JP2013041757A - Lead acid storage battery - Google Patents

Lead acid storage battery Download PDF

Info

Publication number
JP2013041757A
JP2013041757A JP2011178229A JP2011178229A JP2013041757A JP 2013041757 A JP2013041757 A JP 2013041757A JP 2011178229 A JP2011178229 A JP 2011178229A JP 2011178229 A JP2011178229 A JP 2011178229A JP 2013041757 A JP2013041757 A JP 2013041757A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
active material
antimony
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011178229A
Other languages
Japanese (ja)
Inventor
Kohei Fujita
晃平 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2011178229A priority Critical patent/JP2013041757A/en
Priority to CN2012102770897A priority patent/CN102956847A/en
Publication of JP2013041757A publication Critical patent/JP2013041757A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lead acid storage battery favorably suppressing stratification of an electrolyte and excellent in cycle life performance, even when the lead acid battery has a high form with a large H/W ratio.SOLUTION: In the lead acid storage battery, a battery case has an inner space formed therein, the inner space having a ratio H/W between a dimension H in the height direction and a dimension W in a width direction in parallel with an electrode plate face of 1.7 or more, and a negative electrode plate includes a negative electrode active material containing 0.016 mass% or more of antimony after chemical conversion has been performed.

Description

この発明は、電解液の成層化が抑制された、サイクル寿命性能に優れた高形の鉛蓄電池に関するものである。   The present invention relates to a high-quality lead-acid battery excellent in cycle life performance in which stratification of an electrolyte is suppressed.

鉛蓄電池は、比較的低価格でありながら安定した性能と高い信頼性とを有することから、自動車用の電池、バックアップ用の電池、フォークリフト用の電池等として広く用いられている。一般的な鉛蓄電池は、正極板と負極板とを、セパレータを介して積層又は巻回して電槽に収納し、この電槽に希硫酸を主成分とする電解液を注液することにより製造される。   Lead storage batteries are widely used as automobile batteries, backup batteries, forklift batteries, and the like because they have stable performance and high reliability while being relatively inexpensive. A typical lead-acid battery is manufactured by laminating or winding a positive electrode plate and a negative electrode plate via a separator and storing them in a battery case, and injecting an electrolyte containing dilute sulfuric acid as a main component into the battery case. Is done.

鉛蓄電池の電解液中の硫酸は、放電反応によって硫酸鉛として正・負極活物質中に析出し、充電反応によって活物質中から電解液中に放出される。このようにして、充電中に放出された硫酸は、周囲の電解液よりも比重が高いために電池の下部に蓄積するため、サイクル使用の鉛蓄電池では電池内上部の電解液比重が下部の電解液比重よりも低くなってしまう(電解液の成層化)という問題点を有する。 The sulfuric acid in the electrolytic solution of the lead storage battery is deposited in the positive / negative active material as lead sulfate by the discharge reaction, and is released from the active material into the electrolytic solution by the charging reaction. In this way, the sulfuric acid released during charging has a higher specific gravity than the surrounding electrolyte and accumulates in the lower part of the battery. There is a problem that it becomes lower than the liquid specific gravity (stratification of the electrolytic solution).

特に、フォークリフト用の電池は、深放電サイクルで使用され、かつ電槽の内部空間の高さ方向の寸法が大きいため、前記問題点が顕著となる。   In particular, forklift batteries are used in a deep discharge cycle, and the height dimension of the internal space of the battery case is large, so that the above problem becomes significant.

H/W比(H:電槽の内部空間の高さ方向の寸法、W:電槽の内部空間の極板面と平行な幅方向の寸法)が大きい高形の電槽を備えた電池は、デッドスペースが少なく体積エネルギー密度が高いというメリットを有するが、鉛蓄電池を縦置き(正立状態)で使用する場合、電解液の成層化が生じやすい。そして、このように電解液の成層化が生じると充放電時に極板が不均一に使用されるため、正極板の劣化(硫酸鉛の蓄積、正極活物質の軟化)や負極板の劣化(硫酸鉛の蓄積)が進行し、サイクル寿命が短くなるという問題が発生する。   A battery equipped with a high-profile battery case having a large H / W ratio (H: dimension in the height direction of the inner space of the battery case, W: dimension in the width direction parallel to the electrode plate surface of the inner space of the battery case) Although there is a merit that the dead space is small and the volume energy density is high, when the lead storage battery is used in a vertical position (upright state), stratification of the electrolytic solution is likely to occur. When the electrolyte layer is stratified in this way, the electrode plate is used unevenly during charging and discharging, so that the positive electrode plate deteriorates (lead sulfate accumulation, the positive electrode active material softens) and the negative electrode plate deteriorates (sulfuric acid). There is a problem that lead accumulation) progresses and the cycle life is shortened.

このような問題に対して、従来下記(1)〜(3)の対策が講じられている。
対策(1):電解液にアンチモン化合物やニッケル化合物等を添加する(特許文献1)。
対策(2):鉛蓄電池を横置きで使用する。
対策(3):電槽内に電解液攪拌装置を取り付ける。
Conventionally, the following countermeasures (1) to (3) have been taken for such problems.
Countermeasure (1): An antimony compound, a nickel compound, or the like is added to the electrolytic solution (Patent Document 1).
Countermeasure (2): Use the lead-acid battery horizontally.
Countermeasure (3): Install an electrolytic solution stirring device in the battery case.

しかしながら、上記の対策(1)及び(2)には、それぞれ次のような問題点がある。すなわち、対策(1)では、アンチモン化合物やニッケル化合物等の添加量は希硫酸に対する溶解度に依存するため、その最適添加量をコントロールすることが難しい。また、対策(2)は、液式(ベント形)の電池には適用できず、対策(3)は、初期費用が高い。   However, the measures (1) and (2) have the following problems. That is, in the measure (1), since the addition amount of the antimony compound, the nickel compound or the like depends on the solubility in dilute sulfuric acid, it is difficult to control the optimum addition amount. Further, the measure (2) cannot be applied to a liquid (bent type) battery, and the measure (3) has a high initial cost.

特開2004−207004号公報JP 2004-207004 A

このため、本発明者は、負極活物質中にアンチモンを含有させることを試みたが、一般的な55D23形の鉛蓄電池(H/W比は約1.2)では成層化抑制に有効な量のアンチモンであっても、高形の鉛蓄電池では充分は成層化抑制効果が得られなかった。   For this reason, the present inventor tried to contain antimony in the negative electrode active material, but in a general 55D23 type lead storage battery (H / W ratio is about 1.2), an amount effective for suppressing stratification. Even in the case of antimony, a high-level lead storage battery could not sufficiently achieve the effect of suppressing stratification.

そこで本発明は、上記現状に鑑み、H/W比の大きい高形の鉛蓄電池であっても、電解液の成層化を良好に抑制し、サイクル寿命性能に優れた鉛蓄電池を提供すべく図ったものである。   Therefore, in view of the above-described situation, the present invention aims to provide a lead storage battery having excellent cycle life performance by suppressing the stratification of the electrolyte well even for a high-type lead storage battery having a large H / W ratio. It is a thing.

本発明者は、鋭意検討の結果、負極活物質中にアンチモンを含有させることによる成層化抑制効果は電槽の形状に大きく依存しており、同量のアンチモンを負極活物質中に含有させても所定のH/W比を境として成層化抑制効果には著しい相違があることを見出し、本発明を完成させるに至った。   As a result of intensive studies, the present inventor has found that the effect of suppressing stratification by containing antimony in the negative electrode active material is largely dependent on the shape of the battery case, and the same amount of antimony is contained in the negative electrode active material. However, the present inventors have found that there is a significant difference in the effect of suppressing stratification with a predetermined H / W ratio as a boundary, and have completed the present invention.

すなわち本発明に係る鉛蓄電池は、正極板及び負極板、並びに、それらを収容する電槽を備えた鉛蓄電池であって、前記電槽は、高さ方向の寸法Hと極板面と平行な幅方向の寸法Wとの比H/Wが1.7以上である内部空間が形成されたものであり、前記負極板は、化成後において0.016質量%以上のアンチモンを含む負極活物質を有するものであることを特徴とする。   That is, the lead storage battery according to the present invention is a lead storage battery including a positive electrode plate, a negative electrode plate, and a battery case for accommodating them, the battery case being parallel to the height dimension H and the electrode plate surface. An internal space having a ratio H / W with a dimension W in the width direction of 1.7 or more is formed, and the negative electrode plate comprises a negative electrode active material containing 0.016% by mass or more of antimony after chemical conversion. It is what has.

前記負極活物質の化成後におけるアンチモン含有量の上限は、0.1質量%であることが好ましい。また、好ましいアンチモン含有量の下限は化成後において0.02質量%である。   The upper limit of the antimony content after the formation of the negative electrode active material is preferably 0.1% by mass. Moreover, the minimum of preferable antimony content is 0.02 mass% after chemical conversion.

このような本発明に係る鉛蓄電池は、クラッド式の正極板を備えた、いわゆるクラッド式鉛蓄電池であることが好ましい。   Such a lead storage battery according to the present invention is preferably a so-called clad lead storage battery including a clad positive plate.

本発明に係る鉛蓄電池において、化成後において0.016質量%以上のアンチモンを含む負極活物質は、少なくとも負極板の高さ方向において下から1/2以内の部分に保持されていることが好ましい。   In the lead acid battery according to the present invention, the negative electrode active material containing 0.016% by mass or more of antimony after chemical conversion is preferably held at least within a half portion from the bottom in the height direction of the negative electrode plate. .

本発明は、上述した構成よりなるので、広く負極板表面からの水素ガス発生を促進し、水素ガスによる電解液の攪拌能力を効果的に向上させることによって、H/W比の大きい高形の鉛蓄電池のサイクル中における電解液の成層化を抑制し、サイクル寿命性能に優れた鉛蓄電池を提供することを可能とする。   Since the present invention has the above-described configuration, it is widely used to promote generation of hydrogen gas from the surface of the negative electrode plate, and to effectively improve the ability to stir the electrolyte solution with hydrogen gas. It is possible to suppress the stratification of the electrolyte during the cycle of the lead storage battery and to provide a lead storage battery excellent in cycle life performance.

負極活物質又は電解液のアンチモン含有量と容量保存特性との関係を示すグラフである。It is a graph which shows the relationship between the antimony content of a negative electrode active material or electrolyte solution, and capacity storage characteristics. 電槽の高さHと幅Wとの比H/Wと、サイクル寿命性能との関係を示すグラフである。It is a graph which shows the relationship between ratio H / W of the height H and width W of a battery case, and cycle life performance. 負極活物質のアンチモン含有量とサイクル寿命性能との関係を示すグラフである。It is a graph which shows the relationship between antimony content of a negative electrode active material, and cycle life performance.

以下に、本発明に係る鉛蓄電池の実施形態について説明する。   Below, the embodiment of the lead acid battery concerning the present invention is described.

本発明に係る鉛蓄電池は、例えば、二酸化鉛を活物質の主成分とする正極板と、鉛を活物質の主成分とする負極板と、これら極板の間に介在する不織布状又は多孔性のセパレータとからなる極板群を備えた液式のものであり、当該極板群が希硫酸を主成分とする電解液に浸漬されてなるものである。   The lead storage battery according to the present invention includes, for example, a positive electrode plate containing lead dioxide as a main component of an active material, a negative electrode plate containing lead as a main component of an active material, and a non-woven or porous separator interposed between these electrode plates And the electrode plate group is immersed in an electrolyte containing dilute sulfuric acid as a main component.

前記負極板は、Pb−Sb系合金やPb−Ca系合金等からなる格子体を備えたものであり、当該格子体にペースト状の活物質を充填することにより形成される。一方、前記正極板は、ペースト式である場合は、負極板と同様にして形成されるが、クラッド式である場合は、ガラス繊維等からなるチューブと、鉛合金の芯金との間に活物質を充填することにより形成される。これらの格子体、ガラス繊維性チューブ、正極活物質、セパレータ及び電解液としては特に限定されず、目的・用途に応じて公知のものから適宜選択して用いることができる。   The negative electrode plate includes a lattice body made of a Pb—Sb alloy, a Pb—Ca alloy, or the like, and is formed by filling the lattice body with a paste-like active material. On the other hand, when the positive electrode plate is a paste type, it is formed in the same manner as the negative electrode plate. However, when it is a clad type, the positive electrode plate is formed between a tube made of glass fiber or the like and a lead alloy core metal. Formed by filling material. These lattice bodies, glass fiber tubes, positive electrode active materials, separators and electrolytes are not particularly limited, and can be appropriately selected from known materials depending on the purpose and application.

本発明は、高さ方向の寸法Hと極板面と平行な幅方向の寸法Wとの比H/Wが1.7以上である内部空間が形成された電槽を備えた高形の鉛蓄電池に係るものである。本発明者が、負極活物質中のアンチモンによる成層化抑制効果(サイクル寿命性能)と電槽の形状との関係を調べたところ、図2に示すように、H/W比で1.6〜1.7を境にして、その効果には大きな違いがあることを見出し、H/W比がこの臨界点より小さいときは成層化抑制に有効な含有量のアンチモンであっても、H/W比がこの臨界点より大きいと急激に成層化抑制効果が低下することを発見した。   The present invention is a high-level lead having a battery case in which an internal space in which a ratio H / W of a dimension H in the height direction and a dimension W in the width direction parallel to the electrode plate surface is 1.7 or more is formed. It relates to a storage battery. When the present inventor examined the relationship between the anti-stratification effect (cycle life performance) by antimony in the negative electrode active material and the shape of the battery case, as shown in FIG. When the H / W ratio is smaller than this critical point, it is found that even if the content of antimony is effective for suppressing stratification, H / W It was found that the stratification suppression effect decreases rapidly when the ratio is larger than this critical point.

本発明に係る鉛蓄電池のH/W比は、1.7以上であればその上限は特に限定されないが、電気車用鉛蓄電池では、最大外形寸法がJIS D5303−2によって規定されており、この規格の範囲内において、高さ方向の寸法Hと極板面と平行な幅方向の寸法Wとの比H/W(外形寸法)は4.4以下となる。そして、電槽の厚さは1〜2mm程度であるので、内寸のH/W比も略4.4以下となる。また、本発明に係る鉛蓄電池は、クラッド式であっても、ペースト式であってもよいが、本発明は、高形の鉛蓄電池に適したクラッド式に好適である。   The upper limit of the H / W ratio of the lead storage battery according to the present invention is not particularly limited as long as it is 1.7 or more. However, the maximum outer dimension of the lead storage battery for electric vehicles is defined by JIS D5303-2. Within the standard range, the ratio H / W (outside dimension) between the dimension H in the height direction and the dimension W in the width direction parallel to the electrode plate surface is 4.4 or less. And since the thickness of a battery case is about 1-2 mm, the H / W ratio of an internal dimension will also be about 4.4 or less. Further, the lead storage battery according to the present invention may be a clad type or a paste type, but the present invention is suitable for a clad type suitable for a high-type lead storage battery.

本発明に係る鉛蓄電池の負極板は、化成後において0.016質量%以上、好ましくは0.02質量%以上、より好ましくは0.03質量%以上のアンチモンを含む負極活物質を有する。アンチモン含有量が0.016質量%未満であると、水素ガスの発生量が少なく、充分な電解液攪拌効果が得られないので、成層化を抑制することが難しい。   The negative electrode plate of the lead storage battery according to the present invention has a negative electrode active material containing 0.016% by mass or more, preferably 0.02% by mass or more, and more preferably 0.03% by mass or more after conversion. When the antimony content is less than 0.016% by mass, the amount of hydrogen gas generated is small, and a sufficient electrolyte stirring effect cannot be obtained, so that it is difficult to suppress stratification.

一方、負極活物質中のアンチモン含有量の上限は、化成後の負極活物質中において0.1質量%であることが好ましい。アンチモン含有量が0.1質量%を超えると、自己放電の増加によりJIS D5313−1に規定された容量保存特性を満たさなくなる。   On the other hand, the upper limit of the antimony content in the negative electrode active material is preferably 0.1% by mass in the negative electrode active material after chemical conversion. When the antimony content exceeds 0.1% by mass, the capacity storage characteristics defined in JIS D5313-1 are not satisfied due to an increase in self-discharge.

本発明では、負極活物質中にアンチモンを含有させることにより、広く負極板の表面(電解液との接触面)から水素ガスを発生することができるので、負極板の格子体としてPb−Sb系合金を使用する場合よりも、より少ない水素ガス(すなわち、より少ない自己放電やより少ない電解液中の水の減少を意味する。)であっても、効率的に電解液を攪拌して、成層化を抑制することができる。   In the present invention, by containing antimony in the negative electrode active material, hydrogen gas can be widely generated from the surface of the negative electrode plate (contact surface with the electrolytic solution), so that the Pb—Sb system is used as the lattice of the negative electrode plate. Even with less hydrogen gas (ie, less self-discharge and less water in the electrolyte) than when using an alloy, the electrolyte is effectively stirred and stratified. Can be suppressed.

負極活物質中にアンチモンを含有させるに際しては、例えば、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、硫酸アンチモン等のアンチモン化合物を負極活物質ペーストに添加することが好ましい。本発明では、負極活物質ペースト中にこれらのアンチモン化合物を直接添加することにより、負極活物質中に最適量のアンチモンを含有させることが容易となる。   When antimony is contained in the negative electrode active material, for example, it is preferable to add an antimony compound such as antimony trioxide, antimony tetraoxide, antimony pentoxide, and antimony sulfate to the negative electrode active material paste. In the present invention, by adding these antimony compounds directly into the negative electrode active material paste, it becomes easy to contain the optimum amount of antimony in the negative electrode active material.

なお、前記負極活物質ペーストには、上記のアンチモン化合物及び鉛粉に加え、更に、硫酸バリウム、カーボン粉末や、必要に応じて他の添加剤を添加してもよく、これらに希硫酸を加え練膏することにより負極活物質ペーストを調製することができる。   In addition to the above antimony compound and lead powder, the negative electrode active material paste may further contain barium sulfate, carbon powder, and other additives as necessary, and dilute sulfuric acid may be added thereto. A negative electrode active material paste can be prepared by paste.

本発明における負極板の大きさとしては特に限定されないが、デッドスペースを減らして体積エネルギー密度を高めるために電槽の内部空間の大きさに適合するものを使用することが適当であり、例えば、電槽の内部空間の高さ方向及び幅方向の寸法の75%以上の高さ寸法及び幅寸法を有するものであることが好ましい。   The size of the negative electrode plate in the present invention is not particularly limited, but in order to reduce the dead space and increase the volume energy density, it is appropriate to use one that matches the size of the internal space of the battery case, for example, It is preferable to have a height dimension and a width dimension of 75% or more of the dimension in the height direction and the width direction of the internal space of the battery case.

本発明における負極板は、上述のとおり、負極活物質ペーストを格子体に充填することにより製造されるが、本発明において、化成後において0.016質量%以上となるようアンチモンを含有させた負極活物質ペーストは、格子体の全面に充填してもよいが、格子体の一部に充填してもよい。例えば、負極板表面から発生する水素ガスのうち、電槽内の上部から発生した水素ガスより、下部から発生した水素ガスの方が、電解液攪拌への寄与度が高いので、少なくとも格子体の下側半分に当該負極活物質ペーストが充填されていれば、電槽の底部から発生した水素ガスによる電解液の攪拌効果を維持したまま、自己放電や電解液中の水の減少を抑制することができる。また、本発明に係る鉛蓄電池がクラッド式鉛蓄電池である場合は、水素ガスの気泡はクラッド式正極板の間隙を通過することができるので、格子体の片面だけに当該負極活物質ペーストを充填しても、電解液攪拌効果を維持しながら、自己放電や電解液中の水の減少を抑制することができる。なお、化成後において0.016質量%以上となるようアンチモンを含有させた負極活物質ペーストが負極板の一部のみに充填されている場合は、負極板の他の部分にはアンチモンを含有していない負極活物質ペーストを充填すればよい。   As described above, the negative electrode plate in the present invention is produced by filling the grid with the negative electrode active material paste. In the present invention, the negative electrode containing antimony so as to be 0.016% by mass or more after chemical conversion. The active material paste may be filled on the entire surface of the lattice body, or may be filled on a part of the lattice body. For example, among the hydrogen gas generated from the surface of the negative electrode plate, the hydrogen gas generated from the lower part of the hydrogen gas generated from the upper part in the battery case has a higher contribution to the stirring of the electrolyte solution. If the lower half is filled with the negative electrode active material paste, it suppresses the self-discharge and reduction of water in the electrolyte while maintaining the stirring effect of the electrolyte by the hydrogen gas generated from the bottom of the battery case. Can do. In addition, when the lead storage battery according to the present invention is a clad lead storage battery, hydrogen gas bubbles can pass through the gaps of the clad positive plate, so that only one side of the grid is filled with the negative electrode active material paste. Even so, it is possible to suppress the self-discharge and the reduction of water in the electrolytic solution while maintaining the electrolytic solution stirring effect. In addition, when the negative electrode active material paste containing antimony so as to be 0.016% by mass or more after chemical conversion is filled only in a part of the negative electrode plate, the other part of the negative electrode plate contains antimony. What is necessary is just to fill the negative electrode active material paste which is not.

本発明に係る鉛蓄電池の製造方法としては特に限定されないが、例えば、まず、常法により作製した正極板と、負極活物質中にアンチモンを含む負極板とを、セパレータを介して交互に組み合わせて未化成の極板群を作製する。次いで、当該未化成の極板群を電槽に挿入した後、極板群の溶接、セル間の接続、及び、蓋の接着を行い、端子溶接して組立てを完了してから、希硫酸を主成分とする電解液を注液し、電槽化成を行う。このようにして本発明に係る鉛蓄電池を製造することができる。   Although it does not specifically limit as a manufacturing method of the lead acid battery concerning the present invention, for example, first, the positive electrode plate produced by the usual method and the negative electrode plate containing antimony in the negative electrode active material are combined alternately through the separator. An unformed electrode plate group is prepared. Next, after inserting the unformed electrode plate group into the battery case, welding of the electrode plate group, connection between cells, bonding of the lid, terminal welding, completing assembly, dilute sulfuric acid An electrolytic solution containing the main component is injected to form a battery case. Thus, the lead acid battery according to the present invention can be manufactured.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

<試験用電池の作製>
下記表1に示す外形寸法を有する電槽を用いて、試験に供する電気車用クラッド式鉛蓄電池(液式、2V)を作製した。なお、電槽の厚さは1〜2mm程度であるので、電槽の内部空間の寸法に代えて採寸が容易な外形寸法を用いた。試験用の各電池では、電槽の長さL及び幅Wは一定にして、高さHのみを変化させた。また、表1には各試験用電池の5HR定格容量(Ah)を示した。
<Production of test battery>
Using a battery case having the outer dimensions shown in Table 1 below, a clad lead acid battery (liquid type, 2V) for an electric vehicle used for the test was produced. In addition, since the thickness of a battery case is about 1-2 mm, it replaced with the dimension of the internal space of a battery case, and used the external dimension with which measurement is easy. In each battery for testing, the length L and width W of the battery case were kept constant, and only the height H was changed. Table 1 shows the 5HR rated capacity (Ah) of each test battery.

<容量保存特性の評価>
表1に記載のNo.4の試験用電池を用い、負極活物質中又は電解液中に含有させるアンチモン量を変えて、容量の保存特性を調べた。試験は、JIS D5303−1(保存特性)に準拠して、以下の条件下で行った。
<Evaluation of capacity storage characteristics>
No. described in Table 1 Using the test battery No. 4, the amount of antimony contained in the negative electrode active material or the electrolytic solution was changed, and the storage characteristics of the capacity were examined. The test was performed under the following conditions in accordance with JIS D5303-1 (storage characteristics).

放置前の放電容量(30℃)は、0.2CAで放電終止電圧(F.V.)1.7Vまで放電を行い算出した。続いて、0.2CAで放電電気量の135%まで充電を行い、その後、25℃で28日間放置した。また、放置後の放電容量(30℃)は、0.2CAでF.V.1.7Vまで放電を行い算出した。   The discharge capacity before standing (30 ° C.) was calculated by discharging to 0.2 V at a discharge end voltage (FV) of 0.2 CA. Subsequently, charging was performed at 0.2 CA to 135% of the amount of discharged electricity, and then left at 25 ° C. for 28 days. Moreover, the discharge capacity (30 ° C.) after being left is 0.2 CA and F.F. V. It calculated by discharging to 1.7V.

そして、得られた放置前後の放電容量から、下記式に従い、放置前後の容量保存率(%)を算出した。
放置前後の容量保存率(%)=(放置後の0.2CA放電容量)/(放置前の0.2CA放電容量)×100
Then, from the obtained discharge capacity before and after being left, the capacity retention rate (%) before and after being left was calculated according to the following formula.
Capacity storage rate before and after being left (%) = (0.2 CA discharge capacity after being left) / (0.2 CA discharge capacity before being left) × 100

得られた結果は表2及び図1に示した。なお、表2中及び図1中に示すアンチモン含有量(%)は、化成後の負極活物質中に含まれる金属アンチモンの含有量(質量%)である。また、放置前後の容量保存率が85%以上である場合に、JIS D5303−1に定める保存特性の規格を満たしている。   The obtained results are shown in Table 2 and FIG. In addition, antimony content (%) shown in Table 2 and FIG. 1 is content (mass%) of the metal antimony contained in the negative electrode active material after chemical conversion. Further, when the capacity storage ratio before and after being left is 85% or more, the storage characteristics standard defined in JIS D5303-1 is satisfied.

得られた結果から、負極活物質中にアンチモンを含有させた場合は、アンチモンの含有量が0.1質量%以下である電池は、JIS D5303−1に定める保存特性の規格を満たしており、アンチモンの含有量が0.1質量%を超えた電池は、当該規格を満たしていなかった。また、電解液中にアンチモンを含有させた場合は、アンチモンの含有量が0.01質量%以下である電池は、JIS D5303−1に定める保存特性の規格を満たしていたが、アンチモンの含有量が0.05質量%の電池は当該規格を満たしていなかった。   From the obtained results, when antimony is contained in the negative electrode active material, the battery having an antimony content of 0.1% by mass or less satisfies the storage property standard defined in JIS D5303-1. A battery having an antimony content exceeding 0.1% by mass did not satisfy the standard. In addition, when antimony was included in the electrolytic solution, the battery having an antimony content of 0.01% by mass or less satisfied the storage characteristics standard defined in JIS D5303-1. However, the 0.05 mass% battery did not satisfy the standard.

<サイクル寿命性能の評価>
表1に示す各試験用電池を用いて、JIS保存特性の規格を満たしたアンチモン含有量についてのみ、サイクル寿命試験を実施した。また、比較のために負極活物質中及び電解液中のいずれにもアンチモンを含有しない電池も作製した。
<Evaluation of cycle life performance>
Using each test battery shown in Table 1, the cycle life test was conducted only for the antimony content satisfying the standard of JIS storage characteristics. For comparison, a battery containing no antimony in either the negative electrode active material or the electrolytic solution was also produced.

充放電サイクル(30℃)では、0.25CAで3時間放電を行い、一方、充電は4段階で実施し、1段目は0.2CAで2.1Vまで行い、2段目は0.1CAで2.4Vまで行い、3段目は0.05CAで2.7Vまで行い、4段目は0.025CAで2時間行った。   In the charging / discharging cycle (30 ° C.), discharging is performed at 0.25 CA for 3 hours, while charging is performed in four stages, the first stage is 0.2 CA up to 2.1 V, and the second stage is 0.1 CA. The second step was performed at 0.05 CA to 2.7 V, and the fourth step was performed at 0.025 CA for 2 hours.

また、充放電サイクル100回毎に、次の条件で容量試験(30℃)を行った。すなわち、0.2CAでF.V.1.7Vまで放電を行い、続いて、0.2CAで放電電気量の135%まで充電を行った。そして、0.2CA放電容量が初期値に対して80%未満になった時点を寿命と判定した。   Moreover, the capacity | capacitance test (30 degreeC) was done on the following conditions for every 100 charging / discharging cycles. That is, F.F. V. The battery was discharged to 1.7 V, and then charged to 135% of the discharged electricity with 0.2 CA. And the time when 0.2 CA discharge capacity became less than 80% with respect to the initial value was determined as the life.

得られた結果を表3及び表4並びに図2及び図3に示した。なお、各電池のサイクル寿命性能は、負極活物質中及び電解液中のいずれにもアンチモンを含有しない電池のうち、表3及び図2ではNo.1(H/W比=1.2)の電池の寿命サイクル数を、また、表4及び図3ではNo.3(H/W比=1.8)の電池の寿命サイクル数を、それぞれ100%とする相対値によって表した。
The obtained results are shown in Tables 3 and 4 and FIGS. The cycle life performance of each battery is No. in Table 3 and FIG. 2 among the batteries that do not contain antimony in either the negative electrode active material or the electrolyte solution. No. 1 (H / W ratio = 1.2), and the number of life cycles in Table 4 and FIG. The life cycle number of the battery with 3 (H / W ratio = 1.8) was expressed as a relative value with 100%.

得られた結果から、負極活物質中のアンチモン含有量が0.016質量%未満(0.01質量%)であると、H/W比が1.7未満(H/W比=1.2、1.5)である場合はサイクル寿命性能は良好であったが、H/W比が1.7以上(H/W比=1.8、2.5、3.3、4.4)になると急激にサイクル寿命性能が低下した。   From the obtained results, when the antimony content in the negative electrode active material is less than 0.016% by mass (0.01% by mass), the H / W ratio is less than 1.7 (H / W ratio = 1.2). 1.5), the cycle life performance was good, but the H / W ratio was 1.7 or more (H / W ratio = 1.8, 2.5, 3.3, 4.4). As a result, the cycle life performance suddenly decreased.

また、負極活物質中のアンチモン含有量が0.016質量%以上(アンチモン含有量=0.02、0.04、0.08、0.1質量%)であると、H/W比が1.7以上である電池でもサイクル寿命性能が大幅に向上した。なお、電解液中にアンチモンを含有させた場合は、いずれの含有量でもH/W比が1.7以上である電池のサイクル寿命性能を向上することはできなかった。   When the antimony content in the negative electrode active material is 0.016% by mass or more (antimony content = 0.02, 0.04, 0.08, 0.1% by mass), the H / W ratio is 1. Cycle life performance was significantly improved even for batteries of .7 or higher. In addition, when antimony was contained in the electrolytic solution, the cycle life performance of a battery having an H / W ratio of 1.7 or more could not be improved at any content.

Claims (4)

正極板及び負極板、並びに、それらを収容する電槽を備えた鉛蓄電池であって、
前記電槽は、高さ方向の寸法Hと極板面と平行な幅方向の寸法Wとの比H/Wが1.7以上である内部空間が形成されたものであり、
前記負極板は、化成後において0.016質量%以上のアンチモンを含む負極活物質を有するものであることを特徴とする鉛蓄電池。
A lead-acid battery comprising a positive electrode plate and a negative electrode plate, and a battery case for accommodating them,
The battery case is formed with an internal space in which a ratio H / W of a dimension H in the height direction and a dimension W in the width direction parallel to the electrode plate surface is 1.7 or more.
The said negative electrode plate has a negative electrode active material containing 0.016 mass% or more of antimony after chemical conversion, Lead acid battery characterized by the above-mentioned.
前記負極活物質の化成後におけるアンチモンの含有量が0.1質量%以下である請求項1記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein the content of antimony after conversion of the negative electrode active material is 0.1% by mass or less. 前記正極板は、クラッド式のものである請求項1又は2記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein the positive electrode plate is of a clad type. 前記負極板は、前記負極活物質を少なくとも負極板の高さ方向において下から1/2以内の部分に有している請求項1、2又は3記載の鉛蓄電池。   4. The lead acid battery according to claim 1, wherein the negative electrode plate has the negative electrode active material at least in a portion within a half from the bottom in the height direction of the negative electrode plate.
JP2011178229A 2011-08-17 2011-08-17 Lead acid storage battery Pending JP2013041757A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011178229A JP2013041757A (en) 2011-08-17 2011-08-17 Lead acid storage battery
CN2012102770897A CN102956847A (en) 2011-08-17 2012-08-06 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011178229A JP2013041757A (en) 2011-08-17 2011-08-17 Lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2013041757A true JP2013041757A (en) 2013-02-28

Family

ID=47765348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011178229A Pending JP2013041757A (en) 2011-08-17 2011-08-17 Lead acid storage battery

Country Status (2)

Country Link
JP (1) JP2013041757A (en)
CN (1) CN102956847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827411A1 (en) * 2013-07-19 2015-01-21 GS Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128465A (en) * 1984-11-26 1986-06-16 Shin Kobe Electric Mach Co Ltd Electrode plate for lead-acid battery
JP2005203318A (en) * 2004-01-19 2005-07-28 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2011146222A (en) * 2010-01-14 2011-07-28 Shin Kobe Electric Mach Co Ltd Battery pack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128465A (en) * 1984-11-26 1986-06-16 Shin Kobe Electric Mach Co Ltd Electrode plate for lead-acid battery
JP2005203318A (en) * 2004-01-19 2005-07-28 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2011146222A (en) * 2010-01-14 2011-07-28 Shin Kobe Electric Mach Co Ltd Battery pack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827411A1 (en) * 2013-07-19 2015-01-21 GS Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
JP2015038860A (en) * 2013-07-19 2015-02-26 株式会社Gsユアサ Liquid lead storage battery, and idling-stop vehicle arranged by use of liquid lead storage battery
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
US9899666B2 (en) 2013-07-19 2018-02-20 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery

Also Published As

Publication number Publication date
CN102956847A (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5587523B1 (en) Lead acid battery
JP6727965B2 (en) Lead acid battery
US20130029210A1 (en) Lead acid storage battery
JP6168138B2 (en) Liquid lead-acid battery
JP6400016B2 (en) Composition for enhancing deep cycle performance of sealed lead-acid battery filled with gel electrolyte
JP6660072B2 (en) Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery
JP2013218894A (en) Lead acid battery
JP5241264B2 (en) Control valve type lead storage battery manufacturing method
JP5138391B2 (en) Control valve type lead acid battery
JP6043734B2 (en) Lead acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP5089176B2 (en) Control valve type lead storage battery manufacturing method
JP2013041757A (en) Lead acid storage battery
JPWO2011027383A1 (en) Lead acid battery
JP2013191351A (en) Lead acid battery
JP5787181B2 (en) Lead acid battery
JP2015022921A (en) Liquid-type lead storage battery, and method for manufacturing liquid-type lead storage battery
JP2017079094A (en) Lead battery
JP2019207786A (en) Lead acid battery
JP2013145664A (en) Control valve type lead storage battery
JP2005294142A (en) Lead storage battery
JP5277885B2 (en) Method for producing lead-acid battery
JP2009252606A (en) Manufacturing method of lead acid storage battery
JP2006185743A (en) Control valve type lead-acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141002