JPH0212770A - Lead-acid battery - Google Patents
Lead-acid batteryInfo
- Publication number
- JPH0212770A JPH0212770A JP63163466A JP16346688A JPH0212770A JP H0212770 A JPH0212770 A JP H0212770A JP 63163466 A JP63163466 A JP 63163466A JP 16346688 A JP16346688 A JP 16346688A JP H0212770 A JPH0212770 A JP H0212770A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- lead
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002253 acid Substances 0.000 title claims description 13
- 239000007774 positive electrode material Substances 0.000 claims abstract description 34
- 239000012510 hollow fiber Substances 0.000 claims abstract description 33
- 239000011148 porous material Substances 0.000 claims description 20
- 230000002093 peripheral effect Effects 0.000 claims description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 28
- 239000000835 fiber Substances 0.000 abstract description 7
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 abstract description 7
- 238000007599 discharging Methods 0.000 abstract description 4
- 239000011149 active material Substances 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 5
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 5
- -1 polypropylene Polymers 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002003 electrode paste Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- KEQXNNJHMWSZHK-UHFFFAOYSA-L 1,3,2,4$l^{2}-dioxathiaplumbetane 2,2-dioxide Chemical compound [Pb+2].[O-]S([O-])(=O)=O KEQXNNJHMWSZHK-UHFFFAOYSA-L 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229910052924 anglesite Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007600 charging Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は鉛蓄電池に関し、特に正極活物質の高容量化を
図った鉛蓄電池に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a lead-acid battery, and more particularly to a lead-acid battery in which the capacity of a positive electrode active material is increased.
従来の技術
一般に、鉛蓄電池はコストと性能のバランスが良くとれ
た2次電池として広く用いられている。BACKGROUND OF THE INVENTION Generally, lead-acid batteries are widely used as secondary batteries that have a good balance between cost and performance.
ところで、この鉛蓄電池の正極活物質として二酸化鉛(
PbO2)が用いられるとともに、この正極活物質には
硫酸との反応を全体的に効率よく行わせるために、表面
から内部まで連通ずる細孔が多数形成されたものであっ
た。By the way, lead dioxide (lead dioxide) is used as the positive electrode active material of this lead-acid battery.
PbO2) was used, and this positive electrode active material had a large number of pores that communicated from the surface to the inside in order to efficiently carry out the reaction with sulfuric acid.
発明が解決しようとする課題
上記従来の構成によると、他の2次電池と比較すると、
重量当りのエネルギー密度(Wh /kq )が劣ると
いう課題がある。これは下記反応式で示される理論エネ
ルギー密度が177■Aqと低いだけでなく、正極活物
質の利用率が40%前後と低いことが、エネルギー密度
CWh1kg)を低くする原因となっている。すなわち
、と記反応式で示す放電反応が進行すると、正極活物質
表面上には硫酸鉛PbSO4の結晶が成長し、極板の表
面または極板表面近傍の細孔(孔径0.1μm以上)が
生成した硫酸鉛によって閉塞される。その結果、硫酸の
正極内部までの拡散が阻害された状態で内部抵抗の増大
が起こり、未反応活物質を内部に残したまま放電終止電
圧に達する。このことが利用率の低い原因となっていた
。一方、正極活物質の多孔度を増大し、放電反応面積を
広げるとともに、硫酸鉛生成による細孔の閉塞を最小限
に防止すると、活物質密度の低下から、活物質粒子間の
結着性が弱まり、充電・放電のくり返しによる活物質の
軟化が促進されやすくなり、サイクル寿命が短かくなる
という課題があった。Problems to be Solved by the Invention According to the above conventional configuration, compared to other secondary batteries,
There is a problem that the energy density per weight (Wh/kq) is inferior. This is not only due to the low theoretical energy density of 177 Aq shown in the reaction formula below, but also because the utilization rate of the positive electrode active material is low at around 40%, which causes the energy density CWh1kg) to be low. That is, as the discharge reaction shown by the reaction formula progresses, lead sulfate PbSO4 crystals grow on the surface of the positive electrode active material, and pores (pore diameter 0.1 μm or more) on or near the electrode plate surface grow. It is blocked by the lead sulfate produced. As a result, the internal resistance increases while the diffusion of sulfuric acid to the inside of the positive electrode is inhibited, and the discharge end voltage is reached while unreacted active material remains inside. This was the cause of the low usage rate. On the other hand, if the porosity of the positive electrode active material is increased to widen the discharge reaction area and to minimize the clogging of pores due to lead sulfate formation, the binding between active material particles will decrease due to the decrease in active material density. This poses a problem in that the active material becomes more susceptible to softening due to repeated charging and discharging, resulting in a shortened cycle life.
本発明は上記の課題を解決するもので、正極活物質密度
を低下させることなく、硫酸の拡散が極板内部まで達す
るようにし、正極活物質利用率の向上を図ることができ
る鉛蓄電池を提供することを目的とするものである。The present invention solves the above problems, and provides a lead-acid battery that allows diffusion of sulfuric acid to reach the inside of the electrode plate without reducing the density of the positive electrode active material, thereby improving the utilization rate of the positive electrode active material. The purpose is to
課題を解決するための手段
上記課題を解決するため、本発明の第1の手段は、正極
活物質中に、長手方向に沿う直径0.1〜500μmの
空孔を有する中空繊維を添加したものである。Means for Solving the Problems In order to solve the above problems, the first means of the present invention is to add hollow fibers having pores having a diameter of 0.1 to 500 μm along the longitudinal direction into the positive electrode active material. It is.
また、第2の手段は、第1の手段のものにおいて、中空
繊維の周壁部にさらに直径0.1〜500μmの空孔を
複数形成したものである。Further, the second means is the same as the first means in which a plurality of holes having a diameter of 0.1 to 500 μm are further formed in the peripheral wall of the hollow fiber.
作用
上記構成によると、正極活物質中に中空繊維を添加した
ので、放電反応によって生じた硫酸鉛が正極表面、およ
び正極表面近傍の細孔を塞いでも、繊維の中空部分であ
る空孔を介して硫酸が正極活物質内を拡散する。したが
って正極内部までの放電反応が可能となり、正極活物質
の利用率が向上する。さらに、この中空繊維の周壁部に
別の空孔を形成することにより、正極活物質内の硫酸の
一層の拡散が行われ、正極活物質の利用率がさらに向上
する。Effect According to the above configuration, since hollow fibers are added to the positive electrode active material, even if lead sulfate generated by the discharge reaction blocks the positive electrode surface and the pores near the positive electrode surface, it will not pass through the pores that are the hollow portions of the fibers. sulfuric acid diffuses within the positive electrode active material. Therefore, the discharge reaction can occur up to the inside of the positive electrode, and the utilization rate of the positive electrode active material is improved. Furthermore, by forming another hole in the peripheral wall of the hollow fiber, sulfuric acid is further diffused within the positive electrode active material, and the utilization rate of the positive electrode active material is further improved.
実施例 以下、本発明の一実施例を第1図に基づき説明する。Example An embodiment of the present invention will be described below with reference to FIG.
本実施例における鉛N電池は、その正極活物質中に、第
1図に示すような、長手方向に沿う直径0.1〜500
μm の空孔1が全長に亘って形成された中空繊維2を
所定量添加したものである。なお、第1図において、中
空繊維の周壁部3の形状および空孔1の繊維長さ方向に
垂直な断面形状を、円形として示したが、円形以外の形
状であってもよい。但し、空孔1については、非円形の
場合、最小長さが0.1μm以上、最大長さが500μ
m以下であることが必要とされる。また、中空繊維2の
材質としては、ガラス、ポリプロピレン、ポリエチレン
、ポリ塩化ビニル、ABS、ポリスチレンなど耐硫酸性
の材料が挙げられる。The lead-N battery in this example has a positive electrode active material with a diameter of 0.1 to 500 mm along the longitudinal direction, as shown in FIG.
A predetermined amount of hollow fibers 2 in which pores 1 of μm are formed over the entire length are added. In addition, in FIG. 1, the shape of the peripheral wall portion 3 of the hollow fiber and the cross-sectional shape of the hole 1 perpendicular to the fiber length direction are shown as circular, but the shape may be other than circular. However, regarding hole 1, if it is non-circular, the minimum length is 0.1 μm or more and the maximum length is 500 μm.
m or less. Furthermore, examples of the material for the hollow fibers 2 include sulfuric acid-resistant materials such as glass, polypropylene, polyethylene, polyvinyl chloride, ABS, and polystyrene.
このように、正極活物質中に中空繊維2を添加すること
によって、放電反応によって生じた硫酸鉛が正極表面、
および正極表面近傍の細孔を塞いでも、繊維の中空部分
である空孔1を介して硫酸が正極活物質内を拡散するこ
とができ、したがって正極内部までの放電反応が可能と
なり、正極活物質の利用率が向上する。なお、硫酸の拡
散が十分に行われるためには、空孔1の直径は0.1μ
m以上が必要である。また、直径が500μmより大き
くなると、中空繊維添加時に正極ペーストが空孔内]こ
侵入し、空孔端を塞ぎ硫酸の拡散が阻害される。In this way, by adding the hollow fibers 2 to the positive electrode active material, the lead sulfate generated by the discharge reaction is transferred to the positive electrode surface.
Even if the pores near the surface of the positive electrode are blocked, sulfuric acid can diffuse within the positive electrode active material through the pores 1, which are the hollow parts of the fibers. utilization rate will improve. In addition, in order for sulfuric acid to diffuse sufficiently, the diameter of pore 1 must be 0.1μ.
m or more is required. Further, if the diameter is larger than 500 μm, the positive electrode paste enters into the pores when adding the hollow fibers, blocks the ends of the pores, and inhibits the diffusion of sulfuric acid.
したがって、空孔1の直径は0.1〜500μmが最適
である。また、この中空繊維2は、正極のペースト製造
工程の最終工程で添加すればよい。Therefore, the optimum diameter of the pores 1 is 0.1 to 500 μm. Further, the hollow fibers 2 may be added in the final step of the positive electrode paste manufacturing process.
次に、本発明の他の実施例を第2図に基づき説明する。Next, another embodiment of the present invention will be described based on FIG.
この他の実施例における鉛蓄電池は、その正極活物質中
に、第2図に示すような、長手方向に沿う直径0.1〜
500μmの第1空孔11が全長に亘って形成されかつ
その周壁部12にと記第1空孔11と同様にその直径が
0.1〜5001tmの第2空孔13が多数形成された
中空繊維14を所定量添加したものである、1このよう
に、第1空孔11を有する中空繊維t4の周壁部12に
さらに第2空孔13を形成したので、上記実施例の場合
よりも正極活物質中の硫酸の拡散性が良くなり、活物質
利用率がさらに向上する。The lead-acid battery in this other embodiment has a positive electrode active material with a longitudinal diameter of 0.1 to 100 mm as shown in FIG.
A hollow space in which a first hole 11 with a diameter of 500 μm is formed over the entire length, and a large number of second holes 13 with a diameter of 0.1 to 5001 tm are formed in the peripheral wall portion 12. In this way, since the second holes 13 are further formed in the peripheral wall portion 12 of the hollow fiber t4 having the first holes 11, the positive electrode is The diffusibility of sulfuric acid in the active material is improved, and the active material utilization rate is further improved.
なお、この場合の中空繊維14の材質および各空孔11
,13の形状は、上記実施例と同様である。In addition, the material of the hollow fiber 14 and each hole 11 in this case
, 13 are the same as in the above embodiment.
ここで、上記各実施例のものと中空繊維を混入しないも
のとについて、正極活物質の利用率を調べた実験結果に
ついて説明する。Here, the results of an experiment in which the utilization rate of the positive electrode active material was investigated for each of the above-mentioned Examples and the case in which no hollow fibers were mixed will be explained.
なお、前者の実施例における正極活物質中に混入した中
空繊維2として、材質が親水処理を施したポリエチレン
、空孔直径が200μm、周壁厚さが20μm1ta維
長さが311Nのものを使用するとともに、この中空繊
維2を活物質密度が4.oy/cdの正極に0.1ω【
%の割合で混入した。この正極をAとする。また、後者
の実施例における中空繊維14として、材質が親水処理
を施したポリエチレン、空孔直径が200 pm、周壁
厚さが20μm1周壁部の空孔直径が0.2μm、繊維
長さが3fflのものを使用するとともに、この中空繊
維14を活物質密度が4.of/cdの正極に0.1ω
t%の割合で混入した。この正極をBとする。比較のた
めの中空繊維を混入しない活物質密度4.oy/c−の
正極をCとする。In addition, as the hollow fibers 2 mixed in the positive electrode active material in the former example, polyethylene with a hydrophilic treatment, a pore diameter of 200 μm, a peripheral wall thickness of 20 μm, a fiber length of 311 N, and , this hollow fiber 2 has an active material density of 4. 0.1ω on the positive electrode of oy/cd [
% of the mixture. This positive electrode is designated as A. The hollow fibers 14 in the latter embodiment are made of polyethylene that has undergone hydrophilic treatment, has a pore diameter of 200 pm, a peripheral wall thickness of 20 μm, a pore diameter of 0.2 μm per peripheral wall, and a fiber length of 3 ffl. This hollow fiber 14 has an active material density of 4. 0.1Ω on the positive electrode of/cd
It was mixed at a ratio of t%. This positive electrode is designated as B. Active material density without mixing hollow fibers for comparison 4. Let C be the positive electrode of oy/c-.
そして、実験方法として、正極活物質量の理論放電容量
をICAhとした時、1/20Cに相当する電流値で定
電流充放電を繰り返し、A、B、Cのそれぞれの利用率
の変化を測定した。その結果を第3図に示した。図中、
縦軸は、正極活物質利用率G)を表わし、横軸はサイク
ル数(回)を表わしている。電池は正極容量規制とし、
正極容量に対して5倍の容量を有する負極を用い、放電
終止電圧は1.7Vとした。図に示すように中空繊維の
添加によって正極の利用率が向上し、さらに、周壁部に
空孔を有する中空繊維の方が利用率が向としていること
がわかる。また、CとBを放電状態で、イオン交換水で
洗浄後、真空乾燥した後、極板内部のイオウ(S)の分
布をX線マイクロアナライザで調べると、Bの極板では
極板内部までイオウの分布があり、明らかにCとは異な
っていた。この結果より、中空繊維の添加による硫酸の
拡散効果を明確にすることができた。As an experimental method, when the theoretical discharge capacity of the amount of positive electrode active material is ICAh, constant current charging and discharging is repeated at a current value equivalent to 1/20C, and changes in the utilization rates of A, B, and C are measured. did. The results are shown in Figure 3. In the figure,
The vertical axis represents the positive electrode active material utilization rate G), and the horizontal axis represents the number of cycles (times). Batteries are subject to positive electrode capacity regulations,
A negative electrode having a capacity five times that of the positive electrode was used, and the discharge end voltage was 1.7V. As shown in the figure, the addition of hollow fibers improves the utilization rate of the positive electrode, and furthermore, it can be seen that the utilization rate of the hollow fibers having holes in the peripheral wall is better. In addition, after cleaning C and B with ion-exchanged water and vacuum drying in a discharged state, the distribution of sulfur (S) inside the electrode plate was examined using an X-ray microanalyzer. There was a distribution of sulfur, which was clearly different from that of C. From this result, it was possible to clarify the diffusion effect of sulfuric acid due to the addition of hollow fibers.
発明の効果
以上のように、本発明の構成によれば、正極活物質中に
中空繊維を添加したので、放電反応によって生じた硫酸
鉛が正極表面、および正極表面近傍の細孔を塞いでも、
繊維の中空部分である空孔を介して硫酸が正極活物質中
内を拡散することができるので、正極内部までの放電反
応が可能となり、したがって活物質密度を低下させるこ
となく利用率の向上がはかれ、しかも活物質粒子間の結
着性を弱めることがないためサイクル寿命が短かくなる
のを防止することができる。さらに、中空繊維の周壁部
に別の空孔を形成することにより、正極活物質内での硫
酸の一層の拡散が行われ、正極活物質の利用率をさらに
向上させることができる。なお、この中空繊維は正極の
ペースト製造工程の最終工程で添加すればよく、従来の
設備、工程の大巾な変更を必要とせず、またこの構成は
すべての鉛蓄電池に適用することができるものである。Effects of the Invention As described above, according to the structure of the present invention, since hollow fibers are added to the positive electrode active material, even if lead sulfate generated by the discharge reaction blocks the positive electrode surface and the pores near the positive electrode surface,
Sulfuric acid can diffuse into the positive electrode active material through the pores, which are the hollow parts of the fibers, making it possible for the discharge reaction to reach the inside of the positive electrode, thereby improving the utilization rate without reducing the active material density. Moreover, since the bond between the active material particles is not weakened, the cycle life can be prevented from being shortened. Furthermore, by forming another hole in the peripheral wall of the hollow fiber, further diffusion of sulfuric acid within the positive electrode active material is achieved, and the utilization rate of the positive electrode active material can be further improved. Note that this hollow fiber can be added in the final step of the positive electrode paste manufacturing process, and does not require major changes to conventional equipment or processes, and this configuration can be applied to all lead-acid batteries. It is.
第1図は本発明の一実施例における鉛蓄電池に使用され
る中空繊維の概略構成を示す斜視図、第2図は本発明の
他の実施例における鉛蓄電池に使用される中空繊維の概
略構成を示す斜視図、第3図は鉛蓄電池における正極活
物質利用率とサイクル数との関係を示す図である。
1・・・空孔、2・・・中空繊維、3・・・周壁部、1
1・・・第1空孔、12・・・周壁部、13・・・第2
空孔、14・・・中空繊維。FIG. 1 is a perspective view showing a schematic structure of a hollow fiber used in a lead-acid battery according to an embodiment of the present invention, and FIG. 2 is a schematic structure of a hollow fiber used in a lead-acid battery according to another embodiment of the present invention. FIG. 3 is a diagram showing the relationship between the positive electrode active material utilization rate and the number of cycles in a lead-acid battery. DESCRIPTION OF SYMBOLS 1... Hole, 2... Hollow fiber, 3... Peripheral wall part, 1
DESCRIPTION OF SYMBOLS 1...First hole, 12...Peripheral wall part, 13...Second
Holes, 14...Hollow fibers.
Claims (1)
0μmの空孔を有する中空繊維を添加した鉛蓄電池。 2、中空繊維の周壁部にさらに直径0.1〜500μm
の空孔を複数形成した請求項1記載の鉛蓄電池。[Claims] 1. In the positive electrode active material, the diameter along the longitudinal direction is 0.1 to 50.
A lead-acid battery containing hollow fibers with 0 μm pores. 2. A diameter of 0.1 to 500 μm is added to the peripheral wall of the hollow fiber.
The lead-acid battery according to claim 1, wherein a plurality of holes are formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63163466A JPH0212770A (en) | 1988-06-29 | 1988-06-29 | Lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63163466A JPH0212770A (en) | 1988-06-29 | 1988-06-29 | Lead-acid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0212770A true JPH0212770A (en) | 1990-01-17 |
Family
ID=15774410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63163466A Pending JPH0212770A (en) | 1988-06-29 | 1988-06-29 | Lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0212770A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009093464A1 (en) * | 2008-01-25 | 2009-07-30 | Ntt Data Ex Techno Corporation | Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery |
JP2013243054A (en) * | 2012-05-21 | 2013-12-05 | Gs Yuasa Corp | Positive electrode plate for lead-acid battery and lead-acid battery |
CN114068922A (en) * | 2021-11-17 | 2022-02-18 | 深圳大学 | Sodium-nickel chloride battery positive electrode material with active substance with hollow structure and preparation method thereof |
-
1988
- 1988-06-29 JP JP63163466A patent/JPH0212770A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009093464A1 (en) * | 2008-01-25 | 2009-07-30 | Ntt Data Ex Techno Corporation | Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery |
JP2013243054A (en) * | 2012-05-21 | 2013-12-05 | Gs Yuasa Corp | Positive electrode plate for lead-acid battery and lead-acid battery |
CN114068922A (en) * | 2021-11-17 | 2022-02-18 | 深圳大学 | Sodium-nickel chloride battery positive electrode material with active substance with hollow structure and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030049525A1 (en) | Separator for sealed lead-acid battery | |
JP7255492B2 (en) | lead acid battery | |
JP3366037B2 (en) | Sealed lead battery | |
JPH0212770A (en) | Lead-acid battery | |
JP7167934B2 (en) | lead acid battery | |
JPH01128367A (en) | Sealed type lead storage battery | |
JPH10270028A (en) | Positive electrode plate for lead-acid battery | |
JPH01124958A (en) | Sealed lead-acid battery | |
JPH0554890A (en) | Sealed lead-acid battery | |
JPS58197662A (en) | Pasted positive electrode for lead storage battery | |
JPH10247491A (en) | Lead-acid battery and its manufacture | |
JP4488220B2 (en) | Method for producing positive electrode plate for lead acid battery | |
JPS6028171A (en) | Manufacture of paste type pole plate for lead storage battery | |
JPS59151772A (en) | Manufacture of sealed lead-acid battery | |
JP3414941B2 (en) | Electrode plate for lead storage battery and method of manufacturing the same | |
JPH01122564A (en) | Sealed type lead-acid battery | |
JPS601757A (en) | Manufacture of sealed lead storage battery | |
JPH08180857A (en) | Electrode plate for lead-acid battery | |
JPH0128624Y2 (en) | ||
JPH0249353A (en) | Lead-acid battery | |
JP2000149932A (en) | Lead-acid battery and its manufacture | |
JP2000036305A (en) | Plate for lead-acid battery | |
JPS62170173A (en) | Sealed lead-acid battery | |
JPS59180971A (en) | Manufacturing method for paste type lead positive electrode plate | |
JPH07142063A (en) | Lead-acid battery and its manufacture |