humidity and at a temperature of 45 ° C. for 24 hours, and then dried at 60 ° C. for 24 hours to form a positive electrode unformed plate. Formed.
 この正極板1枚の両側に微細ガラス繊維セパレータを当接し、さらにその外側に1枚づつ従来技術の負極板を当接した。このような構成とすることで活物質の理論容量は負極が大過剰となり、目的とする正極の活物質利用率を評価できる。該極板群を電槽に挿入し、電槽と極板群の隙間はABS樹脂製スペーサで埋めた。電槽に比重1.223の希硫酸を注入して、正極理論容量の300パーセントの電気量を流して、化成を行なった。化成後の電解液の比重は1.320とした。 A fine glass fiber separator was brought into contact with both sides of one positive electrode plate, and a conventional negative electrode plate was brought into contact with the outside one by one. With such a structure, the theoretical capacity of the active material is excessively large for the negative electrode, and the active material utilization rate of the target positive electrode can be evaluated. The electrode plate group was inserted into the battery case, and the gap between the battery case and the electrode plate group was filled with an ABS resin spacer. The dilute sulfuric acid having a specific gravity of 1.223 was injected into the battery case, and a 300% electric quantity of the theoretical capacity of the positive electrode was passed to perform chemical conversion. The specific gravity of the electrolytic solution after chemical conversion was set to 1.320.
次に、正極活物質利用率の算出と鉛蓄電池容量を測定するために容量試験(放電試験)を行なった。容量試験は0.06アンペアー放電と6アンペアー放電の2種類とした。
0.06アンペアー放電は約40時間率相当、6アンペアー放電は約10分間率相当の放電である。それぞれの放電終止電圧はセル当たり、1.7ボルトと1.2ボルトとした。温度は25℃である。
Next, a capacity test (discharge test) was performed in order to calculate the positive electrode active material utilization rate and measure the lead-acid battery capacity. Two types of capacity tests were performed: 0.06 amp discharge and 6 amp discharge.
The 0.06 ampere discharge is equivalent to a rate of about 40 hours, and the 6 ampere discharge is equivalent to a rate of about 10 minutes. Each discharge end voltage was set to 1.7 volts and 1.2 volts per cell. The temperature is 25 ° C.
0.06アンペアー放電と6アンペアー放電の正極活物質利用率を表3-2及び図4に示す。図4の横軸において珪藻土が0gにプロット(低率放電のプロット◆及び高率放電のプロット■)される利用率は比較ペーストNo.1の値を示す。
図4は表3-2をグラフ化したものであり、本発明においては表3の珪藻土質量を4g~43gまで離散的に変化したときの正極活物質の利用率を示す。
なお、グラフ上部のプロット群◆が低率放電であり、グラフ下部のプロット群■が高率放電である。低率放電の活物質利用率は珪藻土の添加量が多くなるにつれて増加し、珪藻土量37gで極大値65%を示した。
一方、高率放電の利用率は珪藻土を多く添加するほど単調増加し珪藻土量43gで最大値約43%を示した。まだ、珪藻土量を増加して、活物質利用率を上げる余地があると考えられる。
以下、表3-2のデータを参照して考察する。
従来技術の比較ペーストNo.1では、
(1)低率放電利用率が、33.0%、34.5%(平均33.8%)
(2)高率放電利用率が、15.8%、17.6%(平均16.7%)
従来技術のペーストNo1.では、高率放電利用率は低率放電利用率に比べて、
(3)16.7%/33.8%=0.49・・・(高率放電利用率/低率放電利用率)
となる。
表3及び表3-2における本発明のペーストNo.23の珪藻土43gを添加した活物質利用率において、高率放電利用率/低率放電利用率を求める。
(4)42.5%/58.3%=0.73・・・(2サンプル平均値)
低率放電利用率に対する高率放電利用率の比率が0.73と大きく、高率放電に適していることが判る。
表3及び表3-2における本発明の珪藻土37gを添加したペーストNo.22と従来技術のペーストNo.1との低率放電時及び高率放電時の利用率を比較する。
(5)63.7%/33.8%=1.9・・・低率放電時のサンプル平均における比
(6)38.4%/16.7%=2.3・・・高率放電時のサンプル平均において比
なお、表3-3及び図5に示される鉛蓄電池容量(Ah)の珪藻土量37gにおいて、低率放電時の本発明と従来技術の鉛蓄電池容量は互角であり、高率放電時の鉛蓄電池容量は本発明の方が若干大であり、このように、ほぼ同等の鉛蓄電池容量を有して、かつ、正極活物質利用率が2倍程度も大きいという試験結果は、従来では、絶対に有り得ないことである。
なお、表3-3は表3の正極組成物において鉛蓄電池容量を求めたものであり、図5は表3-3をグラフ化したものである。
Table 3-2 and FIG. 4 show the positive electrode active material utilization rates of 0.06 ampere discharge and 6 ampere discharge. In the horizontal axis of FIG. 4, diatomaceous earth is plotted at 0 g (low rate discharge plot ◆ and high rate discharge plot ■). A value of 1 is shown.
FIG. 4 is a graph of Table 3-2. In the present invention, the utilization rate of the positive electrode active material when the mass of diatomaceous earth in Table 3 is discretely changed from 4 g to 43 g is shown.
The plot group ◆ at the top of the graph is low rate discharge, and the plot group ■ at the bottom of the graph is high rate discharge. The active material utilization rate of the low rate discharge increased as the amount of diatomaceous earth added increased, and showed a maximum value of 65% when the amount of diatomaceous earth was 37 g.
On the other hand, the utilization rate of the high rate discharge monotonously increased as more diatomaceous earth was added, and the maximum value was about 43% at 43 g of diatomaceous earth. There is still room for increasing the active material utilization by increasing the amount of diatomaceous earth.
The following discussion will be made with reference to the data in Table 3-2.
Prior art comparative paste no. In 1,
(1) Low rate discharge utilization rate is 33.0%, 34.5% (average 33.8%)
(2) High rate discharge utilization is 15.8%, 17.6% (average 16.7%)
Prior art paste No1. Then, the high rate discharge utilization rate compared to the low rate discharge utilization rate,
(3) 16.7% / 33.8% = 0.49 (high rate discharge utilization / low rate discharge utilization)
It becomes.
In Table 3 and Table 3-2, the paste No. In the active material utilization rate to which 43 g of diatomaceous earth is added, the high rate discharge utilization rate / low rate discharge utilization rate is obtained.
(4) 42.5% / 58.3% = 0.73 (average value of 2 samples)
It can be seen that the ratio of the high rate discharge utilization rate to the low rate discharge utilization rate is as large as 0.73, which is suitable for high rate discharge.
In Table 3 and Table 3-2, paste No. 37 containing 37 g of diatomaceous earth of the present invention was added. 22 and prior art paste no. The utilization rate at the time of low rate discharge and high rate discharge with 1 is compared.
(5) 63.7% / 33.8% = 1.9 ... ratio in the average of samples during low rate discharge (6) 38.4% / 16.7% = 2.3 ... high rate discharge In comparison with the average of the samples at the time, the lead storage battery capacity of the present invention and the prior art at the time of low rate discharge is equivalent in the amount of diatomaceous earth of 37 g of the lead storage battery capacity (Ah) shown in Table 3-3 and FIG. The lead storage battery capacity at the rate discharge is slightly larger in the present invention. Thus, the test result that the lead storage battery capacity is almost equal and the utilization rate of the positive electrode active material is about twice as large as that of the present invention. In the past, this is absolutely impossible.
Table 3-3 shows the lead storage battery capacity for the positive electrode composition shown in Table 3. FIG. 5 is a graph of Table 3-3.
表1-2、表1-3からそれぞれ生成される図2、図3のグラフと、表3-2、表3-3からそれぞれ生成される図4、図5のグラフ結果より、本発明のペーストの鉛粉200gに対する珪藻土の添加量が4g以上であれば低率放電時及び高率放電時の正極活物質利用率及び鉛蓄電池容量を比較ペーストNo.1よりも高くできることが判る。
鉛粉200gが酸化鉛150gと金属鉛50gの混合物の場合、それぞれのモル数、150/223=0.673モルと50/207=0.242モルの和からなり、0.673+0.242=0.915モルであり、珪藻土4gは4/60=0.0667モル。したがって、鉛粉に対する珪藻土のモル数は、0.0667/0.915=0.729となる。ただし、酸化鉛の分子量は223、金属鉛の分子量は207、珪藻土の分子量は60である。
これを1つの計算式で表して計算すると下式となる。
(4/60)/(150/223+50/207)=0.0729・・・酸化鉛75%
同様に、鉛粉200gを酸化鉛160gと金属鉛40gの混合物として計算すると、下式となる。
(4/60)/(160/223+40/207)=0.0732・・・酸化鉛80%
したがって、鉛粉に対する珪藻土のモル数を百分率で表すと、鉛粉の酸化鉛含有率が75%の場合、7.29モル%、鉛粉の酸化鉛含有率が80%の場合、7.32モル%、となる。
 これらを平均して、珪藻土は鉛粉に対して、7.3モルパーセント以上添加すれば、従来技術の比較ペーストNo.1よりも高い利用率と容量を発揮できるということである。よって、特許請求の範囲では、鉛粉に対する珪藻土含有のモル数を7.3モル%とした。これは、実施例1にも適用できる。すなわち、表1における珪藻土4gとカーボン3gを添加した例である。
From the graphs of FIGS. 2 and 3 generated from Table 1-2 and Table 1-3, respectively, and the graph results of FIGS. 4 and 5 respectively generated from Table 3-2 and Table 3-3, the graph of FIG. If the amount of diatomaceous earth added to 200 g of the lead powder of the paste is 4 g or more, the utilization rate of the positive electrode active material and the lead storage battery capacity at the time of low rate discharge and high rate discharge are compared with the paste No. It can be seen that it can be higher than 1.
When 200 g of lead powder is a mixture of 150 g of lead oxide and 50 g of metal lead, the number of moles is 150/223 = 0.673 mol and 50/207 = 0.242 mol, and 0.673 + 0.242 = 0. 915 mol, and 4 g of diatomaceous earth is 4/60 = 0.0667 mol. Therefore, the number of moles of diatomaceous earth with respect to the lead powder is 0.0667 / 0.915 = 0.729. However, the molecular weight of lead oxide is 223, the molecular weight of metallic lead is 207, and the molecular weight of diatomaceous earth is 60.
When this is expressed by one calculation formula, the following formula is obtained.
(4/60) / (150/223 + 50/207) = 0.0729 ... 75% of lead oxide
Similarly, when 200 g of lead powder is calculated as a mixture of 160 g of lead oxide and 40 g of metal lead, the following formula is obtained.
(4/60) / (160/223 + 40/207) = 0.0732 ... 80% lead oxide
Therefore, when the number of moles of diatomaceous earth with respect to the lead powder is expressed as a percentage, 7.29 mol% when the lead oxide content of the lead powder is 75% and 7.32 when the lead oxide content of the lead powder is 80%. Mol%.
When these are averaged, diatomaceous earth can be added in an amount of 7.3 mole percent or more with respect to the lead powder. It means that the utilization rate and capacity higher than 1 can be demonstrated. Therefore, in the claims, the number of moles of diatomaceous earth contained in the lead powder is set to 7.3 mol%. This can also be applied to the first embodiment. That is, in this example, 4 g of diatomaceous earth and 3 g of carbon in Table 1 were added.
上記、実施例2の珪藻土のみを添加した場合の正極活物質利用率及び鉛蓄電池容量は、カーボンも添加した実施例1の正極活物質利用率及び鉛蓄電池容量とほぼ同等(ただし、実際には、カーボンも添加した実施例1の方が、カーボンの嵩密度が寄与する分、正極活物質利用率及び鉛蓄電池容量が少し大であるが。)であり、本発明の正極活物質利用率は従来技術のペーストNo.1の正極活物質利用率を上回り、鉛蓄電池容量においても上回って高性能化されたことを確認できた。
カーボンは鉛粉より廉価であり、珪藻土はカーボンよりさらに廉価であり低コスト鉛蓄電池を実現できた。また、実施例2ではポリビニルアルコールを使用する必要もなく製造工程も簡素化できるため、さらに低コスト化された鉛蓄電池を実現した。
また、本発明の各実施例において、最大の正極活物質利用率が従来技術のペーストNo.1の正極活物質利用率のおおよそ2倍となるため、鉛量をおおよそ1/2程度に減じることができた。
従来、鉛蓄電池は取り扱いが簡単で、安全(リチウムイオン二次電池などと比較して火災の危険がない。)かつ大容量の蓄電池を提供してきたが重量が大きいことが最大の欠点であった。鉛蓄電池を大容量設備するデータセンタなどでは、床加重が問題が問題となっていた。
本発明においては、これら全てを解決し上記のとおり理想的な鉛蓄電池を実現したものである。
The positive electrode active material utilization rate and lead acid battery capacity when only diatomaceous earth of Example 2 is added are substantially the same as the positive electrode active material utilization rate and lead acid battery capacity of Example 1 where carbon is also added (however, actually In Example 1, in which carbon was also added, the positive electrode active material utilization rate and the lead-acid battery capacity are slightly larger due to the contribution of the bulk density of carbon. Prior art paste no. It was confirmed that the utilization rate of the positive electrode active material of 1 was exceeded and the performance of the lead storage battery capacity was also exceeded.
Carbon was cheaper than lead powder, and diatomaceous earth was cheaper than carbon, realizing a low-cost lead acid battery. Moreover, in Example 2, since it is not necessary to use polyvinyl alcohol and a manufacturing process can be simplified, the lead acid battery further reduced in cost was implement | achieved.
In each of the examples of the present invention, the maximum positive electrode active material utilization rate is the same as that of the past paste No. Therefore, the amount of lead could be reduced to about ½.
Conventionally, lead-acid batteries have been easy to handle, safe (no fire hazard compared to lithium-ion secondary batteries, etc.) and large-capacity storage batteries, but their weight was the biggest drawback. . In data centers with a large capacity of lead storage batteries, floor weighting has been a problem.
In the present invention, all of these are solved and an ideal lead storage battery is realized as described above.
前述した珪藻土はシリカ多孔体の1種類と言える。シリカ多孔体としては各種の種類や品種が存在するので、それについて活物質利用率を試験した。
<主な原料の説明>
金属酸化物を主体とした活物質原料である鉛粉は活物質原料の主たる構成物質で、酸化度は約75から80パーセントである。カーボンには吸油量160ml/100gのアセチレンブラックを、ポリビニルアルコール(株式会社クラレ製)は重合度2400を用いた。シリカ多孔体は表4に示すものを試験した。
珪藻土は孔の違いや粒子の大きさ(ラヂオライトの各グレード)、メーカーの違い(スピーディックスとダイカライト)あるいは天然に産出するものなので、生産地の違いについて、外国産のもの(セルピュアS65とセルピュアS300)を試験した。また、ガラス質岩石を膨張粉砕して多孔性としたパーライト、さらにはガラス質岩石を膨張させたシラスバルーンについて、試験をした。これらはいずれも二酸化珪素を主体とする材料である。
これら多種多様なシリカ多孔体の一覧とこれを添加した試験結果を表4に示す。
表4は、シリカ多孔体の種類と、これに対応する活物質利用率(%)を主として記載されており、活物質原料への添加材であるカーボン3g、温水63mlに溶解されたポリビニルアルコール0.1gは表4において省略されているが、実際にはこれらが含まれる。
The diatomaceous earth described above can be said to be one type of porous silica. Since there are various types and varieties of porous silica, the active material utilization rate was tested.
<Description of main ingredients>
Lead powder, which is an active material raw material mainly composed of metal oxide, is a main constituent material of the active material raw material, and has an oxidation degree of about 75 to 80 percent. Acetylene black having an oil absorption of 160 ml / 100 g was used for carbon, and a degree of polymerization of 2400 was used for polyvinyl alcohol (manufactured by Kuraray Co., Ltd.). The silica porous body shown in Table 4 was tested.
Diatomaceous earth is different in pores, particle size (radiolite grades), manufacturer (Spidix and Dicalite), or naturally produced. Cell Pure S300) was tested. Further, pearlite made porous by expanding and crushing vitreous rock, and shirasu balloon expanded with vitreous rock were tested. These are all materials mainly composed of silicon dioxide.
Table 4 shows a list of these various porous silica materials and the test results of adding them.
Table 4 mainly describes the types of porous silica and the active material utilization rate (%) corresponding to this, and the polyvinyl alcohol dissolved in 3 g of carbon and 63 ml of hot water as an additive to the active material material. .1g is omitted in Table 4 but is actually included.
<製造方法>
まず、カーボン3gを90℃程度の温水63mlに対するポリビニルアルコール0.1g割合のポリビニルアルコール水溶液で、30分間混練し、その後、該混練物に鉛粉加え、微量の硫酸(表4における硫酸1.3g)を添加して25分間混練した後、各種のシリカ多孔体を1種類づつ14g添加し、さらに5分間混練を継続した。これを各シリカ多孔体毎におこなう。
ただし、この30分間、25分間及び5分間程度の混練時間はおおよその目安であり、特に最後の5分間の混練は各シリカ多孔体の量により変動する。また、各シリカ多孔体の添加時期も前後してもよい。すなわち、各シリカ多孔体は、ポリビニルアルコール水溶液にカーボンを加えて混練するときに混合してもよい。または、その後の工程で鉛粉を混合するときに各シリカ多孔体を混合してもよい。
 このようにして作製したペーストを厚さ3.7ミリメートルの格子状集電体に充填して、その後、湿度98パーセント、温度45℃で24時間熟成し、その後、60℃で24時間乾燥して、正極未化板を形成した。
<Manufacturing method>
First, 3 g of carbon was kneaded with a polyvinyl alcohol aqueous solution in a ratio of 0.1 g of polyvinyl alcohol to 63 ml of warm water of about 90 ° C. for 30 minutes, and then lead powder was added to the kneaded material to add a small amount of sulfuric acid (1.3 g of sulfuric acid in Table 4). ) Was added and kneaded for 25 minutes, and 14 g of each type of porous silica was added one by one, and the kneading was continued for another 5 minutes. This is performed for each silica porous body.
However, the kneading time of about 30 minutes, 25 minutes, and 5 minutes is an approximate guide, and particularly the last kneading for 5 minutes varies depending on the amount of each porous silica material. Moreover, the addition time of each silica porous body may be mixed. That is, each silica porous body may be mixed when carbon is added to a polyvinyl alcohol aqueous solution and kneaded. Or when mixing lead powder in a subsequent process, each porous silica may be mixed.
The paste thus prepared was filled in a 3.7 mm thick grid-shaped current collector, then aged at 98% humidity and a temperature of 45 ° C. for 24 hours, and then dried at 60 ° C. for 24 hours. A positive electrode unformed plate was formed.
この正極板1枚の両側に微細ガラス繊維セパレータを当接し、さらにその外側に1枚づつ従来技術の負極板を当接した。このような構成とすることで、活物質の理論容量は負極が大過剰となり、目的とする正極の利用率を評価できる。該極板群を電槽に挿入し、電槽と極板群の隙間はABS樹脂製スペーサで埋めた。電槽に比重1.223の希硫酸を注入して、正極理論容量の300パーセントの電気量を流して、化成をおこなった。化成後の電解液の比重は1.320とした。 A fine glass fiber separator was brought into contact with both sides of one positive electrode plate, and a conventional negative electrode plate was brought into contact with each outside. By setting it as such a structure, the theoretical capacity | capacitance of an active material becomes large excessively in a negative electrode, and the utilization factor of the target positive electrode can be evaluated. The electrode plate group was inserted into the battery case, and the gap between the battery case and the electrode plate group was filled with an ABS resin spacer. Dilute sulfuric acid having a specific gravity of 1.223 was injected into the battery case, and 300% of the amount of electricity of the theoretical capacity of the positive electrode was supplied to perform chemical conversion. The specific gravity of the electrolytic solution after chemical conversion was set to 1.320.
次に、正極活物質利用率算出のために容量試験(放電試験)を行なった。容量試験は0.06アンペアー放電と6アンペアー放電の2種類とした。0.06アンペアー放電は約40時間率相当、6アンペアー放電は約10分間率相当の放電である。それぞれの放電終止電圧はセル当たり、1.7ボルトと1.2ボルトとした。温度は25℃である。
 試験に供した正極組成物と結果を表4に示す。
なお、表4においては活物質利用率を%で表している。表4の備考欄に「シリカに水を含ませて添加」と記載したもの以外は、シリカに水を含ませないで添加している。
 
Figure JPOXMLDOC01-appb-T000008
表4の結果は試験ロットの違いもあるので、おおまかに評価した方が良い。
各種のシリカ多孔体について、試験したが、低率放電利用率は54から73パーセント、高率放電利用率は21から29パーセント程度であり、これらいずれも従来技術であるペーストNo.1の活物質利用率を上回っている。これはシリカ多孔体の多孔度が類似しているためと考えられる。
Next, a capacity test (discharge test) was performed to calculate the utilization ratio of the positive electrode active material. Two types of capacity tests were performed: 0.06 amp discharge and 6 amp discharge. The 0.06 ampere discharge is equivalent to a rate of about 40 hours, and the 6 ampere discharge is equivalent to a rate of about 10 minutes. Each discharge end voltage was set to 1.7 volts and 1.2 volts per cell. The temperature is 25 ° C.
Table 4 shows the positive electrode composition subjected to the test and the results.
In Table 4, the active material utilization rate is expressed in%. Except for what is described as “added by adding water to silica” in the remarks column of Table 4, the silica is added without containing water.

Figure JPOXMLDOC01-appb-T000008
Since the results in Table 4 have different test lots, it is better to roughly evaluate them.
Various types of silica porous materials were tested, and the low rate discharge utilization rate was 54 to 73%, and the high rate discharge utilization rate was about 21 to 29%. The active material utilization rate of 1 is exceeded. This is presumably because the porosity of the silica porous material is similar.
ペーストに添加する多孔体として、実施例1及び実施例2の珪藻土、実施例3の珪藻土、パーライト及びシラスバルーン以外に、中空繊維(表5、表5-2及び表5-3においては中空糸と記載)について、試験を行なった。
表5は試験に供した正極組成物の一覧である。ペーストNo.1は実施例1、2と同様なものである。本発明のペーストは、No.24~29である。
 
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
<主たる原料の説明>
金属酸化物を主体とした活物質原料である鉛粉は活物質の主たる構成物質で、酸化度は約75から80パーセントである。カーボンには吸油量160ml/100gのアセチレンブラックを、ポリビニルアルコール(株式会社クラレ製)は重合度2400を用いた。中空糸は中央部に孔を有する繊維で、繊維の側部には0.1から0.25μ程度のスリットが開いている。これを活物質に添加した場合、電解液を中央の孔に貯えることができ、放電や充電では側部スリットを介して、電解液を移動させることが可能である。
In addition to the diatomaceous earth of Example 1 and Example 2, the diatomaceous earth of Example 3, pearlite and shirasu balloon, the porous material to be added to the paste is hollow fiber (in Table 5, Table 5-2 and Table 5-3, hollow fiber) The test was conducted.
Table 5 is a list of positive electrode compositions subjected to the test. Paste No. 1 is the same as in Examples 1 and 2. The paste of the present invention is No. 24 to 29.

Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
<Description of main raw materials>
Lead powder, which is an active material raw material mainly composed of metal oxide, is the main constituent material of the active material, and has an oxidation degree of about 75 to 80 percent. Acetylene black having an oil absorption of 160 ml / 100 g was used for carbon, and a degree of polymerization of 2400 was used for polyvinyl alcohol (manufactured by Kuraray Co., Ltd.). The hollow fiber is a fiber having a hole in the center, and a slit of about 0.1 to 0.25 μ is opened on the side of the fiber. When this is added to the active material, the electrolytic solution can be stored in the central hole, and the electrolytic solution can be moved through the side slit in discharging and charging.
<製造方法>
まず、ポリビニルアルコールを温度約90℃の温水で溶解し、溶解が完了した時点でポリビニルアルコールの濃度が6%程度の水溶液を製造する。溶解させている間は水分が蒸発しないように、溶解させる容器にラップなどのようなシートで容器の上部を覆う。
このポリビニルアルコール水溶液にカーボンを加えて30分間程度混練し、その後、該混練物に鉛粉200gを混合し、カットファイバー0.3gを添加して25分間程度混練した後、さらに中空糸を添加して5分間混練を継続した。ただし、この30分間、25分間及び5分間程度の混練時間はおおよその目安であり、特に最後の5分間の混練は中空糸の量により変動する。また、中空糸の添加時期も前後してもよい。すなわち、中空糸は、ポリビニルアルコール水溶液にカーボンを加えて混練するときに混合してもよい。または、その後の工程で鉛粉を混合するときに中空糸を混合してもよい。
比較用として作製した正極ペーストNo.1は表5の量に従って単純に混練したものであり、純硫酸11グラムを含有している。
<Manufacturing method>
First, polyvinyl alcohol is dissolved in warm water having a temperature of about 90 ° C., and when the dissolution is completed, an aqueous solution having a polyvinyl alcohol concentration of about 6% is manufactured. The upper part of the container is covered with a sheet such as a wrap in the container to be dissolved so that the water does not evaporate during the dissolution.
Carbon is added to this polyvinyl alcohol aqueous solution and kneaded for about 30 minutes. Thereafter, 200 g of lead powder is mixed into the kneaded product, 0.3 g of cut fiber is added and kneaded for about 25 minutes, and further hollow fibers are added. The kneading was continued for 5 minutes. However, the kneading time of about 30 minutes, 25 minutes, and 5 minutes is an approximate guide, and the kneading for the last 5 minutes varies depending on the amount of hollow fiber. Moreover, the addition time of the hollow fiber may be mixed. That is, the hollow fiber may be mixed when carbon is added to the aqueous polyvinyl alcohol solution and kneaded. Alternatively, the hollow fiber may be mixed when the lead powder is mixed in the subsequent process.
Positive electrode paste No. 1 prepared for comparison. No. 1 is simply kneaded according to the amounts in Table 5 and contains 11 grams of pure sulfuric acid.
この正極板1枚の両側に微細ガラス繊維セパレータを当接し、さらにその外側に1枚づつ従来技術の負極板を当接した。このような構成とすることで活物質の理論容量は負極が大過剰となり、目的とする正極の利用率を評価できる。該極板群を電槽に挿入し、電槽と極板群の隙間はABS樹脂製スペーサで埋めた。電槽に比重1.223の希硫酸を注入して、正極理論容量の300パーセントの電気量を流して、化成をおこなった。化成後の電解液の比重は1.320とした。 A fine glass fiber separator was brought into contact with both sides of one positive electrode plate, and a conventional negative electrode plate was brought into contact with each outside. With such a configuration, the theoretical capacity of the active material is that the negative electrode is excessively large, and the utilization rate of the target positive electrode can be evaluated. The electrode plate group was inserted into the battery case, and the gap between the battery case and the electrode plate group was filled with an ABS resin spacer. Dilute sulfuric acid having a specific gravity of 1.223 was injected into the battery case, and 300% of the amount of electricity of the theoretical capacity of the positive electrode was supplied to perform chemical conversion. The specific gravity of the electrolytic solution after chemical conversion was set to 1.320.
次に、正極活物質利用率と鉛蓄電池容量を求めるために容量試験(放電試験)を行なった。容量試験は0.06アンペアー放電と6アンペアー放電の2種類とした。0.06アンペアー放電は約40時間率相当、6アンペアー放電は約10分間率相当の放電である。それぞれの放電終止電圧はセル当たり、1.7ボルトと1.2ボルトとした。温度は25℃である。 Next, a capacity test (discharge test) was performed in order to obtain the positive electrode active material utilization rate and the lead storage battery capacity. Two types of capacity tests were performed: 0.06 amp discharge and 6 amp discharge. The 0.06 ampere discharge is equivalent to a rate of about 40 hours, and the 6 ampere discharge is equivalent to a rate of about 10 minutes. Each discharge end voltage was set to 1.7 volts and 1.2 volts per cell. The temperature is 25 ° C.
表5-2、表5-3は、それぞれこの試験で得られた正極活物質利用率、鉛蓄電池容量を示す。図6は表5-2をグラフ化したものであり、表5における本発明のペーストNo.24からペーストNo.29について、図6における上部プロット群■、□(利用率大)により低率0.06アンペアー放電の利用率が示され、図6における下部プロット群■、□(利用率小)により高率6アンペアー放電の利用率が示される。
また、図7は表5-3をグラフ化したものであり、表5における本発明のペーストNo.24からペーストNo.29について、図7における上部プロット群■、□(容量大)により低率0.06アンペアー放電の鉛蓄電池容量が示され、図7における下部プロット群■、□(容量小)により高率6アンペアー放電の鉛蓄電池容量が示される。
表5における従来技術のペーストNo.1は、図6におけるプロット◆、◇により低率0.06アンペアー放電の利用率が示され、図6におけるプロット■、□高率6アンペアー放電の利用率が示される。
また、表5における従来技術のペーストNo.1は、図7におけるプロット◆、◇により低率0.06アンペアー放電の鉛蓄電池容量が示され、図7におけるプロット■、□高率6アンペアー放電の鉛蓄電池容量が示される。
表5-2及び表5-3、図6及び図7において、正極活物質利用率および鉛蓄電池容量とも比較ペーストNo.1に比較して、高い値を示した。特に、本発明のペーストによる正極活物質利用率は低率、高率ともに従来技術である比較ペーストNo.1のおおよそ2倍程度であった。
珪藻土の材質の密度は中空糸に対して約2倍であるので、中空糸の利用率の試験結果である表5-2を実施例1の珪藻土を使用した結果である表1-2と比較すると、たとえばカーボン3g、中空糸9g(ペーストNo.24)の例で比較して、両者の体積を揃えると、中空糸9gは珪藻土約18gに相当する。
中空糸添加の低率放電利用率は約55パーセント(表5-2参照。図6では最左端・上部のプロット)、高率放電利用率は約28パーセント(表5-2参照。図6における最左端・下部のプロット)であるのに対して、実施例1の珪藻土添加の低率放電利用率は約56パーセント(表1-2では珪藻土量20gを代用。図2では中央部・上部のプロット◆(珪藻土量20g))、高率放電利用率は約28パーセント(表1-2では珪藻土量20gを代用、図2では中央部・下部のプロット◇(珪藻土量20g))と、ほぼ一致する。つまり、材料の違いはあっても、嵩密度が同じであれば、利用率はほぼ同じであると考えられる。
Tables 5-2 and 5-3 show the positive electrode active material utilization rate and the lead-acid battery capacity obtained in this test, respectively. FIG. 6 is a graph of Table 5-2. 24 to paste no. For 29, the utilization rate of the low rate 0.06 ampere discharge is shown by the upper plot groups ■ and □ (high utilization rate) in FIG. 6, and the high rate 6 by the lower plot group ■ and □ (small utilization rate) in FIG. The utilization rate of ampere discharge is indicated.
FIG. 7 is a graph of Table 5-3. In FIG. 24 to paste no. 7 shows the lead storage battery capacity of low rate 0.06 ampere discharge by upper plot groups ■ and □ (large capacity) in FIG. 7, and high rate 6 amperes by lower plot groups ■ and □ (small capacity) in FIG. The discharge lead-acid battery capacity is shown.
Prior Art Paste Nos. In FIG. 1, the utilization rate of low rate 0.06 ampere discharge is shown by plots ♦ and ◇ in FIG. 6, and the utilization rate of low rate 0.06 ampere discharge in FIG. 6 is shown.
Also, in Table 5, the conventional paste No. 1 shows the lead storage battery capacity of the low rate 0.06 ampere discharge by plots ♦ and ◇ in FIG. 7, and the plot ■ and □ in FIG. 7 show the lead storage battery capacity of the high rate 6 ampere discharge.
In Tables 5-2 and 5-3, and FIGS. 6 and 7, both the positive electrode active material utilization rate and the lead acid battery capacity are comparative paste Nos. Compared to 1, a high value was shown. In particular, the utilization rate of the positive electrode active material by the paste of the present invention is low and high. It was about twice that of 1.
Since the density of the material of diatomaceous earth is about twice that of hollow fiber, Table 5-2, which is a test result of the utilization rate of hollow fiber, is compared with Table 1-2, which is the result of using diatomaceous earth of Example 1. Then, for example, in comparison with the example of carbon 3g and hollow fiber 9g (paste No. 24), the hollow fiber 9g corresponds to about 18 g of diatomaceous earth when the volumes of both are made uniform.
The hollow fiber added low rate discharge utilization rate is about 55 percent (see Table 5-2. In FIG. 6, the leftmost / top plot), and the high rate discharge utilization rate is about 28 percent (see Table 5-2). The lower rate discharge utilization rate of diatomaceous earth addition of Example 1 is about 56% (in Table 1-2, 20 g of diatomaceous earth is substituted. In FIG. Plot ◆ (diatomaceous earth amount 20 g)), high-rate discharge utilization rate is approximately 28% (in Table 1-2, diatomite amount 20 g is used as a substitute, and in FIG. 2, the central and lower plots ◇ (diatomaceous earth amount 20 g)) To do. That is, even if there is a difference in material, if the bulk density is the same, the utilization factor is considered to be almost the same.
 正極活物質にカーボンとシリカ多孔体あるいは中空糸を添加して、混練物ペーストとすることで、該活物質の利用率は大幅に増加した。この試験により、嵩密度を上げる多孔性を有する物質は普遍的に活物質利用率の向上に大きく寄与することが判明した。それで中空糸を添加した正極組成物を使用することでも活物質利用率が従来技術のペーストNo.1のほぼ2倍となり、鉛粉原料をほぼ1/2に減じることが可能であるということが判った。
 鉛粉原料を減らせることは、そのまま蓄電池のコストの低減として有効であり、エネルギー密度を大幅に向上できることがわかった。これにより、従来使用されていた蓄電池の軽量化が可能であり、同時に、自動車ハイブリッド蓄電池としての可能性が明確となった。利用率の大幅な向上が100年近くの間できなかったが、本発明によりそれが始めて可能となった。その工業的価値は極めて高いものである。
By adding carbon and silica porous material or hollow fiber to the positive electrode active material to obtain a kneaded paste, the utilization factor of the active material was greatly increased. From this test, it was found that a porous material that increases the bulk density contributes greatly to the improvement of the active material utilization rate universally. Therefore, the use of the positive electrode composition to which the hollow fiber is added also makes the active material utilization rate the paste No. of the prior art. It was found that the lead powder raw material can be reduced to almost ½.
It was found that reducing the lead powder raw material is effective as it is as a reduction in the cost of the storage battery, and the energy density can be greatly improved. Thereby, the weight reduction of the conventionally used storage battery was possible, and the possibility as an automobile hybrid storage battery became clear simultaneously. Although a significant improvement in utilization has not been possible for nearly 100 years, the present invention has made it possible for the first time. Its industrial value is extremely high.
は、本発明の実施例1によるカーボン量をパラメータとした珪藻土量を変化したときの正極格子へのペースト充填量を示す。These show the paste filling amount to the positive electrode lattice when changing the amount of diatomaceous earth with the amount of carbon according to Example 1 of the present invention as a parameter. は、本発明の実施例1によるカーボン量をパラメータとした珪藻土量を変化したときの正極活物質利用率を示す。These show the utilization rate of the positive electrode active material when the amount of diatomaceous earth with the amount of carbon according to Example 1 of the present invention as a parameter is changed. は、本発明の実施例1によるカーボン量をパラメータとした珪藻土量を変化したときの鉛蓄電池容量を示す。These show the lead acid battery capacity when changing the amount of diatomaceous earth with the amount of carbon according to Example 1 of the present invention as a parameter. は、本発明の実施例2による珪藻土量を変化したときの正極活物質利用率を示す。These show the utilization rate of a positive electrode active material when the amount of diatomaceous earth according to Example 2 of the present invention is changed. は、本発明の実施例2による珪藻土量を変化したときの鉛蓄電池容量を示す。These show lead acid battery capacity when the amount of diatomaceous earth by Example 2 of the present invention is changed. は、本発明の実施例4による中空繊維量を変化したときの正極活物質利用率を示す。These show the utilization rate of a positive electrode active material when the amount of hollow fibers according to Example 4 of the present invention is changed. は、本発明の実施例4による中空繊維量を変化したときの鉛蓄電池容量を示す。These show lead acid battery capacity when the amount of hollow fibers according to Example 4 of the present invention is changed.

Claims (19)

  1. 格子状集電体に充填され又はシート状集電体に塗布され、金属酸化物を主体とした活物質原料にカーボン及びシリカ多孔体を含有させた混練物の乾燥後かつ未化成状態の嵩密度が2.6×10-1ml/g以上であることを特徴とする二次電池用正極組成物。 Bulk density after drying and unformed state of a kneaded material filled in a grid-like current collector or coated on a sheet-like current collector and containing an active material material mainly composed of metal oxide and carbon and silica porous material Is a positive electrode composition for a secondary battery, wherein the positive electrode composition is 2.6 × 10 −1 ml / g or more.
  2. 前記カーボンをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料及び前記シリカ多孔体とが混合され混練されて生成される混練物であることを特徴とする請求項1に記載の二次電池用正極組成物。 The first kneaded material produced by kneading the carbon with an aqueous polyvinyl alcohol solution is a kneaded material produced by mixing and kneading the active material raw material and the porous silica material. 2. The positive electrode composition for a secondary battery according to 1.
  3. 前記カーボンと前記シリカ多孔体とをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料を混合して混練することで生成される混練物であることを特徴とする請求項1に記載の二次電池用正極組成物。 It is a kneaded product produced by mixing and kneading the active material raw material with a first kneaded product produced by kneading the carbon and the silica porous body with an aqueous polyvinyl alcohol solution. The positive electrode composition for secondary batteries according to claim 1.
  4. 金属酸化物を主体する活物質原料にカーボン及びシリカ多孔体を含有させた混練物から成ることを特徴とする二次電池用正極組成物。 A positive electrode composition for a secondary battery, comprising a kneaded material in which carbon and silica porous material are contained in an active material raw material mainly composed of a metal oxide.
  5. 前記カーボンをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料及び前記シリカ多孔体とが混合され混練されて生成される混練物であることを特徴とする請求項4に記載の二次電池用正極組成物。 The first kneaded product produced by kneading the carbon with an aqueous polyvinyl alcohol solution is a kneaded product produced by mixing and kneading the active material raw material and the porous silica material. 4. The positive electrode composition for a secondary battery according to 4.
  6. 前記カーボンと前記シリカ多孔体とをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料を混合して混練することで生成される混練物であることを特徴とする請求項4に記載の二次電池用正極組成物。 It is a kneaded product produced by mixing and kneading the active material raw material with a first kneaded product produced by kneading the carbon and the silica porous body with an aqueous polyvinyl alcohol solution. The positive electrode composition for secondary batteries according to claim 4.
  7. 格子状集電体に充填され又はシート状集電体に塗布され、金属酸化物を主体とした活物質原料にシリカ多孔体を含有させカーボンを含有しない混練物の乾燥後かつ未化成状態の嵩密度が2.5×10-1ml/g以上であることを特徴とする二次電池用正極組成物。 After drying a kneaded material filled with a grid-like current collector or coated on a sheet-like current collector, containing a porous silica in an active material raw material mainly composed of metal oxide and not containing carbon, the bulk in an unformed state A positive electrode composition for a secondary battery, wherein the density is 2.5 × 10 −1 ml / g or more.
  8. 金属酸化物を主体とした活物質原料にシリカ多孔体を含有させカーボンを含有しない混練物から成ることを特徴とする二次電池用正極組成物。 A positive electrode composition for a secondary battery comprising a kneaded material containing a porous silica in an active material raw material mainly composed of a metal oxide and containing no carbon.
  9. 前記活物質原料に対して前記シリカ多孔体を7.3モルパーセント以上含有させた混練物であることを特徴とする請求項1~8のいずれかに記載の二次電池用正極組成物。 The positive electrode composition for a secondary battery according to any one of claims 1 to 8, which is a kneaded product containing 7.3 mol% or more of the porous silica material relative to the active material raw material.
  10. 前記混練物に含まれる前記シリカ多孔体は、珪藻土、パーライト又はシラスバルーンであることを特徴とする請求項1~9のいずれかに記載の二次電池用正極組成物。 The positive electrode composition for a secondary battery according to any one of claims 1 to 9, wherein the porous silica contained in the kneaded material is diatomaceous earth, pearlite, or shirasu balloon.
  11. 前記混練物は微量の硫酸を含むことを特徴とする請求項1~10のいずれかに記載の二次電池用正極組成物。 The positive electrode composition for a secondary battery according to any one of claims 1 to 10, wherein the kneaded product contains a small amount of sulfuric acid.
  12. 金属酸化物を主体する活物質原料にカーボン及び中空繊維を含有させた混練物から成ることを特徴とする二次電池用正極組成物。 A positive electrode composition for a secondary battery, comprising a kneaded material in which carbon and hollow fibers are contained in an active material raw material mainly containing a metal oxide.
  13. 前記カーボンをポリビニルアルコール水溶液で混練して生成された混練物に、金属酸化物を主体とした活物質原料及び前記中空繊維とが混合され混練されて生成されることを特徴とする請求項12に記載の二次電池用正極組成物。 13. The kneaded product produced by kneading the carbon with an aqueous polyvinyl alcohol solution is produced by mixing and kneading the active material raw material mainly composed of a metal oxide and the hollow fiber. The positive electrode composition for secondary batteries as described.
  14. カーボンと中空繊維とをポリビニルアルコール水溶液で混練して生成された混練物に、前記活物質原料を混合して混練することで生成されることを特徴とする請求項12に記載の二次電池用正極組成物。 13. The secondary battery according to claim 12, wherein the active material raw material is mixed and kneaded into a kneaded product generated by kneading carbon and hollow fibers with a polyvinyl alcohol aqueous solution. Positive electrode composition.
  15. 前記カーボンをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料及び前記シリカ多孔体とが混合され混練されて生成される混練物であることを特徴とする二次電池用正極組成物の製造方法。 A secondary kneaded product produced by mixing and kneading the active material raw material and the porous silica material with a first kneaded product produced by kneading the carbon with an aqueous polyvinyl alcohol solution. A method for producing a positive electrode composition for a battery.
  16. 前記カーボンと前記シリカ多孔体とをポリビニルアルコール水溶液で混練して生成された第1の混練物に、前記活物質原料を混合して混練することで生成される混練物であることを特徴とする二次電池用正極組成物の製造方法。 It is a kneaded product produced by mixing and kneading the active material raw material with a first kneaded product produced by kneading the carbon and the silica porous body with an aqueous polyvinyl alcohol solution. The manufacturing method of the positive electrode composition for secondary batteries.
  17. 前記混練に含まれる前記シリカ多孔体は、珪藻土、パーライト又はシラスバルーンであることを特徴とする請求項15又は16に記載の二次電池用正極組成物の製造方法。 The method for producing a positive electrode composition for a secondary battery according to claim 15 or 16, wherein the porous silica contained in the kneading is diatomaceous earth, pearlite, or shirasu balloon.
  18. 前記混練物には微量の硫酸を含ませることを特徴とする請求項15~17のいずれかに記載の二次電池用正極組成物の製造方法 The method for producing a positive electrode composition for a secondary battery according to any one of claims 15 to 17, wherein the kneaded product contains a small amount of sulfuric acid.
  19. 請求項1~14のいずれかに記載の二次電池用正極組成物を使用し又は請求項15~18のいずれかに記載の二次電池用正極組成物の製造方法によって生成された二次電池用正極組成物を使用することを特徴とする二次電池。 A secondary battery produced by using the positive electrode composition for a secondary battery according to any one of claims 1 to 14 or by the method for producing a positive electrode composition for a secondary battery according to any one of claims 15 to 18. A secondary battery using the positive electrode composition.
PCT/JP2009/000259 2008-01-25 2009-01-23 Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery WO2009093464A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980000027A CN101689634A (en) 2008-01-25 2009-01-23 Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery
TW098121972A TW201029250A (en) 2009-01-23 2009-06-30 Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008014937 2008-01-25
JP2008-014937 2008-01-25

Publications (1)

Publication Number Publication Date
WO2009093464A1 true WO2009093464A1 (en) 2009-07-30

Family

ID=40900973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000259 WO2009093464A1 (en) 2008-01-25 2009-01-23 Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery

Country Status (3)

Country Link
JP (1) JP2009200042A (en)
CN (1) CN101689634A (en)
WO (1) WO2009093464A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112231B2 (en) * 2010-11-05 2015-08-18 Cabot Corporation Lead-acid batteries and pastes therefor
CN103531801A (en) * 2013-10-30 2014-01-22 合肥恒能新能源科技有限公司 Modified lithium iron phosphate positive electrode material and preparation method thereof
CN108511740A (en) * 2017-03-13 2018-09-07 万向二三股份公司 A kind of high-specific-capacity silicon carbon electrode coating preparation method
JP7049739B2 (en) * 2019-11-06 2022-04-07 古河電池株式会社 Manufacturing method of lead-acid battery and positive electrode plate of lead-acid battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212770A (en) * 1988-06-29 1990-01-17 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH03201363A (en) * 1989-12-27 1991-09-03 Tohoku Electric Power Co Inc Enclosed type lead storage battery
JP2000251896A (en) * 1999-02-25 2000-09-14 Shin Kobe Electric Mach Co Ltd Lead-acid battery and its manufacture
JP2002008643A (en) * 2000-06-27 2002-01-11 Yuasa Corp Preparation method of active material paste for lead storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212770A (en) * 1988-06-29 1990-01-17 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH03201363A (en) * 1989-12-27 1991-09-03 Tohoku Electric Power Co Inc Enclosed type lead storage battery
JP2000251896A (en) * 1999-02-25 2000-09-14 Shin Kobe Electric Mach Co Ltd Lead-acid battery and its manufacture
JP2002008643A (en) * 2000-06-27 2002-01-11 Yuasa Corp Preparation method of active material paste for lead storage battery

Also Published As

Publication number Publication date
CN101689634A (en) 2010-03-31
JP2009200042A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
EP3496203B1 (en) Energy storage devices comprising carbon-based additives and methods of making thereof
JP4983304B2 (en) Energy conversion device
CN107735889B (en) Doped conductive oxides and improved electrochemical energy storage device plates based thereon
TWI449246B (en) New electrode formulations for lithium-ion batteries and method for obtaining it
WO2009122749A1 (en) Negative electrode composition for secondary battery and intermediate composition for producing the composition, and secondary battery using the compositions
JP5892429B2 (en) Liquid lead-acid battery
JP2008047452A (en) Paste type electrode plate and its manufacturing method
JP2013211205A (en) Negative electrode plate for lead-acid storage battery, manufacturing method therefor and lead-acid storage battery
JP4053272B2 (en) Negative electrode for lead acid battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
US20140050986A1 (en) Active materials for lead acid battery
WO2009093464A1 (en) Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery
CN112436147B (en) High-temperature paste mixing process for lead paste of lead-acid storage battery
WO2012056710A1 (en) Positive electrode for alkaline storage battery, production method for same, and alkaline storage battery
CN101651209B (en) Preparation method of Ni-MH secondary battery anode
JP2008258131A (en) Positive electrode composition for secondary battery and manufacturing method thereof
JP2008277057A (en) Positive electrode active material for secondary battery and its manufacturing method
KR100433470B1 (en) Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte
JP2010020932A (en) Negative electrode composition for secondary battery
JP2007173112A (en) Anode active material for secondary battery, secondary battery and their manufacturing method
EP3937276A1 (en) Anode and lithium ion battery
JP2014049221A (en) Electrode plate for lead acid battery and lead acid battery
CN116114084A (en) Method of manufacturing lead acid battery assembly

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000027.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09704501

Country of ref document: EP

Kind code of ref document: A1