JPH0249353A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH0249353A
JPH0249353A JP63200593A JP20059388A JPH0249353A JP H0249353 A JPH0249353 A JP H0249353A JP 63200593 A JP63200593 A JP 63200593A JP 20059388 A JP20059388 A JP 20059388A JP H0249353 A JPH0249353 A JP H0249353A
Authority
JP
Japan
Prior art keywords
active material
sulfuric acid
lead
electrode plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63200593A
Other languages
Japanese (ja)
Inventor
Miyuki Nishimura
西村 美由紀
Koichi Yamasaka
山坂 孝一
Seiji Kamiharashi
征治 上原子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63200593A priority Critical patent/JPH0249353A/en
Publication of JPH0249353A publication Critical patent/JPH0249353A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase large pores only in an active material to increase utilization of the active material by using a plate obtained by filling a paste-like active material prepared by adding a substance, soluble in a sulfuric acid aqueous solution, having a specified diameter to lead powder. CONSTITUTION:A plate obtained by filling a paste-like active material prepared by adding a substance, soluble in a sulfuric acid aqueous solution, having a diameter of 0.08-1.0mum to lead powder is used. Pores only having sizes adequate for passing sulfuric acid during formation are formed in the active material. Diffusion of sulfuric acid in the plate is increased, and reaction is advanced to the inside of the plate. Utilization of the active material is therefore enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池に関するもので更に詳しくは活物質の
利用率向上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to lead-acid batteries, and more particularly to improving the utilization rate of active materials.

従来の技術 鉛蓄電池は安定な性能を有し、エネルギー貯蔵手段とし
て非常に優れている。しかし、池の蓄電池系と比較して
、エネルギー密IJ[(Wh/kg )が劣るという欠
点を有している。これは活物質の利用率が悪いというこ
とによるものである。この活物質の利用率を向上させる
ことが、鉛蓄電池のエネルギー密度を向上させるために
、最も効果的であると考えられる。
Conventional technology Lead-acid batteries have stable performance and are very good as energy storage means. However, it has the disadvantage that the energy density IJ [(Wh/kg) is inferior to that of pond storage battery systems. This is due to the poor utilization rate of the active material. Improving the utilization rate of this active material is considered to be the most effective way to improve the energy density of lead-acid batteries.

鉛蓄電池の正極及び負極の活物質は、原料となる鉛粉を
、それぞれの添加物とともに、希硫酸またはその他の練
液と混合し、攪拌しながらペーストを作りこのペースト
を格子中に充填し、所定の乾燥、化成の工程を経て、作
製されている。
The active materials for the positive and negative electrodes of lead-acid batteries are made by mixing lead powder as a raw material with dilute sulfuric acid or other mixing liquid, along with the respective additives, making a paste while stirring, and filling this paste into a lattice. It is manufactured through prescribed drying and chemical formation processes.

化成により正極活物質は二酸化鉛pbo2に変化し負極
活物質は鉛pbに変化する。そして、放電、充電の繰り
返しは、下記の反応式で示すように起こる。
Through chemical formation, the positive electrode active material changes to lead dioxide pbo2, and the negative electrode active material changes to lead pb. The repetition of discharging and charging occurs as shown in the reaction formula below.

放電反応が進行すると、放電生成物である硫酸鉛PbS
O4が、電解液である硫酸H2SO4の拡散の良い極板
表面から生成され、結晶として成長していき、極板表面
を覆うようになる。この放電反応の進行状況に、大きく
影響を与えるのは電解液である硫酸H2SO4の極板内
での拡散であり、極板内部に十分存在していることが望
ましい。
As the discharge reaction progresses, the discharge product lead sulfate PbS
O4 is generated from the surface of the electrode plate where the electrolytic solution sulfuric acid H2SO4 can diffuse well, and grows as a crystal to cover the surface of the electrode plate. What greatly influences the progress of this discharge reaction is the diffusion of sulfuric acid H2SO4, which is an electrolytic solution, within the electrode plate, and it is desirable that the electrolyte be sufficiently present inside the electrode plate.

ところで、鉛蓄電池の極板活物質は多くのボアを持つ、
多孔性のものであシ、次の2種類に大別することができ
る。ひとつは直径Ojμm 未満の個々の結晶の集合に
よりできる小さなボアで、活物質の表面積を増加させ反
応の場を提供している。
By the way, the plate active material of lead-acid batteries has many bores.
It is porous and can be roughly divided into the following two types. One is a small pore formed by a collection of individual crystals with a diameter of less than Ojμm, which increases the surface area of the active material and provides a reaction field.

もうひとつは、直径0.1μm以上の個々の結晶が集合
したものが結合することによりできる大きなボアで、こ
のボアが電解液の移動の通路となっている。つまりボア
の中でも硫酸の拡散に寄与するのは、直径Q、1μm以
上の大きなボアである。よって大きなボアを持つ極板で
は硫酸の拡散が良く、極板内部まで反応するため、極板
中の活物質の利用率が高くなる。
The other is a large bore formed by combining individual crystals with a diameter of 0.1 μm or more, and this bore serves as a passage for the electrolyte to move. In other words, among the bores, it is the large bores with a diameter Q of 1 μm or more that contribute to the diffusion of sulfuric acid. Therefore, in an electrode plate with a large bore, sulfuric acid diffuses well and reacts to the inside of the electrode plate, increasing the utilization rate of the active material in the electrode plate.

従来のペースト処方では、第2図に示すように、活物質
中のボアは全体的に少なく、硫酸の拡散が悪く、利用率
も悪いものであった。
In the conventional paste formulation, as shown in FIG. 2, the number of bores in the active material was generally small, the diffusion of sulfuric acid was poor, and the utilization rate was also poor.

次にボアを増やすため、鉛粉練今時に多量の水を入れ、
活物質中のボアを増やし、硫酸の拡散を良くして利用率
の向上を計った。この方法では、活物質中のボアは、大
きいボアも小さいボアも全般的に増えた。
Next, to increase the bore, add a large amount of water while mixing lead powder.
The aim was to increase the utilization rate by increasing the number of bores in the active material and improving the diffusion of sulfuric acid. With this method, the number of bores in the active material, both large and small, was increased overall.

発明が解決しようとする課題 このような方法では、活物質中の硫酸の拡散に関与する
大きなボアのみが増加するのではなく、小さなボアまで
も増加する。小さなボアは結晶の集合によりできるボア
であるため、これが増加すると活物質の結晶間の結着性
が悪くなり、原板強度が弱まるのでサイクル特性が悪く
なるという課題を有していた。
Problems to be Solved by the Invention In such a method, not only the large pores involved in the diffusion of sulfuric acid in the active material are increased, but also the small pores are increased. Since small bores are formed by aggregation of crystals, when the number of small bores increases, the binding between the crystals of the active material deteriorates, which weakens the strength of the original plate, resulting in poor cycle characteristics.

本発明は、上記従来の課題を解決するもので、活物質中
に小さいボアを増やさず硫酸の移動の通路となる大きな
ボアのみを増加させることにより、サイクル特性を下げ
ることなく、硫酸の拡散を良くして利用率を高め、エネ
ルギー密度(W h 、、/kg )を向上させること
を目的とするものである。
The present invention solves the above-mentioned conventional problems. By increasing only the large bores that serve as passages for sulfuric acid movement without increasing the number of small bores in the active material, the diffusion of sulfuric acid can be improved without deteriorating the cycle characteristics. The purpose of this is to increase the utilization rate and improve the energy density (W h , /kg).

課題を解決するための手段 このような課題を解決するために、本発明は鉛粉に直径
0.08μm〜1.071mで化成時の硫酸水溶液に可
溶性の物質を添加したペースト状活物質を塗着した極板
を用いることを特徴とする鉛蓄電池である。
Means for Solving the Problems In order to solve these problems, the present invention coats lead powder with a paste-like active material having a diameter of 0.08 μm to 1.071 m and containing a substance soluble in an aqueous sulfuric acid solution during formation. This is a lead-acid battery characterized by the use of attached electrode plates.

作用 上記のように、鉛粉に直径0.08μm〜1.0μmで
化成時の硫酸水溶液に可溶性の物質を添加し、化成時に
可溶性物質を溶かし出すことによりペースト活物質中に
、硫酸が通過するのに適切な大きなボアのみをあけるこ
とが可能となる。このため、極板内での硫酸の拡散が良
くなり、極板内部まで反応が起こり、活物質の利用率が
高められる。すなわち、電池のエネルギー密度(Wh/
kg)が向上することになる。
Effect As mentioned above, by adding a substance with a diameter of 0.08 μm to 1.0 μm to lead powder that is soluble in an aqueous sulfuric acid solution during formation, and dissolving the soluble substance during formation, sulfuric acid passes into the paste active material. This makes it possible to drill only large bores suitable for Therefore, the diffusion of sulfuric acid within the electrode plate is improved, the reaction occurs even inside the electrode plate, and the utilization rate of the active material is increased. In other words, the energy density of the battery (Wh/
kg) will be improved.

また、大きなボアのみをあけることができるので、活物
質の結晶間の結着性を悪くすることもなく、サイクル特
性を下げることなく、エネルギー密度が向上することと
なる。
Furthermore, since only large bores can be formed, the energy density is improved without impairing the binding between the crystals of the active material and without degrading the cycle characteristics.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例で、鉛粉に直径0.08μm〜
1−Qμmを有し、化成時の硫酸水溶液に可溶性の物質
を添加し5作製した活物質の概念図である。第1図にお
いてムはペーストを格子中に充填し、乾燥した状態のも
のである。この未化成の乾燥状態の時貞では、硫酸水溶
液に可溶性の物質として添加したナイロンビーズが存在
している。この極板を硫酸水溶液中で化成することによ
り、Bに示した様にナイロンビーズが溶けだし大きなボ
アがあいた活物質となる。
Figure 1 shows an example of the present invention, in which lead powder has a diameter of 0.08 μm or more.
FIG. 5 is a conceptual diagram of an active material having a diameter of 1-Q μm and prepared by adding a soluble substance to an aqueous sulfuric acid solution during chemical formation. In FIG. 1, the paste is filled into a lattice and dried. In this dry, unformed Tokisada, nylon beads added as a soluble substance to the sulfuric acid aqueous solution are present. By chemically converting this electrode plate in an aqueous sulfuric acid solution, the nylon beads begin to melt as shown in B, forming an active material with large bores.

第2図は本発明の鉛粉にナイロンビーズを添加し大きな
ボアをあけた活物質と、従来の活物質、及び多量の水を
加えた活物質の三種類の活物質の孔径分布を示したもの
である。従来の活物質ではボアは全体的に少なく、又多
量の水を加えた活物質では孔径Ojμm以上の大きなボ
アが多くなっているのに加え、孔径0.1μm以下の小
さなボアも多くなっている。これに対して、本発明の活
物質においては、口径0.1μm以上の大きなボアのみ
多くなっているのが確認できた。
Figure 2 shows the pore size distribution of three types of active materials: the active material of the present invention in which nylon beads are added to lead powder and large pores are made, the conventional active material, and the active material in which a large amount of water is added. It is something. Conventional active materials have fewer pores overall, and active materials with a large amount of water added have many large pores with a pore diameter of Ojμm or more, as well as many small pores with a pore diameter of 0.1μm or less. . In contrast, in the active material of the present invention, it was confirmed that only large bores with a diameter of 0.1 μm or more were present.

上記第1図の活物質を用いて鉛蓄電池を作製する。たと
えば、鉛粉1kgに対して、直径0.1/7!11のナ
イロンビーズを0.2重量%加える。まず、鉛粉に純水
9o肩e及び比重1.4希硫酸1oOrutを添加しよ
く混練し、いわゆるペースト状物質を得る。
A lead-acid battery is manufactured using the active material shown in FIG. 1 above. For example, 0.2% by weight of nylon beads with a diameter of 0.1/7!11 is added to 1kg of lead powder. First, 90 degrees of pure water and 10 degrees of dilute sulfuric acid with a specific gravity of 1.4 are added to lead powder and thoroughly kneaded to obtain a so-called paste-like substance.

このペースト状物質は、添加した硫酸は全て鉛粉と反応
しておりPH7で中性を示している。ここでナイロンビ
ーズを添加し再び混練する。このペーストを格子中に充
填し、乾燥、化成の工程を経て、正極板及び負極板とし
て鉛蓄電池を組み立てた。ナイロンビーズは化成時に溶
は出し、活物質は大きなボアをもった多孔質なものとな
る。これを活物質Aとする。同様にして、従来の活物質
を鉛粉1kgに対して、純水9o zg及び比重1.4
の希硫酸1oO−を添加しよく混練し、作製する。これ
を活物質Bとする。更に、同様にして、多量の水で練合
した活物質を鉛粉1kgに対して純水180wLt及び
比重1.4の希硫酸1ooyxlを添加しよく混練し、
作製する。これを活物質Cとする。
All of the added sulfuric acid reacted with the lead powder, and the paste-like material had a neutral pH of 7. At this point, nylon beads are added and kneaded again. This paste was filled into a grid, and after drying and chemical conversion steps, a lead-acid battery was assembled as a positive electrode plate and a negative electrode plate. The nylon beads dissolve during chemical formation, and the active material becomes porous with large pores. This is called active material A. Similarly, the conventional active material was mixed with 9 ozg of pure water and a specific gravity of 1.4 for 1 kg of lead powder.
100- of dilute sulfuric acid is added and kneaded well to prepare. This is called active material B. Furthermore, in the same manner, 180 wLt of pure water and 10yxl of dilute sulfuric acid with a specific gravity of 1.4 were added to 1 kg of lead powder to the active material kneaded with a large amount of water, and the mixture was thoroughly kneaded.
Create. This is called active material C.

第3図は本発明の一実施例における密閉形鉛蓄電池のセ
ルの断面の概略図を示すものである。第3図において、
4は正極板であり、上記のようにして大きなボアをあけ
た多孔質な活物質を用いて作製したものである。鉛粉は
化成により正極活物質である二酸化鉛PbO2に変化し
ている。5は負極板であり、4の正極板と同様に上記の
ようにして大きなボアをあけた多孔質な活物質を用いて
作製したものである。鉛粉は化成により負極活物質であ
る鉛pbに変化している。6はセパレータであり。
FIG. 3 shows a schematic cross-sectional view of a cell of a sealed lead-acid battery according to an embodiment of the present invention. In Figure 3,
4 is a positive electrode plate, which was manufactured using a porous active material with a large bore as described above. The lead powder is transformed into lead dioxide PbO2, which is a positive electrode active material, through chemical conversion. Reference numeral 5 denotes a negative electrode plate, which, like the positive electrode plate 4, is manufactured using a porous active material with a large bore as described above. The lead powder is transformed into lead PB, which is a negative electrode active material, through chemical conversion. 6 is a separator.

ガラス繊維を主成分としており、7は耐硫酸性を有スる
ポリプロピレン製の電槽である。8は正極端子、9は負
極端子、10は電槽上部に設けたガス抜き弁で、通常電
槽内部を密閉構造に保っている。電解液としては、比重
1.30の希硫酸を使用した。
The main component is glass fiber, and 7 is a polypropylene battery case that is resistant to sulfuric acid. 8 is a positive terminal, 9 is a negative terminal, and 10 is a gas vent valve provided at the top of the battery case, which normally maintains the inside of the battery case in a sealed structure. Dilute sulfuric acid with a specific gravity of 1.30 was used as the electrolyte.

本発明の活物質ムを用いて酸4Qmm、横3Qmm。Using the active material of the present invention, the acid size is 4Qmm and the width is 3Qmm.

厚さ3−6 mmの正極板及び負極板とし、第3図に示
すように組み立てた。この密閉形鉛蓄電池を電池人とす
る。次に従来の活物質Bを用いて、上記と同様にして電
池を作製する。この密閉形鉛蓄電池を電池Bとする。ま
た、多量の水で練合した活物質Cを用いて、上記と同様
にして電池を作製する。
A positive electrode plate and a negative electrode plate having a thickness of 3 to 6 mm were assembled as shown in FIG. This sealed lead-acid battery is called a battery person. Next, a battery is produced using conventional active material B in the same manner as above. This sealed lead-acid battery will be referred to as battery B. Further, a battery is produced in the same manner as above using the active material C mixed with a large amount of water.

この密閉形鉛蓄電池を電池Cとする。This sealed lead-acid battery will be referred to as battery C.

これらの電池ム、B及びCにつき、放電(0,1Cムの
定電流)及び充電(0−10ムの定電流)のサイクルを
繰り返す電池試験を行った。なお放電の終止電圧は1−
75”/に設定した。
For these batteries B and C, a battery test was conducted in which cycles of discharging (constant current of 0.1 cm) and charging (constant current of 0-10 cm) were repeated. The final voltage of discharge is 1-
It was set to 75”/.

第4図に、放電容量の比較図を示す。本発明電池Aは、
従来電池Bに比べて約18%多くなっている。そこでこ
れらの電池ム及びBを放電終了後、極板を取り出しイオ
ウSの分布状態をX線マイクロアナライザを用いて面分
析を行ない確認すると、電池Bでは極板の表面層のみに
集中的に分布し、極板内部には偏在している。これに対
し、電池ムでは極板の内部まで広く分布している。この
ことから本発明の活物質を用いたことによシ、極板中の
硫酸の拡散が良くなり利用率が向上したことが確認でき
る。
FIG. 4 shows a comparison diagram of discharge capacity. The battery A of the present invention is
This is about 18% more than the conventional battery B. Therefore, after discharging these batteries M and B, the electrode plates were taken out and the state of distribution of sulfur S was confirmed by surface analysis using an X-ray microanalyzer.In battery B, the distribution of sulfur S was concentrated only on the surface layer of the electrode plate. However, it is unevenly distributed inside the electrode plate. On the other hand, in battery cells, it is widely distributed even inside the electrode plate. From this, it can be confirmed that by using the active material of the present invention, the diffusion of sulfuric acid in the electrode plate was improved and the utilization rate was improved.

第6図に、サイクル寿命の比較図を示す。多量の水を用
いた電池Cでは、初期容量の50%となるのが約230
サイクルであるのに対して、本発明の電池ムでは約30
0サイクルと寿命は短かくならない。これは、本発明の
活物質は大きなボアのみが増えたので、活物質の結着性
を悪くすることもなく、サイクル寿命も保たれていると
思われる。
FIG. 6 shows a comparison chart of cycle life. In battery C, which uses a large amount of water, 50% of the initial capacity is approximately 230 ml.
cycle, whereas in the battery system of the present invention, it is approximately 30 cycles.
0 cycle and lifespan will not be shortened. This is thought to be because the active material of the present invention only has an increased number of large bores, so the binding properties of the active material are not deteriorated and the cycle life is maintained.

なお1本実施例においては、ナイロンビーズの直径は0
.1μmを用いたが、大きなボアをあけ、硫酸の拡散を
良くし、利用率を向上させる効果を得るには、ナイロン
ビーズの直径を0.0871!11以上のものを用いね
ばならない。ただし、直径1.Qzzm以上のものであ
ると極板自体の強度が弱まってしまうのでサイクル特性
に悪影響を与えてしまう。
Note that in this example, the diameter of the nylon beads is 0.
.. Although 1 μm was used, in order to obtain the effect of making a large bore, improving the diffusion of sulfuric acid, and improving the utilization rate, it is necessary to use a nylon bead with a diameter of 0.0871!11 or more. However, the diameter is 1. If it exceeds Qzzm, the strength of the electrode plate itself will be weakened, which will adversely affect the cycle characteristics.

よって、利用率向上とサイクル特性の両面からみて硫酸
水溶液に可溶性の物質は直径0.O8l1m〜1.0μ
mの範囲で用いることによシ効果がみられる。
Therefore, from the viewpoint of both improvement in utilization rate and cycle characteristics, substances soluble in sulfuric acid aqueous solution have a diameter of 0. O8l1m~1.0μ
A positive effect can be seen when used within the range of m.

発明の効果 以上のように本発明によれば、鉛粉に直径0.08μm
〜1.Qμmを有する硫酸水溶液に可溶性の物質を添加
することにより、活物質に硫酸が通過する大きなボアの
み増加させることができた。これによりサイクル特性が
下がることなく、硫酸の拡散も良く、極板の内部まで反
応が進行し、活物質の利用率が向上した。このことから
、エネルギー密度(W11/kg)を格段に向上させる
という効果が得られる。
Effects of the Invention As described above, according to the present invention, lead powder has a diameter of 0.08 μm.
~1. By adding a soluble substance to the sulfuric acid aqueous solution having a sulfuric acid aqueous solution having a particle diameter of Qμm, it was possible to increase only the large pores through which sulfuric acid passes through the active material. As a result, the cycle characteristics did not deteriorate, the sulfuric acid diffused well, the reaction progressed to the inside of the electrode plate, and the utilization rate of the active material improved. This provides the effect of significantly improving the energy density (W11/kg).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における鉛粉に直径0.08μ
m〜1.Q/1mで化成時の硫酸水溶液に可溶性の物質
を添加することにより、任意の大きな孔径の穴を増加さ
せた活物質の概念図、第2図は本発明の実施例における
活物質及び従来品の孔径分布の比較図、第3図は本発明
の実施例における密閉形鉛蓄電池の概要を示す断面図、
第4図は第3図に示す実施例の密閉形鉛蓄電池及び従来
品の定電流放電曲線の比較図、第5図は充放電サイクル
寿命の比較図を示すものである。 1・・・・・・活物質、2・・・・・・ナイロンビーズ
、3・・・・・・o、08μm〜1.0pmの孔径の穴
、4・・・・・・正極板、5・・・・・・負極板、6・
・・・・・セパレータ、7・・・・・・電槽。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名菓 図 、ぢム 曙ン5 と、ll−弓り1し7) 第 図 正及叛 l・−活物質 大きなホ0ア 5          lO 玖!吟間Ch、、/rJ ブイグル(裟
Figure 1 shows lead powder in an embodiment of the present invention with a diameter of 0.08μ.
m~1. A conceptual diagram of an active material in which pores of arbitrarily large pore size are increased by adding a soluble substance to a sulfuric acid aqueous solution during chemical formation at Q/1m. Figure 2 shows the active material in the example of the present invention and the conventional product. FIG. 3 is a cross-sectional view showing an outline of a sealed lead-acid battery according to an embodiment of the present invention.
FIG. 4 is a comparison diagram of constant current discharge curves of the sealed lead acid battery of the embodiment shown in FIG. 3 and a conventional product, and FIG. 5 is a comparison diagram of charge/discharge cycle life. 1...Active material, 2...Nylon beads, 3...O, hole with a pore diameter of 08 μm to 1.0 pm, 4...Positive electrode plate, 5 ...Negative electrode plate, 6.
... Separator, 7 ... Battery case. Agent's name: Patent attorney Shigetaka Awano and one other famous figure, Akebon 5 and 1-Yuri 1-7) Ginma Ch,,/rJ Bugle (裟

Claims (1)

【特許請求の範囲】[Claims] 鉛粉に、直径0.08μm〜1.0μmで化成時の硫酸
水溶液に可溶性の物質を添加したペースト状活物質を塗
着した極板を備えた鉛蓄電池。
A lead-acid battery comprising an electrode plate coated with a paste-like active material made by adding a substance soluble in a sulfuric acid aqueous solution during formation to lead powder and having a diameter of 0.08 μm to 1.0 μm.
JP63200593A 1988-08-11 1988-08-11 Lead-acid battery Pending JPH0249353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63200593A JPH0249353A (en) 1988-08-11 1988-08-11 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63200593A JPH0249353A (en) 1988-08-11 1988-08-11 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0249353A true JPH0249353A (en) 1990-02-19

Family

ID=16426931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63200593A Pending JPH0249353A (en) 1988-08-11 1988-08-11 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0249353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170133650A1 (en) * 2015-06-26 2017-05-11 Daramic, Llc Absorbent glass mat separators, vrla batteries, and related methods of manufacture and use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170133650A1 (en) * 2015-06-26 2017-05-11 Daramic, Llc Absorbent glass mat separators, vrla batteries, and related methods of manufacture and use
US10056592B2 (en) * 2015-06-26 2018-08-21 Daramic, Llc Absorbent glass mat separators, VRLA batteries, and related methods of manufacture and use
US10938010B2 (en) 2015-06-26 2021-03-02 Daramic, Llc Absorbent glass mat separators, VRLA batteries, and related methods of manufacture and use

Similar Documents

Publication Publication Date Title
CN109301254A (en) A kind of lithium sulfur battery anode material, anode and its preparation and application
JPS5835877A (en) Closed type lead battery and its production method
JPH0249353A (en) Lead-acid battery
JPH01128367A (en) Sealed type lead storage battery
CN107845771A (en) The anode composite and its preparation and chemical cell of a kind of sulphur and manganese dioxide
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JPS58197662A (en) Pasted positive electrode for lead storage battery
JPH01122564A (en) Sealed type lead-acid battery
JPS59173961A (en) Organic electrolyte secondary battery
JP2004055417A (en) Manufacturing method of pasty active material for positive electrode and lead storage battery using it
JPH01124958A (en) Sealed lead-acid battery
JPS6028171A (en) Manufacture of paste type pole plate for lead storage battery
JP2002343413A (en) Seal type lead-acid battery
JPS58123658A (en) Sealed lead storage battery
JP2002343359A (en) Sealed type lead storage battery
JPH0212770A (en) Lead-acid battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JPH08180857A (en) Electrode plate for lead-acid battery
JP2000036305A (en) Plate for lead-acid battery
JPS6293857A (en) Manufacture of enclosed lead storage battery
JP2002343412A (en) Seal type lead-acid battery
JPH053709B2 (en)
JPS636743A (en) Manufacture of plate for lead-acid battery
JPH07320728A (en) Positive electrode plate for lead-acid battery and manufacture thereof