JP2952680B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP2952680B2
JP2952680B2 JP2074449A JP7444990A JP2952680B2 JP 2952680 B2 JP2952680 B2 JP 2952680B2 JP 2074449 A JP2074449 A JP 2074449A JP 7444990 A JP7444990 A JP 7444990A JP 2952680 B2 JP2952680 B2 JP 2952680B2
Authority
JP
Japan
Prior art keywords
antimony
positive electrode
active material
silicon dioxide
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2074449A
Other languages
Japanese (ja)
Other versions
JPH03274668A (en
Inventor
塩見  正昭
克仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENCHI KK
Original Assignee
NIPPON DENCHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENCHI KK filed Critical NIPPON DENCHI KK
Priority to JP2074449A priority Critical patent/JP2952680B2/en
Publication of JPH03274668A publication Critical patent/JPH03274668A/en
Application granted granted Critical
Publication of JP2952680B2 publication Critical patent/JP2952680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の改良に関するもので、特に
サイクル寿命性能の優れた密閉式鉛蓄電池を提供するこ
とを目的とするものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a sealed lead-acid battery, and more particularly, to provide a sealed lead-acid battery having excellent cycle life performance.

従来の技術とその課題 現在、密閉式鉛蓄電池としては、格子合金にPb−Ca系
合金を用い、電解液は(1)微細ガラス繊維セパレータ
に電解液を含浸させたリテーナ式と、(2)電解液にコ
ロイダルシリカを添加してゲル状にしたゲル式の二種類
があるが、従来の開放形液式電池に比べると前者は電解
液量が不足しており、後者はH2SO4の拡散が著しく遅い
ためにいずれも充放電中の極板内部の電解液比重の変化
が著しく大きい。そのため密閉式鉛蓄電池では充放電サ
イクルが進むにつれ活物質の劣化、特に正極活物質粒子
の結合力の低下による正極板性能の低下が生じ、寿命性
能が劣るという欠点を有していた。
2. Description of the Related Art At present, as a sealed lead-acid battery, a Pb-Ca alloy is used as a lattice alloy, and an electrolyte is (1) a fine glass fiber separator impregnated with an electrolyte, and (2) an electrolyte. there are two types of gel type by adding colloidal silica to the electrolyte solution was gelled, the former compared to traditional open form liquid type battery has the amount of the electrolytic solution is insufficient, the latter of H 2 SO 4 Since the diffusion is extremely slow, the change in the specific gravity of the electrolytic solution inside the electrode plate during charging and discharging is extremely large in each case. For this reason, the sealed lead-acid battery has a drawback that the active material is deteriorated as the charge / discharge cycle progresses, and in particular, the performance of the positive electrode plate is reduced due to a decrease in the bonding force of the positive electrode active material particles, and the life performance is deteriorated.

従来より正極活物質中にアンチモンが存在すると活物
質の結合力の低下をおさえる効果があり、活物質の劣化
を防ぐことが知られており、具体的には正極格子にPb−
Sb系合金を使用する、正極活物質中にアンチモン粉末を
入れる、などの方式がこれまで提案されてきた。しか
し、これらの方法でアンチモンを正極活物質中に入れた
場合、正極活物質の劣化が防ぐことができるが、充放電
サイクルが進むにつれ電気泳動、拡散などの作用により
アンチモンが負極板に析出して、負極板の性能を低下さ
せるために、実際には上記方法を使用することは出来な
かった。
It has been known that the presence of antimony in the positive electrode active material has an effect of suppressing a decrease in the bonding force of the active material and prevents the active material from deteriorating. Specifically, Pb-
Methods such as using an Sb-based alloy and putting antimony powder in a positive electrode active material have been proposed so far. However, when antimony is put into the positive electrode active material by these methods, the deterioration of the positive electrode active material can be prevented.However, as the charge / discharge cycle progresses, antimony precipitates on the negative electrode plate due to actions such as electrophoresis and diffusion. Therefore, in order to reduce the performance of the negative electrode plate, the above method could not be actually used.

また、放電容量の向上を目的として正極活物質中にア
ンチモン粉末(0.05〜0.5wt%)およびシリカ粉末(0.5
〜3.0wt%)を同時に添加する、という提案がなされて
いる(特開平1−200558号)。この提案はシリカ粉末が
吸液性がよい特性を生かして正極活物質内の保持液量を
多くすることにより、放電容量を増加させることを目的
としたものであるが、シリカ粉末の量が多いと、シリカ
粉末同志のファンデルワールス力による反発のため正極
活物質の充填量が低下する。その結果、実質的には深い
放電を受けることになり、寿命性能が低下することがわ
かっている。
Also, for the purpose of improving the discharge capacity, antimony powder (0.05 to 0.5 wt%) and silica powder (0.5%
(3.0 wt%) at the same time (Japanese Patent Laid-Open No. 1-205558). This proposal aims at increasing the discharge capacity by increasing the amount of retentate in the positive electrode active material by making use of the property that the silica powder has good liquid absorbability, but the amount of silica powder is large. Then, the filling amount of the positive electrode active material decreases due to the repulsion of the silica powder by Van der Waals force. As a result, it is known that a deep discharge is substantially received, and the life performance is reduced.

課題を解決するための手段 本発明は密閉式鉛蓄電池においてサイクル寿命性能を
向上させることを目的とするもので、その要旨は正極活
物質中に0.01〜0.5wt%のアンチモンあるいはアンチモ
ン化合物の粉末および0.05〜0.5wt%の二酸化ケイ素を
添加することに特徴があり、二酸化ケイ素粉末の粒子径
としては10〜500μmの範囲にあることが望ましい。
Means for Solving the Problems The object of the present invention is to improve the cycle life performance of a sealed lead-acid battery, and the gist of the invention is that a powder of 0.01 to 0.5 wt% of antimony or antimony compound powder in a positive electrode active material is used. It is characterized by adding 0.05 to 0.5 wt% of silicon dioxide, and the particle diameter of the silicon dioxide powder is preferably in the range of 10 to 500 μm.

作用 正極活物質中にアンチモン粉末を添加すると、正極活
物質粒子間の結合力が増加するが、サイクルにつれてア
ンチモンが負極板に析出して寿命性能を低下させてしま
う。しかし、この正極活物質に二酸化ケイ素粉末を少量
添加すると二酸化ケイ素にアンチモンが吸着されて、負
極板へのアンチモンの析出を少なくでき、サイクル寿命
性能を向上させることができる。
Effect When antimony powder is added to the positive electrode active material, the bonding force between the positive electrode active material particles increases, but antimony precipitates on the negative electrode plate as the cycle proceeds, and the life performance decreases. However, when a small amount of silicon dioxide powder is added to the positive electrode active material, antimony is adsorbed on the silicon dioxide, so that precipitation of antimony on the negative electrode plate can be reduced and cycle life performance can be improved.

実施例 以下、本発明による密閉式鉛蓄電池を図面を用いて説
明する。
Embodiment Hereinafter, a sealed lead-acid battery according to the present invention will be described with reference to the drawings.

(実施例1) まず、正極活物質中にアンチモン粉末を0.005,0.01,
0.1,0.3,0.5,1.0wt%添加し、この6種類の異なるアン
チモン粉末添加量A〜Fにつき、さらにそれぞれの極板
中に平均粒子径が約100μmの二酸化ケイ素粉末を0,0.0
1,0.05,0.1,0.3,0.5,1.0wt%添加したクラッド式正極板
計42枚を作った。なお比較のためにアンチモンも二酸化
ケイ素粉末も入れていない従来の正極板Gも製作した。
これらの正極板1枚と、ペースト式負極板2枚およびパ
ルプセパレータ2枚とで構成する電池を製作し、これに
希硫酸とゾル化剤とを混合してゲル状電解液を注液した
後、所定量の充電を行ない、充電後の比重が1.30(20
℃)になるようにした。充電後は常法に従って完全弁な
どを装着して約10Ah(5hR)容量のゲル式電池を製作し
た。
(Example 1) First, 0.005, 0.01, antimony powder was added to the positive electrode active material.
0.1, 0.3, 0.5, 1.0 wt%, and for each of the six different antimony powder addition amounts A to F, a silicon dioxide powder having an average particle diameter of about 100 μm was added to each electrode plate at 0,0.0
A total of 42 clad-type positive plates with 1,0.05,0.1,0.3,0.5,1.0 wt% added were prepared. For comparison, a conventional positive electrode plate G containing neither antimony nor silicon dioxide powder was manufactured.
A battery composed of one of these positive electrode plates, two paste-type negative electrode plates, and two pulp separators was manufactured, and dilute sulfuric acid and a solulating agent were mixed therein, and a gel electrolyte was injected. , A predetermined amount of charge is performed, and the specific gravity after charging is 1.30 (20
° C). After charging, a gel valve with a capacity of about 10 Ah (5 hR) was manufactured by mounting a complete valve according to a conventional method.

これらの電池を2.5A(0.25CA)電流で3時間放電し、
その110%を充電する充放電サイクルを繰り返し行な
い、500∞経過した時点で電池を解体調査した。
Discharge these batteries at 2.5A (0.25CA) current for 3 hours,
The charge / discharge cycle for charging 110% of the battery was repeated, and the battery was disassembled and inspected at the time when 500 ° had elapsed.

第1図に500∞時点後の容量維持率(初期容量比)を
示す。図から明らかなように、正極活物質へのアンチモ
ンの添加量が0.005%と非常に少ない場合や1.0%と非常
に多い場合、または二酸化ケイ素が0.01%以下および1.
0%の場合は従来のアンチモンも二酸化ケイ素粉末も添
加していない従来電池とほぼ同等かそれ以下の放電容量
しか維持していなかったが、0.01〜0.5%のアンチモン
および0.05〜0.5%の二酸化ケイ素を添加した本発明に
よる電池ではいずれも容量低下が少なく、従来電池に比
べてかなり寿命性能が優れていた。この原因を明らかに
するため負極板に析出していたアンチモン量の分析を行
なうと共に、正極板に針を突き刺すことにより極板硬さ
を調べた。その結果を第2図,第3図にそれぞれ示す。
図からわかるように二酸化ケイ素の添加量を多くするに
つれて負極板へのアンチモン吸着量は低下しており、正
極活物質への二酸化ケイ素の添加は正極板の外のアンチ
モンが移動するのを防ぐ効果があることがわかる。また
アンチモン添加量を多くすると、正極板は硬くなること
がわかる。一般に劣化した正極板は著しく軟らかくなり
活物質は泥状化することが知られている。このこのから
考えて、アンチモンの添加量が多いと正極活物質の劣化
をおさえることができると考えられる。本試験品で寿命
性能が悪かった電池を見ると、アンチモン量が1.0%と
多い場合や二酸化ケイ素が0.01%以下と少ない場合には
負極板へのアンチモンの析出がきわめて多いこと、アン
チモン量が0.01%,0.005%と少なすぎる場合や、二酸化
ケイ素が1.0%と多すぎる場合には正極板が軟らかく劣
化していることがわかる。
FIG. 1 shows the capacity retention ratio (initial capacity ratio) after 500 °. As is clear from the figure, the amount of antimony added to the positive electrode active material is very small as 0.005% or very large as 1.0%, or the amount of silicon dioxide is 0.01% or less and 1.
In the case of 0%, the discharge capacity was maintained almost equal to or less than that of the conventional battery to which neither conventional antimony nor silicon dioxide powder was added, but 0.01 to 0.5% of antimony and 0.05 to 0.5% of silicon dioxide were maintained. In any of the batteries according to the present invention to which is added, the reduction in capacity was small, and the life performance was considerably superior to that of the conventional battery. In order to clarify the cause, the amount of antimony deposited on the negative electrode plate was analyzed, and the hardness of the electrode plate was examined by piercing a needle into the positive electrode plate. The results are shown in FIGS. 2 and 3, respectively.
As can be seen from the figure, as the amount of silicon dioxide added increases, the amount of antimony adsorbed on the negative electrode plate decreases, and the addition of silicon dioxide to the positive electrode active material prevents the movement of antimony outside the positive electrode plate. It turns out that there is. Also, it can be seen that when the amount of added antimony is increased, the positive electrode plate becomes harder. Generally, it is known that a deteriorated positive electrode plate becomes extremely soft and the active material becomes muddy. From this, it is considered that when the amount of added antimony is large, deterioration of the positive electrode active material can be suppressed. Looking at the batteries with poor life performance in this test product, when the amount of antimony is as large as 1.0% or when the amount of silicon dioxide is as small as 0.01% or less, the precipitation of antimony on the negative electrode plate is extremely large. %, 0.005%, or too much silicon dioxide, 1.0%, indicates that the positive electrode plate is soft and deteriorated.

正極板に0.01〜0.5%のアンチモンおよび0.05〜0.5%
の二酸化ケイ素を同時に入れた本発明による電池で寿命
性能が良かったのは、負極板へのアンチモンの析出量が
少なく、かつ正極板が硬い、つまり正極活物質の劣化が
少ないことによるものと考えられる。
0.01-0.5% antimony and 0.05-0.5% for positive electrode plate
The good performance of the battery according to the present invention in which silicon dioxide was added at the same time was attributed to the fact that the amount of antimony deposited on the negative electrode plate was small and the positive electrode plate was hard, that is, the deterioration of the positive electrode active material was small. Can be

(実施例2) 正極活物質中にアンチモン粉末を0.5wt%添加し、さ
らに平均粒子径が1,10,100,500,1000μmの二酸化ケイ
素粉末(イ)〜(ホ)の5種類をそれぞれ0.01,0.05,0.
1,0.3,0.5,1.0wt%添加した正極板計30枚をつくった。
アンチモンも二酸化ケイ素も入れていない従来の正極板
(ヘ)も含めて、実施例1と同じ構成の電池を製作し、
同じ寿命試験に供した。500∞経過した時点で電池を解
体した。第4図に500∞後の容量維持率(初期容量比)
を示す。10〜500μmの粒子径の二酸化ケイ素を0.05〜
0.5wt%添加したものは他の電池に比べて著しく寿命性
能が優れていることがわかる。この理由を明らかにする
ため、実施例1と同じく500∞後の負極板へのアンチモ
ンの析出量と、正極板の硬さを調べたところ、粒子径1
μmの二酸化ケイ素を添加した電池は負極板へのアンチ
モンの析出は少ないものの正極活物質がかなり軟らか
い、つまり劣化していた。
Example 2 0.5 wt% of antimony powder was added to the positive electrode active material, and five kinds of silicon dioxide powders (a) to (e) having average particle diameters of 1,10,100,500,1000 μm were added at 0.01,0.05,0, respectively. .
A total of 30 positive electrode plates with 1,0.3,0.5,1.0 wt% added were prepared.
A battery having the same configuration as in Example 1 was manufactured, including the conventional positive electrode plate (f) containing neither antimony nor silicon dioxide,
The same life test was performed. The battery was disassembled when 500 mm had passed. Figure 4 shows the capacity retention rate after 500 mm (initial capacity ratio).
Is shown. Silicon dioxide with a particle size of 10 to 500 μm is 0.05 to
It can be seen that the one with the addition of 0.5 wt% has significantly better life performance than other batteries. In order to clarify the reason, the amount of antimony deposited on the negative electrode plate after 500 ° and the hardness of the positive electrode plate were examined in the same manner as in Example 1.
In the battery to which silicon dioxide of μm was added, although the amount of antimony deposited on the negative electrode plate was small, the positive electrode active material was considerably soft, that is, deteriorated.

また粒子径1000μmの場合は正極活物質は硬く、劣化
していないが、負極板へのアンチモンの析出が極めて多
かった。つまり、粒子径の小さすぎる二酸化ケイ素は粒
子間のファンデルワールス力による反発が大きいため正
極活物質量がかなり少なく、そのため実質的に放電が深
くなるため早期に寿命になったものと思われる。また、
粒子径が大きすぎる場合は、二酸化ケイ素の表面積が小
さくなりアンチモンの吸着量が低下し、負極板へのアン
チモンの移動が多くなり、寿命性能が低下したものと考
えられる。10〜500μmの粒子径の二酸化ケイ素を添加
した電池では正・負極板両方の性能が優れていたため
に、寿命性能が良かったものと思われる。
When the particle diameter was 1000 μm, the positive electrode active material was hard and did not deteriorate, but the amount of antimony deposited on the negative electrode plate was extremely large. In other words, it is considered that the silicon dioxide having a too small particle diameter has a considerably small amount of the positive electrode active material due to a large repulsion due to the Van der Waals force between the particles, so that the discharge is substantially deepened, so that the life is shortened at an early stage. Also,
If the particle size is too large, it is considered that the surface area of silicon dioxide is reduced, the amount of adsorbed antimony is reduced, the movement of antimony to the negative electrode plate is increased, and the life performance is reduced. It is considered that the battery to which silicon dioxide having a particle diameter of 10 to 500 μm was added had excellent performance because both the positive and negative electrode plates had excellent performance.

なお、本実施例では添加するアンモチン粉末を0.5wt
%に限定した行なったが、実施例1で示した0.01〜0.5w
t%の範囲のアンチモン量を添加した場合でも、試験結
果に差はほとんどなかった。本実施例では粒子径が比較
的そろった二酸化ケイ素を用いたが、本発明の範囲内で
ある10〜500μm程度の粒子径のものであれば、配合比
には関係なく寿命性能が向上した。また、本実施例では
アンチモン粉末を添加したが、アンチモン酸化物や硫化
物などのアンチモン化合物を添加しても効果に差は全く
なかった。
In this example, the amount of ammotin powder to be added was 0.5 wt.
%, But 0.01 to 0.5 w shown in Example 1.
Even when the amount of antimony in the range of t% was added, there was almost no difference in the test results. In this example, silicon dioxide having a relatively uniform particle diameter was used. However, as long as the particle diameter was within the range of the present invention, about 10 to 500 μm, the life performance was improved irrespective of the mixing ratio. In this example, antimony powder was added. However, there was no difference in effect even when an antimony compound such as antimony oxide or sulfide was added.

以上の結果から、正極活物質にアンチモンを0.01〜0.
5wt%および10〜500μmの粒子径の二酸化ケイ素を0.05
〜0.5wt%添加すれば、寿命性能は著しく改善されるこ
とがわかった。
From the above results, antimony was used in the positive electrode active material in a range of 0.01 to 0.1.
5 wt% and silicon dioxide having a particle size of 10 to 500 μm
It was found that the life performance was remarkably improved by adding 0.5 wt%.

発明の効果 以上述べたように本発明による密閉式鉛蓄電池は従来
の密閉式鉛蓄電池に比べてサイクル寿命性能が著しく優
れており、その工業的価値を極めて大きい。
Effect of the Invention As described above, the sealed lead-acid battery according to the present invention has remarkably superior cycle life performance as compared with the conventional sealed lead-acid battery, and has an extremely large industrial value.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第4図は500∞後の放電容量維持率(初期
容量比)を示す特性図、第2図は500∞後の負極活物質
に析出していたアンチモン量を示す特性図、第3図は50
0∞後の正極活物質の硬さを示す特性図である。
1 and 4 are characteristic diagrams showing the discharge capacity retention ratio (initial capacity ratio) after 500 °, FIG. 2 is a characteristic diagram showing the amount of antimony deposited on the negative electrode active material after 500 °, 3 is 50
FIG. 4 is a characteristic diagram showing the hardness of the positive electrode active material after 0 °.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/14 H01M 4/56 - 4/57 H01M 4/62 H01M 10/06 - 10/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/14 H01M 4/56-4/57 H01M 4/62 H01M 10/06-10/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極活物質中に0.01〜0.5wt%のアンチモ
ンあるいはアンチモン化合物の粉末および10〜500μm
の平均粒子径の0.05〜0.5wt%の酸化ケイ素を添加した
ことを特徴とする密閉式鉛蓄電池。
An antimony or antimony compound powder of 0.01 to 0.5 wt% in a positive electrode active material and 10 to 500 μm
A sealed lead-acid battery characterized by adding 0.05 to 0.5% by weight of silicon oxide of the average particle size.
JP2074449A 1990-03-23 1990-03-23 Sealed lead-acid battery Expired - Fee Related JP2952680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074449A JP2952680B2 (en) 1990-03-23 1990-03-23 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074449A JP2952680B2 (en) 1990-03-23 1990-03-23 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH03274668A JPH03274668A (en) 1991-12-05
JP2952680B2 true JP2952680B2 (en) 1999-09-27

Family

ID=13547559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074449A Expired - Fee Related JP2952680B2 (en) 1990-03-23 1990-03-23 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2952680B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143640A (en) * 2014-06-16 2014-11-12 超威电源有限公司 Hydrogen evolution inhibition negative electrode material of lead-acid battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787181B2 (en) * 2011-10-06 2015-09-30 株式会社Gsユアサ Lead acid battery
EP3683887A4 (en) * 2017-10-31 2021-06-30 GS Yuasa International Ltd. Lead storage battery
JP2021163617A (en) * 2020-03-31 2021-10-11 古河電池株式会社 Lead-acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143640A (en) * 2014-06-16 2014-11-12 超威电源有限公司 Hydrogen evolution inhibition negative electrode material of lead-acid battery
CN104143640B (en) * 2014-06-16 2016-04-06 超威电源有限公司 A kind of acid accumulator negative pole lead material suppressing liberation of hydrogen

Also Published As

Publication number Publication date
JPH03274668A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
JP2952680B2 (en) Sealed lead-acid battery
JPH10188963A (en) Sealed lead-acid battery
US6284411B1 (en) Valve regulated type battery and producing method thereof
JP4224729B2 (en) Sealed lead-acid battery and method for manufacturing the same
JP3505972B2 (en) Lead-acid battery and method of manufacturing lead-acid battery
JPH042060A (en) Sealed type lead acid battery
JP2913485B2 (en) Sealed lead-acid battery
JP3094423B2 (en) Lead storage battery
JPH07147160A (en) Lead-acid battery
JPH10189029A (en) Manufacture for sealed lead storage battery
JP2958791B2 (en) Sealed lead-acid battery
JP2591975B2 (en) Sealed clad type lead battery
JP2958790B2 (en) Sealed lead-acid battery
JPH08298133A (en) Sealed lead acid battery
JP2001023620A5 (en)
JPS61264675A (en) Positive plate of clad type lead-acid battery
JPH10188964A (en) Sealed lead-acid battery
JPS6322428B2 (en)
JPS63239767A (en) Lead storage battery
JPH11354128A (en) Sealed lead-acid battery
JPH0432164A (en) Enclosed lead battery
JPS62126551A (en) Manufacture of cathode plate for lead-acid battery
JPS61161660A (en) Lead-acid battery
JPH08298119A (en) Sealed lead-acid battery
JPH06150960A (en) Clad type sealed lead-acid battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees