JP2022109137A - Control valve type lead-acid storage battery - Google Patents

Control valve type lead-acid storage battery Download PDF

Info

Publication number
JP2022109137A
JP2022109137A JP2021004493A JP2021004493A JP2022109137A JP 2022109137 A JP2022109137 A JP 2022109137A JP 2021004493 A JP2021004493 A JP 2021004493A JP 2021004493 A JP2021004493 A JP 2021004493A JP 2022109137 A JP2022109137 A JP 2022109137A
Authority
JP
Japan
Prior art keywords
positive electrode
mass
negative electrode
active material
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021004493A
Other languages
Japanese (ja)
Inventor
宏一 岩瀬
Koichi Iwase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2021004493A priority Critical patent/JP2022109137A/en
Publication of JP2022109137A publication Critical patent/JP2022109137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a control valve type lead-acid storage battery that can suppress occurrence of a stratification phenomenon of electrolytic solution and has excellent cycle life performance.SOLUTION: A control valve type lead-acid storage battery comprises: an electrolyzer having a plurality of cell chambers partitioned by partition walls; a plurality of electrode plate groups that are stored in the plurality of cell chambers, respectively; and electrolytic solution injected in the plurality of cell chambers. The electrode plate groups are composed of a plurality of positive electrode plates and negative electrode plates disposed alternately and separators disposed between the positive electrode plates and the negative electrode plates. The positive electrode plates are composed of a positive electrode collector and positive electrode active material filled in the positive electrode collector; the negative electrode plates are composed of a negative electrode collector and negative electrode active material filled in the negative electrode collector. A ratio Mp/Mn of mass Mp of the positive electrode active material to mass Mn of the negative electrode active material per cell chamber after formation is equal to or larger than 1.30 and equal to or smaller than 1.65. A ratio Ms/Mp of mass Ms of pure sulfuric acid contained in the electrolytic solution to the mass Mp of the positive electrode active material per cell chamber after the formation is equal to or larger than 0.30 and equal to or smaller than 0.40.

Description

本発明は、制御弁式鉛蓄電池に関するものである。 The present invention relates to a valve-regulated lead-acid battery.

制御弁式鉛蓄電池は、過充電時に正極で発生する酸素ガスを負極で消費して水に戻すことで密閉化を可能とするとともに、セル室内の内圧が上昇した場合に、発生した酸素ガスを外部へ逃すための所定圧力で作動する弁体を備える鉛蓄電池である。 In a valve-regulated lead-acid battery, the oxygen gas generated at the positive electrode during overcharging is consumed at the negative electrode and returned to water, making it possible to seal the battery. A lead-acid battery equipped with a valve that operates at a predetermined pressure to release to the outside.

制御弁式鉛蓄電池の電解液は、セパレータや極板に含浸される程度しか存在せず、非流動化されている。従って、制御弁式鉛蓄電池において、液式鉛蓄電池にみられる充電中に極板から発生した硫酸が電槽下部に沈降して電解液の硫酸比重が電槽の下部ほど高くなる成層化現象が起き難いと考えられているが、比較的過充電量の少ない状態で充放電を繰り返した場合、電解液の成層化現象が発生し易く、特に、サイクル用途で使用される制御弁式鉛蓄電池では、電解液の成層化現象によって容量低下が起こり、寿命に至る場合がある。 The electrolyte in a valve-regulated lead-acid battery is non-fluidized, and exists only to the extent that it impregnates the separator and the electrode plates. Therefore, in the valve-regulated lead-acid battery, the stratification phenomenon that the sulfuric acid generated from the electrode plate during charging sinks to the bottom of the battery case and the sulfuric acid specific gravity of the electrolyte increases toward the bottom of the battery case occurs. It is thought to be difficult to occur, but when charging and discharging are repeated in a relatively small amount of overcharge, the stratification phenomenon of the electrolyte tends to occur, especially in valve-regulated lead-acid batteries used for cycle applications , the stratification phenomenon of the electrolytic solution causes a decrease in capacity, which may lead to the end of life.

また、電槽の高さ方向の寸法が長く、幅方向の寸法が短い電槽を備えた制御弁式鉛蓄電池を縦置きで使用する場合、電解液の成層化現象が発生し易い。電解液の成層化現象が発生すると、電解液の濃度が大きい電槽下部では、高濃度の電解液により、負極板表面で硫酸鉛が肥大化するサルフェーションが発生し易くなる。 In addition, when a valve regulated lead-acid battery having a container with a long height and a short width is used vertically, stratification of the electrolyte tends to occur. When the electrolyte stratification phenomenon occurs, the high-concentration electrolyte tends to cause sulfation in which lead sulfate enlarges on the surface of the negative electrode plate in the lower part of the battery case where the concentration of the electrolyte is high.

サルフェーションが発生すると、負極活物質からの硫酸の放出が抑制されるため、負極板下部の充電受入性が低下して、主に負極板上部で充放電反応が進行する様になるため、負極板上部と対向する正極板上部の正極活物質の軟化や、集電体である鉛合金からなる基板の腐食が進行し、鉛蓄電池が早期に寿命に至ることになる。 When sulfation occurs, the release of sulfuric acid from the negative electrode active material is suppressed, so the charge acceptance of the lower portion of the negative electrode plate decreases, and the charge/discharge reaction proceeds mainly in the upper portion of the negative electrode plate. The softening of the positive electrode active material on the upper portion of the positive electrode plate facing the upper portion and the corrosion of the substrate made of a lead alloy as a current collector progresses, and the life of the lead-acid battery ends early.

特開2003-36831号公報Japanese Patent Application Laid-Open No. 2003-36831 特開2013-41757号公報JP 2013-41757 A

上記の問題を解決する方法として、従来から、電解液にシリカ微粒子を添加することが行われており、例えば、特許文献1には、少量の可溶性硫酸塩と、0.75質量%以上4.0質量%以下のリン酸と、10質量%未満のシリカ微粒子とを含む希硫酸とからなるゲル状電解液を添加した電解液を有する制御弁式鉛蓄電池が開示されている。 As a method for solving the above problems, it has been conventionally performed to add silica fine particles to the electrolytic solution. Disclosed is a valve-regulated lead-acid battery having an electrolytic solution to which a gel electrolyte solution containing 0% by mass or less of phosphoric acid and dilute sulfuric acid containing less than 10% by mass of fine silica particles is added.

しかしながら、特許文献1に開示されている制御弁式鉛蓄電池では、初期容量、サイクル寿命性能の改善ができるものの、多量のシリカ微粒子を必要とし、その結果、電解液が注液前にゲル化してしまうため、電解液の注液が困難となる場合がある。また、シリカ微粒子の添加量が多いためコスト的に不利である。 However, although the valve-regulated lead-acid battery disclosed in Patent Document 1 can improve the initial capacity and cycle life performance, it requires a large amount of silica fine particles, and as a result, the electrolytic solution gels before injection. As a result, it may become difficult to inject the electrolytic solution. Moreover, since the amount of silica fine particles added is large, it is disadvantageous in terms of cost.

また、特許文献2には、電槽の高さ方向の寸法Hと、極板面と平行な幅方向の寸法Wとの比H/Wが1.7以上である内部空間が形成されたものであり、負極板が、化成後において0.016質量%以上のアンチモンを含む負極活物質を有する鉛蓄電池が開示されており、比H/Wが大きい高形の鉛蓄電池であっても、電解液の成層化を抑制し、優れたサイクル寿命性能を得ることができると開示されている。 Further, in Patent Document 2, an internal space is formed in which the ratio H/W between the dimension H in the height direction of the container and the dimension W in the width direction parallel to the electrode plate surface is 1.7 or more. , and a lead-acid battery in which the negative electrode plate has a negative electrode active material containing 0.016% by mass or more of antimony after formation is disclosed. It is disclosed that liquid stratification can be suppressed and excellent cycle life performance can be obtained.

しかしながら、特許文献2に開示されている鉛蓄電池では、負極活物質がアンチモンを含み、水素過電圧が低下して、水の電気分解反応が促進され、充電時のガス発生が多くなるため、電解液の成層化現象を抑制することができる反面、電解液量が減少する、所謂液枯れが発生し、サイクル寿命性能が低下する恐れがある。 However, in the lead-acid battery disclosed in Patent Document 2, the negative electrode active material contains antimony, the hydrogen overvoltage is lowered, the electrolysis reaction of water is promoted, and more gas is generated during charging. Although the stratification phenomenon can be suppressed, the amount of the electrolyte decreases, that is, so-called liquid depletion may occur, and the cycle life performance may decrease.

そこで、本発明者は、種々検討した結果、正極活物質の質量と負極活物質の質量との比率および正極活物質の質量と電解液に含まれる純硫酸の質量との比率を規定することにより、成層化現象を抑制して、サイクル寿命性能を向上させることが可能であることを見出し、本願発明に至ったものである。
したがって、本発明は、サイクル寿命性能に優れた制御弁式鉛蓄電池を提供することを目的とする。
Therefore, as a result of various studies, the present inventors determined that the ratio between the mass of the positive electrode active material and the mass of the negative electrode active material and the ratio between the mass of the positive electrode active material and the mass of pure sulfuric acid contained in the electrolytic solution are defined. The inventors have found that the stratification phenomenon can be suppressed and the cycle life performance can be improved, leading to the present invention.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a valve-regulated lead-acid battery having excellent cycle life performance.

本発明の一態様に係る制御弁式鉛蓄電池は、隔壁により区画された複数のセル室を有する電槽と、複数のセル室にそれぞれ収納された複数の極板群と、複数のセル室に注入された電解液とを備え、極板群は、交互に配置された複数枚の正極板および負極板と、正極板と負極板との間に配置されたセパレータとからなり、正極板は、正極集電体と、正極集電体に充填された正極活物質とからなり、負極板は、負極集電体と、負極集電体に充填された負極活物質とからなる制御弁式鉛蓄電池であって、化成後のセル室あたりの負極活物質の質量Mに対する正極活物質の質量Mの比率M/Mが、1.30以上1.65以下であり、化成後のセル室あたりの正極活物質の質量Mに対する電解液中に含まれる純硫酸の質量Mの比率M/Mが、0.30以上0.40以下であることを要旨とする。 A valve-regulated lead-acid battery according to an aspect of the present invention includes a container having a plurality of cell chambers partitioned by partition walls, a plurality of electrode plate groups housed in the plurality of cell chambers, and The electrode plate group is composed of a plurality of positive electrode plates and negative electrode plates alternately arranged, and a separator disposed between the positive electrode plate and the negative electrode plate, wherein the positive electrode plate comprises: A valve-regulated lead-acid battery comprising a positive electrode current collector and a positive electrode active material filled in the positive electrode current collector, and a negative electrode plate comprising a negative electrode current collector and a negative electrode active material filled in the negative electrode current collector. and the ratio M p /M n of the mass M p of the positive electrode active material to the mass M n of the negative electrode active material per cell chamber after chemical conversion is 1.30 or more and 1.65 or less, and the cell after chemical conversion The gist is that the ratio M s /M p of the mass M s of pure sulfuric acid contained in the electrolyte to the mass M p of the positive electrode active material per chamber is 0.30 or more and 0.40 or less.

本発明に係る制御弁式鉛蓄電池は、電解液の成層化現象を抑制することができ、優れたサイクル寿命性能を有する。 ADVANTAGE OF THE INVENTION The valve-regulated lead-acid battery which concerns on this invention can suppress the stratification phenomenon of electrolyte solution, and has the outstanding cycle life performance.

本発明の実施形態について説明する。なお、以下に説明する実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更または改良を加えることが可能であり、そのような変更または改良を加えた形態も本発明に含まれ得る。 An embodiment of the present invention will be described. The embodiment described below is an example of the present invention, and the present invention is not limited to this embodiment. In addition, various modifications or improvements can be added to the present embodiment, and forms to which such modifications or improvements are added can also be included in the present invention.

本発明に係る制御弁式鉛蓄電池は、隔壁により区画された複数のセル室を有する電槽と、複数のセル室にそれぞれ収納された複数の極板群と、複数のセル室に注入された電解液とを備える。極板群は、交互に配置された複数枚の正極板および負極板と、正極板と負極板との間に配置されたセパレータとからなり、正極板は、正極集電体と、正極集電体に充填された正極活物質とからなり、負極板は、負極集電体と、負極集電体に充填された負極活物質とからなる。 A valve-regulated lead-acid battery according to the present invention comprises a container having a plurality of cell chambers partitioned by partition walls, a plurality of electrode plate groups housed in the plurality of cell chambers, and a and an electrolytic solution. The electrode plate group includes a plurality of positive electrode plates and negative electrode plates alternately arranged, and a separator disposed between the positive electrode plate and the negative electrode plate. The positive electrode plate includes a positive current collector and a positive current collector. The negative electrode plate is composed of a negative electrode current collector and a negative electrode active material filled in the negative electrode current collector.

また、電槽に注液用や排気用の開口部を有する蓋を溶着あるいは接着し、この開口部から電解液を注液する。なお、蓋の注液用や排気用の開口部には、過充電時に正極板で発生する酸素ガスにより、蓄電池内圧が上昇した場合に酸素ガスを外部へ逃すための所定圧力で作動する弁体(制御弁)が備えられている。 Also, a lid having openings for pouring and exhausting liquid is welded or adhered to the battery case, and the electrolytic solution is poured through the openings. In addition, a valve element that operates at a predetermined pressure to release oxygen gas to the outside when the internal pressure of the battery rises due to oxygen gas generated at the positive electrode plate during overcharging is provided in the lid opening for liquid injection and exhaust. (control valve) is provided.

本発明に係る制御弁式鉛蓄電池の極板群は、交互に配置された複数枚の正極板および負極板と、正極板と負極板との間に配置されたセパレータとを有し、例えば、正極板と、負極板と、ガラス繊維マット(セパレータ)とを備える。また、極板群を構成する正極板の枚数が負極板の枚数よりも1枚多くても良く、負極板の枚数の方が正極板の枚数よりも1枚多くても良く、正極板の枚数と負極板の枚数とが同枚数でも良い。なお、セパレータの形状は、シート状であっても良く、袋状であっても良く、U字形状等であっても良い。極板を収納する袋状またはU字形状等のセパレータを使用する場合、正極板を収納しても良く、負極板を収納しても良い。 The electrode plate group of the valve-regulated lead-acid battery according to the present invention includes a plurality of positive electrode plates and negative electrode plates alternately arranged, and a separator disposed between the positive electrode plate and the negative electrode plate. It includes a positive electrode plate, a negative electrode plate, and a glass fiber mat (separator). Further, the number of positive plates constituting the electrode plate group may be one more than the number of negative plates, or the number of negative plates may be one more than the number of positive plates. and the number of negative plates may be the same. The shape of the separator may be sheet-like, bag-like, or U-shaped. When using a bag-shaped or U-shaped separator for accommodating the electrode plate, the positive electrode plate may be accommodated, or the negative electrode plate may be accommodated.

極板群の各正極板の耳部は正極ストラップによって一体連結されており、各負極板の耳部は負極ストラップによって一体連結されており、隣接するセル室の正極ストラップと負極ストラップとが電槽の隔壁を介して隣接しており、隔壁に設けられた貫通孔を通じて接続されている。また、正極極柱が一端のセル室の正極ストラップから電槽の上方向に掛けて突設されており、負極極柱が他端のセル室の負極ストラップから電槽の上方向に掛けて突設されている。 The ears of each positive electrode plate in the electrode plate group are integrally connected by a positive electrode strap, the ears of each negative electrode plate are integrally connected by a negative electrode strap, and the positive electrode strap and the negative electrode strap of adjacent cell chambers are connected to each other by a battery container. are adjacent to each other via a partition wall, and are connected through a through-hole provided in the partition wall. In addition, the positive electrode pillar protrudes upward from the positive electrode strap in the cell chamber at one end of the battery case, and the negative electrode pillar projects upward from the negative electrode strap in the cell chamber at the other end of the battery container. is set.

次いで、本発明に係る制御弁式鉛蓄電池について、詳細に説明する。 Next, the valve-regulated lead-acid battery according to the present invention will be described in detail.

[化成後のセル室あたりの負極活物質の質量Mに対する正極活物質の質量Mの比率M/M
本発明に係る制御弁式鉛蓄電池の化成後のセル室あたりの負極活物質の質量Mに対する正極活物質の質量Mの比率M/Mが、1.30以上1.65以下であると、正極板に十分な量の正極活物質が保持されるため、優れた寿命性能を示す。さらには、比率M/Mが、1.40以上1.55以下であることが好ましく、この範囲であれば、顕著に優れたサイクル寿命性能を得ることができる。
[Ratio Mp / Mn of the mass Mp of the positive electrode active material to the mass Mn of the negative electrode active material per cell chamber after chemical conversion]
The ratio Mp / Mn of the mass Mp of the positive electrode active material to the mass Mn of the negative electrode active material per cell chamber after formation of the valve-regulated lead-acid battery according to the present invention is 1.30 or more and 1.65 or less. With this, a sufficient amount of the positive electrode active material is retained in the positive electrode plate, thereby exhibiting excellent life performance. Furthermore, the ratio M p /M n is preferably 1.40 or more and 1.55 or less, and within this range, remarkably excellent cycle life performance can be obtained.

比率M/Mが1.30未満の場合、負極活物質量に対し正極活物質量が少なく、充電時の水の電気分解が増加し、正極から酸素ガスが多量に発生して、負極での酸素ガスの消費が不完全となり、酸素ガスが電池外部に放出されて電解液量が減少する、所謂液枯れが発生することで、優れた寿命性能を得ることができない。また、充放電を繰り返した場合、負極活物質量に対して正極活物質量が少ないため、正極活物質の軟化が進み易く、正極活物質の脱落を招き、サイクル寿命性能が低下するおそれがある。一方で、比率M/Mが1.65を超える場合、負極活物質量に対し正極活物質量が多く、充電が負極で制限され、正極が充電不足になり、正極から発生する酸素ガスの量が減少するため、電解液の成層化現象が発生し易くなり、優れたサイクル寿命性能を得ることができない。 When the ratio M p /M n is less than 1.30, the amount of the positive electrode active material is small relative to the amount of the negative electrode active material, the electrolysis of water during charging increases, a large amount of oxygen gas is generated from the positive electrode, and the negative electrode Oxygen gas is incompletely consumed at the end of the battery, and the oxygen gas is released to the outside of the battery, resulting in a decrease in the amount of the electrolyte solution. In addition, when charging and discharging are repeated, since the amount of the positive electrode active material is small relative to the amount of the negative electrode active material, the softening of the positive electrode active material is likely to progress, which may lead to the falling off of the positive electrode active material and decrease the cycle life performance. . On the other hand, when the ratio M p /M n exceeds 1.65, the amount of the positive electrode active material is large relative to the amount of the negative electrode active material, charging is limited by the negative electrode, the positive electrode is insufficiently charged, and oxygen gas is generated from the positive electrode. Since the amount of is reduced, the stratification phenomenon of the electrolytic solution is likely to occur, and excellent cycle life performance cannot be obtained.

比率M/Mは、例えば、以下の方法で調整することができる。
正極板を、正極集電体に鉛粉、硫酸、水および所定の添加剤を含む混練物(活物質ペースト)を塗布する工程を経て作製する際に、正極集電体に塗布する正極活物質の充填量を、比率M/Mが1.30以上1.65以下となるように調整する。また、負極板を作製する際に、負極集電体に塗布する負極活物質の充填量を減らすことで、比率M/Mが1.30以上1.65以下となるように調整することが可能であるが、所期の放電容量を得るには正極活物質の充填量の増減により比率M/Mを調整することが好ましい。
なお、極板群に含まれる正極板および負極板の枚数構成、あるいは集電体の格子形状等を適宜変えることにより調整しても良い。
The ratio M p /M n can be adjusted, for example, by the following method.
A positive electrode active material to be applied to a positive electrode current collector when manufacturing a positive electrode plate through a process of applying a kneaded product (active material paste) containing lead powder, sulfuric acid, water, and a predetermined additive to a positive electrode current collector. is adjusted so that the ratio M p /M n is 1.30 or more and 1.65 or less. In addition, when manufacturing the negative electrode plate, the filling amount of the negative electrode active material applied to the negative electrode current collector is reduced so that the ratio M p /M n is adjusted to 1.30 or more and 1.65 or less. However, in order to obtain the desired discharge capacity, it is preferable to adjust the ratio M p /M n by increasing or decreasing the filling amount of the positive electrode active material.
The number of positive plates and negative plates included in the electrode plate group may be adjusted by appropriately changing the configuration of the number of positive plates and negative plates, or the lattice shape of the current collector.

[化成後のセル室あたりの正極活物質の質量Mに対する電解液中に含まれる純硫酸の質量Mの比率M/M]
本発明に係る制御弁式鉛蓄電池の化成後のセル室あたりの正極活物質の質量Mに対する電解液中に含まれる純硫酸の質量Mの比率M/Mが、0.30以上0.40以下であると、正極活物質に十分な量の硫酸が供給されるため、優れた寿命性能を示す。さらには、比率M/Mが、0.32以上0.38以下であることが好ましく、この範囲であれば、顕著に優れたサイクル寿命性能を得ることができる。
なお、本明細書における「純硫酸」とは、電解液中に含まれる硫酸のことを意味する。
[Ratio M s /M p of the mass M s of pure sulfuric acid contained in the electrolytic solution to the mass M p of the positive electrode active material per cell chamber after chemical conversion]
The ratio M s /M p of the mass M s of pure sulfuric acid contained in the electrolytic solution to the mass M p of the positive electrode active material per cell chamber after formation of the valve-regulated lead-acid battery according to the present invention is 0.30 or more. When it is 0.40 or less, a sufficient amount of sulfuric acid is supplied to the positive electrode active material, so excellent life performance is exhibited. Furthermore, the ratio M s /M p is preferably 0.32 or more and 0.38 or less. Within this range, remarkably excellent cycle life performance can be obtained.
In this specification, "pure sulfuric acid" means sulfuric acid contained in the electrolytic solution.

比率M/Mが0.30未満の場合、正極活物質量に対して電解液中に含まれる純硫酸量が不足し、容量低下を招き、所期の放電容量が得られない。一方、比率M/Mが0.40を超える場合、正極活物質量に対して電解液中に含まれる純硫酸量が多く、成層化現象が発生し易い。また、正極活物質に対する硫酸の供給量が多いため、正極活物質の軟化が進み易く、正極活物質の脱落を招き、サイクル寿命性能が低下する。 If the ratio M s /M p is less than 0.30, the amount of pure sulfuric acid contained in the electrolytic solution is insufficient with respect to the amount of the positive electrode active material, leading to a decrease in capacity, and the desired discharge capacity cannot be obtained. On the other hand, when the ratio M s /M p exceeds 0.40, the amount of pure sulfuric acid contained in the electrolytic solution is large relative to the amount of the positive electrode active material, and stratification tends to occur. In addition, since a large amount of sulfuric acid is supplied to the positive electrode active material, softening of the positive electrode active material is likely to progress, causing the positive electrode active material to come off, thereby deteriorating the cycle life performance.

比率M/Mは、例えば、以下の方法で調整することができる。
正極板を、正極集電体に鉛粉、硫酸、水および所定の添加剤を含む混練物(正極活物質ペースト)を塗布する工程を経て作製する際に、正極集電体に塗布する正極活物質の充填量を、比率M/Mが0.30以上0.40以下となるように調整する。また、希硫酸からなる電解液を各セル室内へ注液する際に、注液する電解液の比重を減らすことで、比率M/Mが0.30以上0.40以下となるように調整することも可能であるが、所期の放電容量を得るには正極活物質の充填量の増減により比率M/Mを調整することが好ましい。
The ratio M s /M p can be adjusted, for example, by the following method.
When manufacturing the positive electrode plate through the step of applying a kneaded product (positive electrode active material paste) containing lead powder, sulfuric acid, water and a predetermined additive to the positive electrode current collector, the positive electrode active material applied to the positive electrode current collector The filling amount of the substance is adjusted so that the ratio M s /M p is 0.30 or more and 0.40 or less. Further, when the electrolytic solution made of dilute sulfuric acid is injected into each cell chamber, the specific gravity of the injected electrolytic solution is reduced so that the ratio M s /M p is 0.30 or more and 0.40 or less. Although it can be adjusted, it is preferable to adjust the ratio M s /M p by increasing or decreasing the filling amount of the positive electrode active material in order to obtain the desired discharge capacity.

[比率M/Mおよび比率M/Mの算出]
本明細書の比率M/Mおよび比率M/Mにおける、「M」、「M」および「M」は以下の3式で算出する。
式1;「M」=(「セル室あたりの電解液が染み込んだ正極板、負極板およびセパレータの質量」-「セル室あたりの乾燥後の正極板、負極板およびセパレータの質量」+「余剰液の質量」)×「電解液中の硫酸の濃度(質量%)」
式2;「M」=「セル室あたりの乾燥後の正極板質量」-「セル室あたりの乾燥後の正極集電体質量」
式3;「M」=「セル室あたりの乾燥後の負極板質量」-「セル室あたりの乾燥後の負極集電体質量」
上記3式により算出して、得られた「M」、「M」および「M」を用いて、比率M/Mおよび比率M/Mを得ることができる。
[Calculation of ratio M p /M n and ratio M s /M p ]
“M s ”, “M p ” and “M n ” in the ratio M p /M n and the ratio M s /M p in this specification are calculated by the following three equations.
Formula 1; “M s ” = (“mass of positive electrode plate, negative electrode plate and separator soaked with electrolytic solution per cell chamber” − “mass of dried positive electrode plate, negative electrode plate and separator per cell chamber” + “ Mass of surplus liquid") x "concentration of sulfuric acid in electrolyte (mass%)"
Equation 2: “M p ”=“mass of dried positive electrode plate per cell chamber”−“mass of dried positive electrode current collector per cell chamber”
Formula 3: “M n ”=“mass of dried negative electrode plate per cell chamber”−“mass of dried negative electrode current collector per cell chamber”
Using the obtained "M s ", "M p " and "M n " calculated by the above three equations, the ratio M p /M n and the ratio M s /M p can be obtained.

上記式1の「セル室あたりの電解液が染み込んだ正極板、負極板およびセパレータの質量」とは、任意の一のセル室に収納された極板群に含まれる正極板、負極板およびセパレータには、セル室に注液された電解液が染み込んでおり、電解液が染み込んだ極板群に含まれる全ての正極板、負極板およびセパレータの質量の合計値である。
「セル室あたりの乾燥後の正極板、負極板およびセパレータの質量」とは、上記正極板、負極板およびセパレータを水で洗浄して染み込んだ電解液の硫酸を取り除き、真空状態で完全乾燥させた正極板、負極板およびセパレータの質量の合計値である。
「余剰液の質量」とは、セル室に注液された電解液のうち、極板群に含まれる正極板、負極板またはセパレータに染み込まず、セル室に残留した電解液の質量である。
「電解液中の硫酸の濃度(質量%)」は、電解液の比重から算出できる。電解液の比重は、極板群に含まれるセパレータに染み込んだ電解液を搾り取り、中和滴定を用いて測定することができる。なお、余剰液がある場合は、余剰液の比重から「電解液中の硫酸の濃度(質量%)」を算出しても良い。
The "mass of the positive electrode plate, the negative electrode plate and the separator soaked with the electrolyte per cell chamber" in the above formula 1 means the positive electrode plate, the negative electrode plate and the separator contained in the electrode plate group accommodated in any one cell chamber. is the sum of the masses of all the positive electrode plates, negative electrode plates and separators included in the electrode plate group soaked with the electrolytic solution injected into the cell chamber.
"The mass of the positive electrode plate, negative electrode plate and separator after drying per cell chamber" means that the positive electrode plate, negative electrode plate and separator are washed with water to remove the sulfuric acid in the electrolyte solution and completely dried in a vacuum state. It is the sum of the masses of the positive electrode plate, the negative electrode plate and the separator.
The "mass of surplus liquid" is the mass of the electrolyte that remains in the cell chamber without permeating into the positive electrode plate, the negative electrode plate, or the separator included in the electrode plate group.
The "concentration (% by mass) of sulfuric acid in the electrolyte" can be calculated from the specific gravity of the electrolyte. The specific gravity of the electrolyte can be measured by squeezing out the electrolyte permeated into the separator included in the electrode group and using neutralization titration. If there is an excess liquid, the "concentration of sulfuric acid in the electrolyte (% by mass)" may be calculated from the specific gravity of the excess liquid.

また、上記式2の「セル室あたりの乾燥後の正極板質量」とは、「M」の算出に用いる「セル室あたりの乾燥後の正極板、負極板およびセパレータの質量」の測定の際に得られる、真空状態で完全乾燥させた正極板質量の合計値である。また、「セル室あたりの正極集電体質量」とは、乾燥後の正極板質量の測定に使用した正極板から正極活物質を分離して得られる正極集電体を洗浄し、真空状態で完全乾燥させた正極集電体質量の合計値である。 In addition, the "mass of the positive electrode plate after drying per cell chamber" in the above formula 2 is the measurement of the "mass of the positive electrode plate, the negative electrode plate and the separator after drying per cell chamber" used in the calculation of " Ms ". It is the total weight of the positive electrode plate completely dried in a vacuum, which is actually obtained. In addition, the “mass of positive electrode current collector per cell chamber” refers to the positive electrode current collector obtained by separating the positive electrode active material from the positive electrode plate used for measuring the mass of the positive electrode plate after drying. It is the total value of the completely dried positive electrode current collector mass.

さらに、上記式3の「セル室あたりの乾燥後の負極板質量」とは、「M」の算出に用いる「セル室あたりの乾燥後の正極板、負極板およびセパレータの質量」の測定の際に得られる、真空状態で完全乾燥させた負極板質量の合計値である。また、「セル室あたりの負極集電体質量」とは、乾燥後の負極板質量の測定に使用した負極板から負極活物質を分離して得られる負極集電体を洗浄し、真空状態で完全乾燥させた負極集電体質量の合計値である。
なお、上記3式において使用する値は、全て化成後の値を採用する。
Furthermore, the “mass of the dried negative electrode plate per cell chamber” in the above formula 3 is the measurement of the “mass of the dried positive electrode plate, the negative electrode plate and the separator per cell chamber” used in the calculation of “M s ”. It is the total weight of the negative electrode plate completely dried in a vacuum, which is actually obtained. In addition, the “mass of the negative electrode current collector per cell chamber” refers to the negative electrode current collector obtained by separating the negative electrode active material from the negative electrode plate used for measuring the mass of the negative electrode plate after drying. It is the total value of the completely dried negative electrode current collector mass.
For the values used in the above three formulas, the values after formation are adopted.

[正極板]
正極板は、鉛または鉛合金の正極集電体と、正極集電体に充填された正極活物質とからなる。なお、正極集電体は、例えば、鉛または鉛合金を連続鋳造方式、ブックモールド方式、エキスパンド方式または打ち抜き方式等により、格子状に形成することで得ることができる。
[Positive plate]
The positive electrode plate is composed of a positive current collector made of lead or a lead alloy and a positive electrode active material filled in the positive current collector. The positive electrode current collector can be obtained, for example, by forming lead or a lead alloy into a grid shape by a continuous casting method, a book molding method, an expanding method, a punching method, or the like.

正極集電体を形成する鉛合金は、例えば、鉛-カルシウム系合金、鉛-カルシウム-錫系合金等が挙げられる。特に、カルシウム(Ca)が0.02質量%以上0.09質量%以下、錫(Sn)が0.4質量%以上2.5質量%以下、アルミニウム(Al)が0.005質量%以上0.04質量%以下、および残部が鉛と不可避の不純物からなる組成を有する鉛合金である場合、正極集電体の耐食性と機械的強度の双方を向上させることが可能になる。 Lead alloys forming the positive electrode current collector include, for example, lead-calcium alloys and lead-calcium-tin alloys. In particular, calcium (Ca) is 0.02 mass% or more and 0.09 mass% or less, tin (Sn) is 0.4 mass% or more and 2.5 mass% or less, aluminum (Al) is 0.005 mass% or more and 0 In the case of a lead alloy having a composition of 0.04% by mass or less and the balance being lead and unavoidable impurities, it is possible to improve both the corrosion resistance and the mechanical strength of the positive electrode current collector.

Caの添加は正極集電体の機械的強度を向上させる。Caの配合量が0.02質量%未満ではその効果が少なく、0.09質量%を超えると耐食性が低下する恐れがある。Snの添加は鉛合金の溶湯の湯流れ性を向上させるとともに、正極集電体の機械的強度を向上させる。Snの配合量が0.4質量%未満ではその効果が少なく、2.5質量%を超えると耐食性が低下する恐れがある。Alの添加は溶湯の酸化によるCaの損失を防止し、さらに正極集電体の機械的強度を向上させる。Alの添加量が0.005質量%未満ではその効果が少なく、0.04質量%を超えるとAlがドロスとして析出し易くなる。 Addition of Ca improves the mechanical strength of the positive electrode current collector. If the content of Ca is less than 0.02% by mass, the effect is small, and if it exceeds 0.09% by mass, corrosion resistance may decrease. The addition of Sn improves the fluidity of the molten lead alloy and improves the mechanical strength of the positive electrode current collector. If the Sn content is less than 0.4% by mass, the effect is small, and if it exceeds 2.5% by mass, the corrosion resistance may decrease. Addition of Al prevents the loss of Ca due to oxidation of the molten metal, and further improves the mechanical strength of the positive electrode current collector. If the amount of Al added is less than 0.005% by mass, the effect is small, and if it exceeds 0.04% by mass, Al tends to precipitate as dross.

また、化成後の正極活物質の密度は4.2g/cm以上4.9g/cmであることが好ましく、サイクル寿命性能と放電容量との均衡のとれた制御弁式鉛蓄電池を得ることができる。なお、化成後の正極活物質の密度が4.4g/cm以上4.9g/cmであることがより好ましく、さらには、化成後の正極活物質の密度が4.6g/cm以上4.9g/cmであることがより好ましい。 In addition, the density of the positive electrode active material after chemical conversion is preferably 4.2 g/cm 3 or more and 4.9 g/cm 3 , so that a valve-regulated lead-acid battery with well-balanced cycle life performance and discharge capacity can be obtained. can be done. More preferably, the density of the positive electrode active material after chemical conversion is 4.4 g/cm 3 or more and 4.9 g/cm 3 or more, and furthermore, the density of the positive electrode active material after chemical conversion is 4.6 g/cm 3 or more. More preferably, it is 4.9 g/cm 3 .

化成後の正極活物質の密度は、例えば、以下の方法で調整できる。正極板を、集電体に鉛粉、硫酸、水および所定の添加剤を含む混練物(正極活物質ペースト)を塗布する工程を経て作製する際に、正極活物質ペーストの混練時に注水する水の量を、化成により集電体に保持された状態の鉛粉が二酸化鉛に変化した状態で、正極合剤の化成後の正極活物質密度が4.2g/cm以上4.9g/cm以下となるように、調整する。
また、正極合剤の化成後の正極活物質密度は、例えば、アルキメデス法または水銀圧入法により測定することができる。
The density of the positive electrode active material after chemical conversion can be adjusted, for example, by the following method. Water injected during kneading of the positive electrode active material paste when manufacturing the positive electrode plate through the step of applying a kneaded product (positive electrode active material paste) containing lead powder, sulfuric acid, water, and a predetermined additive to a current collector. in a state where the lead powder held in the current collector by the chemical conversion is changed to lead dioxide, and the density of the positive electrode active material after chemical conversion of the positive electrode mixture is 4.2 g / cm 3 or more and 4.9 g / cm Adjust to 3 or less.
Also, the density of the positive electrode active material after chemical conversion of the positive electrode mixture can be measured by, for example, the Archimedes method or the mercury intrusion method.

[負極板]
負極板は、鉛または鉛合金の負極集電体と、負極集電体に充填された負極活物質とからなる。なお、負極集電体は、鉛または鉛合金をブックモールド方式、エキスパンド方式、打ち抜き方式等により、格子状に形成することで得ることができる。負極集電体を形成する鉛合金とその組成は、特に限定されないが、製造上の取り扱いを考慮すると、正極集電体と同様の鉛合金を用いることが好ましい。
[Negative plate]
The negative plate includes a negative current collector made of lead or a lead alloy, and a negative active material filled in the negative current collector. The negative electrode current collector can be obtained by forming lead or a lead alloy into a lattice by a book molding method, an expanding method, a punching method, or the like. The lead alloy forming the negative electrode current collector and its composition are not particularly limited, but it is preferable to use the same lead alloy as that used for the positive electrode current collector in consideration of handling in manufacturing.

また、化成後の負極活物質の密度は特に限定されないが、4.2g/cm以上4.9g/cm以下であると、放電容量に優れた制御弁式鉛蓄電池を得ることができる。
なお、化成後の負極活物質の密度は、例えば、アルキメデス法または水銀圧入法により測定することができる。
The density of the negative electrode active material after chemical conversion is not particularly limited, but when it is 4.2 g/cm 3 or more and 4.9 g/cm 3 or less, a valve regulated lead-acid battery with excellent discharge capacity can be obtained.
The density of the negative electrode active material after chemical conversion can be measured by, for example, the Archimedes method or the mercury intrusion method.

[電解液]
本発明に係る制御弁式鉛蓄電池の電解液は、シリカ微粒子を0.5質量%以上5.0質量%未満含んでいても良く、ゾル状のシリカ微粒子が、注液後の初充電における電解液の液温上昇または放置によってシリカ微粒子の酸素と電解液中の硫酸の水素との間にファンデアワールス結合が形成されてゲル化し、電解液が非流動化されて、成層化現象をさらに抑制することができる。
[Electrolyte]
The electrolytic solution of the valve-regulated lead-acid battery according to the present invention may contain 0.5% by mass or more and less than 5.0% by mass of silica fine particles, and the sol-like silica fine particles are electrolyzed in the initial charge after injection. When the liquid temperature rises or the liquid is left standing, van der Waals bonds are formed between the oxygen of the silica fine particles and the hydrogen of the sulfuric acid in the electrolyte, resulting in gelation, and the electrolyte becomes non-fluid, further suppressing the stratification phenomenon. can do.

また、シリカ微粒子の含有量が、0.5質量%未満である電解液は、0.5質量%以上5.0質量%以下の電解液と比較して、ゲル化の程度が低く、電解液の非流動化の効果を十分に得られない。一方、シリカ微粒子の含有量が5.0質量%以上である電解液は、電解液が注液前にゲル化して電解液の注入が困難になるうえ、原料費が高くなる。
なお、電解液には、適宜添加剤を添加しても良く、例えば、硫酸アルミニウム、硫酸アルミニウムカリウムまたは硫酸アルミニウムナトリウム等の充電受入性を向上させることができる添加剤を用いることができる。
In addition, an electrolytic solution having a silica fine particle content of less than 0.5% by mass has a lower degree of gelation than an electrolytic solution having a silica fine particle content of 0.5% by mass or more and 5.0% by mass or less. The effect of liquefying is not sufficiently obtained. On the other hand, when the content of silica fine particles is 5.0% by mass or more, the electrolytic solution gels before injection, making it difficult to inject the electrolytic solution and increasing raw material costs.
An additive may be added to the electrolytic solution as appropriate. For example, an additive capable of improving charge acceptance, such as aluminum sulfate, potassium aluminum sulfate, or sodium aluminum sulfate, can be used.

〔電槽〕
本発明に係る制御弁式鉛蓄電池の電槽の寸法は特に限定されないが、所期の放電容量や制御弁式鉛蓄電池の実際の使用を考慮すると、電槽の幅寸法Wに対する電槽の高さ寸法Hの比率H/Wが0.5以上3.0以下であることが好ましい。
[Battery]
The size of the battery case of the valve-regulated lead-acid battery according to the present invention is not particularly limited, but considering the desired discharge capacity and the actual use of the valve-regulated lead-acid battery, the height of the battery case relative to the width dimension W of the battery case is It is preferable that the ratio H/W of the length dimension H is 0.5 or more and 3.0 or less.

なお、本明細書における「電槽の幅寸法W」は、電槽の外形の幅寸法であり、電槽の底面が長方形である場合は電槽の外底面の短辺寸法と定義し、電槽の底面が正方形である場合は電槽の外底面のいずれか一辺の寸法と定義する。また、「電槽の高さ寸法H」は、電槽の外形の高さ寸法であり、電槽の外底面から、電槽と蓋との溶着部までの高さ寸法と定義する。 In this specification, the "width dimension W of the battery case" is the width dimension of the outer shape of the battery case. If the bottom of the container is square, it is defined as the dimension of one side of the outer bottom of the container. The "height dimension H of the battery case" is the height dimension of the outer shape of the battery case, and is defined as the height dimension from the outer bottom surface of the battery case to the welded portion between the battery case and the lid.

以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。
[試験電池の作製]
外形の長さ寸法が175mm、幅寸法が166mm、高さ寸法が95mmの電槽を使用して実施例1~5および比較例1~4の12V-24Ahの制御弁式鉛蓄電池を作製した。なお、電槽の幅寸法Wに対する電槽の高さ寸法Hの比率H/Wは、0.57である。
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples.
[Preparation of test battery]
12V-24Ah valve regulated lead-acid batteries of Examples 1 to 5 and Comparative Examples 1 to 4 were produced using a battery case having an outer shape of 175 mm in length, 166 mm in width and 95 mm in height. The ratio H/W of the height dimension H of the battery case to the width dimension W of the battery case is 0.57.

(実施例1~3、比較例1および比較例2)
先ず、正極板および負極板は以下のように作製した。
鉛-カルシウム‐錫系の鉛合金からなる板状集電体を鋳造し、板状集電体の所定の位置に耳部を形成した。なお、正極集電体は、カルシウムが0.055質量%、錫が2.00質量%、アルミニウムが0.02質量%および残部が鉛と不可避の不純物からなる組成を有する鉛合金により形成し、負極集電体は、カルシウムが0.09質量%、錫が0.50質量%、アルミニウムが0.02%および鉛と不可避の不純物からなる組成を有する鉛合金により形成した。
(Examples 1 to 3, Comparative Example 1 and Comparative Example 2)
First, a positive electrode plate and a negative electrode plate were produced as follows.
A plate-like current collector made of a lead-calcium-tin-based lead alloy was cast, and ears were formed at predetermined positions of the plate-like current collector. The positive electrode current collector is made of a lead alloy having a composition of 0.055% by mass of calcium, 2.00% by mass of tin, 0.02% by mass of aluminum, and the balance being lead and inevitable impurities, The negative electrode current collector was made of a lead alloy having a composition of 0.09 mass % calcium, 0.50 mass % tin, 0.02 mass % aluminum, and lead and unavoidable impurities.

次に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、正極活物質のペーストを製造した。同様に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、負極活物質のペーストを製造した。また、正極および負極活物質ペーストの作製工程は、鉛粉、硫酸、水および所定の添加剤を混練する、通常の方法で行ったが、その際に、正極および負極活物質ペーストの混練時に注水する水の量を調整することにより、化成後の正極活物質密度および負極活物質密度を調整することができる。 Next, lead powder containing lead monoxide as a main component was kneaded with water and dilute sulfuric acid, and if necessary, additives were mixed and kneaded to produce a positive electrode active material paste. Similarly, lead powder containing lead monoxide as a main component was kneaded with water and dilute sulfuric acid, and if necessary, additives were mixed and kneaded to produce a negative electrode active material paste. In addition, the manufacturing process of the positive electrode and negative electrode active material pastes was carried out by the usual method of kneading lead powder, sulfuric acid, water and predetermined additives. By adjusting the amount of water added, the density of the positive electrode active material and the density of the negative electrode active material after chemical conversion can be adjusted.

次に、正極集電体および負極集電体への活物質ペーストの充填工程、予熱乾燥工程、および熟成乾燥工程を行うことにより、化成前の正極板および負極板を作製した。各工程は通常の方法で行った。また、正極集電体への正極活物質ペーストの充填工程の際に、正極活物質ペーストの充填量を調整することにより、化成後のセル室あたりの負極活物質の質量Mに対する正極活物質の質量Mの比率M/Mが、実施例1で1.30、実施例2で1.50、実施例3で1.65、比較例1で1.25、比較例2で1.70となるようした。また、化成後のセル室あたりの正極活物質の質量Mに対する電解液中に含まれる純硫酸の質量Mの比率M/Mも、比率M/Mと同様の調整方法により、比率M/Mが実施例1~3、比較例1および比較例2で0.34となるようにした。 Next, a positive electrode plate and a negative electrode plate before anodization were produced by performing a step of filling the positive electrode current collector and the negative electrode current collector with the active material paste, a preheating drying step, and an aging drying step. Each step was performed by a normal method. In addition, by adjusting the filling amount of the positive electrode active material paste in the process of filling the positive electrode current collector with the positive electrode active material paste, the positive electrode active material mass Mn per cell chamber after chemical conversion is 1.30 in Example 1, 1.50 in Example 2, 1.65 in Example 3, 1.25 in Comparative Example 1, and 1 in Comparative Example 2. .70. In addition, the ratio M s /M p of the mass M s of the pure sulfuric acid contained in the electrolytic solution to the mass M p of the positive electrode active material per cell chamber after chemical conversion is also adjusted in the same manner as the ratio M p /M n . , the ratio M s /M p of Examples 1 to 3 and Comparative Examples 1 and 2 was set to 0.34.

次に、予め硫酸の比重を1.080(20℃換算値)に調整した化成槽に、化成前の正極板および負極板を浸漬させ、通常の方法でタンク化成を行った。その後、正極板および負極板を化成槽から引き上げ、洗浄工程および乾燥工程を行うことにより、化成後の正極板および負極板を作製した。 Next, the positive electrode plate and the negative electrode plate before anodization were immersed in an anodization tank in which the specific gravity of sulfuric acid was previously adjusted to 1.080 (converted value at 20° C.), and the tank anodization was performed by an ordinary method. After that, the positive electrode plate and the negative electrode plate were pulled up from the anodization tank, and the positive electrode plate and the negative electrode plate after the anodization were produced by performing a washing process and a drying process.

次に得られた化成後の正極板と負極板とを、シート状のガラス繊維マットを介して交互に積層し、正極板5枚、負極板6枚の極板群を得た。
次に、COS(キャストオンストラップ)方式の鋳造装置を用いて、各極板群の正極板および負極板にストラップと中間極柱または端子極柱を形成した。
この極板群を六個用意し、電槽の各セル室に入れて、隣接するセル室間の中間極柱の抵抗溶接、電槽と蓋の熱溶着、注液口から各セル室内への電解液の注入、および液栓等により注液口を塞ぐことなどの通常の工程を行った後、初充電工程を行い、実施例1~3、比較例1および比較例2の制御弁式鉛蓄電池を作製した。なお、電解液には、比重1.308(20℃換算値)、濃度40.4質量%の硫酸を使用し、セル室あたり242mL注液した。
Next, the obtained positive electrode plates and negative electrode plates after chemical conversion were alternately laminated via a sheet-like glass fiber mat to obtain an electrode plate group of 5 positive electrode plates and 6 negative electrode plates.
Next, using a COS (cast-on-strap) type casting apparatus, straps and intermediate poles or terminal poles were formed on the positive electrode plate and the negative electrode plate of each electrode plate group.
Six of these electrode plate groups were prepared and placed in each cell chamber of the container, resistance welding of the intermediate electrode column between adjacent cell chambers, heat welding of the container and lid, and insertion from the injection port into each cell chamber. After performing the usual steps of injecting the electrolyte and closing the injection port with a liquid plug, etc., the initial charging step was performed. A storage battery was produced. Sulfuric acid having a specific gravity of 1.308 (converted at 20° C.) and a concentration of 40.4% by mass was used as the electrolyte, and 242 mL of the electrolyte was injected per cell chamber.

(実施例4、実施例5、比較例3および比較例4)
実施例4、実施例5、比較例3および比較例4の制御弁式鉛蓄電池は、上記比率M/Mが実施例4で0.30、実施例5で0.40、比較例3で0.25、比較例4で0.45となるように調整した。それ以外の点については、実施例2と同じ方法で、実施例4、実施例5、比較例3および比較例4の制御弁式鉛蓄電池を得た。
(Example 4, Example 5, Comparative Example 3 and Comparative Example 4)
In the valve regulated lead-acid batteries of Examples 4, 5, Comparative Examples 3 and 4, the ratio M s /M p was 0.30 in Example 4, 0.40 in Example 5, and 0.40 in Comparative Example 3. was adjusted to 0.25 in , and 0.45 in Comparative Example 4. Valve regulated lead-acid batteries of Examples 4, 5, Comparative Examples 3 and 4 were obtained in the same manner as in Example 2 except for the above points.

[化成後の比率M/Mおよび比率M/Mの測定]
得られた実施例1~5および比較例1~4の制御弁式鉛蓄電池の化成後の比率M/Mおよび比率M/Mを以下の3つの式を用いて調べた。なお、以下の3式に代入する値を、実施例1~5および比較例1~4の制御弁式鉛蓄電池を解体し、無作為に選択したセル室に収納された極板群に含まれる正極板、負極板、セパレータと、そのセル室に注液された電解液について以下の方法で測定した。
式1;「M」=(「セル室あたりの電解液が染み込んだ正極板、負極板およびセパレータの質量」-「セル室あたりの乾燥後の正極板、負極板およびセパレータの質量」+「余剰液の質量」)×「電解液中の硫酸の濃度(質量%)」
式2;「M」=「セル室あたりの乾燥後の正極板質量」-「セル室あたりの乾燥後の正極集電体質量」)
式3;「M」=「セル室あたりの乾燥後の負極板質量」-「セル室あたりの乾燥後の負極集電体質量」
[Measurement of ratio M p /M n and ratio M s /M p after chemical conversion]
The ratio M p /M n and the ratio M s /M p of the obtained valve-regulated lead-acid batteries of Examples 1 to 5 and Comparative Examples 1 to 4 after formation were investigated using the following three equations. The values to be substituted into the following three equations are included in the electrode plate group housed in the randomly selected cell chamber after disassembling the valve-regulated lead-acid batteries of Examples 1 to 5 and Comparative Examples 1 to 4. The positive electrode plate, the negative electrode plate, the separator, and the electrolytic solution injected into the cell chamber were measured by the following method.
Formula 1; “M s ” = (“mass of positive electrode plate, negative electrode plate and separator soaked with electrolytic solution per cell chamber” − “mass of dried positive electrode plate, negative electrode plate and separator per cell chamber” + “ Mass of surplus liquid") x "concentration of sulfuric acid in electrolyte (mass%)"
Formula 2; “M p ”=“mass of dried positive electrode plate per cell chamber”−“mass of dried positive electrode current collector per cell chamber”)
Formula 3: “M n ”=“mass of dried negative electrode plate per cell chamber”−“mass of dried negative electrode current collector per cell chamber”

先ず、各実施例、各比較例において、無作為に選択したセル室に収納された極板群を取り出し、その極板群に含まれるガラス繊維マット(セパレータ)に染み込んだ電解液を搾り取り、電解液の比重を水酸化ナトリウム水溶液による中和滴定で測定し、得られた比重から「電解液中の硫酸の濃度(質量%)」を算出した。なお、セル室に収納された極板群に含まれる正極板、負極板およびガラス繊維マット(セパレータ)に染み込んでいない余剰液がある場合は、その余剰液の比重を測定し、得られた比重から「電解液中の硫酸の濃度(質量%)」を算出しても良い。

First, in each example and each comparative example, an electrode plate group housed in a randomly selected cell chamber was taken out, and the electrolyte soaked into the glass fiber mat (separator) contained in the electrode plate group was squeezed out, The specific gravity of the electrolytic solution was measured by neutralization titration with an aqueous sodium hydroxide solution, and the "concentration (% by mass) of sulfuric acid in the electrolytic solution" was calculated from the obtained specific gravity. If there is surplus liquid that has not soaked into the positive electrode plate, the negative electrode plate, and the glass fiber mat (separator) contained in the electrode plate group housed in the cell chamber, the specific gravity of the surplus liquid is measured, and the obtained specific gravity is , the "concentration of sulfuric acid in the electrolyte (% by mass)" may be calculated.

次いで、取り出した極板群に含まれる、電解液が染み込んだ5枚の正極板(化成後)、6枚の負極板(化成後)およびガラス繊維マット(セパレータ)の質量を測定して、その合計値を「セル室あたりの電解液が染み込んだ正極板、負極板およびセパレータの質量」とした。なお、余剰液がある場合は、「余剰液の質量」も測定する。
その後、質量を測定した電解液が染み込んだ正極板(化成後)、負極板(化成後)およびガラス繊維マット(セパレータ)の全てを水で洗浄して、染み込んだ電解液の硫酸を取り除き、真空乾燥機にて12時間以上乾燥(完全乾燥)させ、乾燥後の正極板、負極板およびガラス繊維マット(セパレータ)の質量を測定して、その合計値を「セル室あたりの乾燥後の正極板、負極板およびセパレータの質量」とした。なお、「M」と「M」の算出のために、「セル室あたりの乾燥後の正極板質量」と「セル室あたりの乾燥後の負極板質量」も併せて測定した。
Next, the masses of five positive electrode plates (after chemical conversion), six negative electrode plates (after chemical conversion), and glass fiber mats (separators) soaked with the electrolytic solution, which are included in the electrode plate group taken out, are measured. The total value was taken as "the mass of the positive electrode plate, the negative electrode plate and the separator per cell chamber permeated with the electrolyte". In addition, when there is surplus liquid, the "mass of surplus liquid" is also measured.
After that, the positive electrode plate (after chemical conversion), the negative electrode plate (after chemical conversion), and the glass fiber mat (separator) soaked with the electrolytic solution whose mass was measured were all washed with water to remove the sulfuric acid in the electrolytic solution, and then vacuumed. Dry (completely dry) for 12 hours or more in a dryer, measure the mass of the dried positive electrode plate, negative electrode plate and glass fiber mat (separator), and calculate the total value as "the positive electrode plate after drying per cell chamber. , the mass of the negative electrode plate and the separator”. In order to calculate “M p ” and “M n ”, the “mass of dried positive electrode plate per cell chamber” and the “mass of dried negative electrode plate per cell chamber” were also measured.

さらに、乾燥後の5枚の正極板と6枚の負極板から活物質を分離して得られた集電体を洗浄し、真空乾燥機にて12時間以上乾燥(完全乾燥)させ、乾燥後の正極集電体および負極集電体の質量を測定して、それぞれの合計値を「セル室あたりの乾燥後の正極集電体質量」と「セル室あたりの乾燥後の負極集電体質量」とした。
これらの測定結果より得られた値を上記3式に代入して、各実施例、各比較例の比率M/Mおよび比率M/Mを算出した。
Furthermore, the current collector obtained by separating the active material from the dried 5 positive electrode plates and 6 negative electrode plates was washed, dried (completely dried) for 12 hours or more in a vacuum dryer, and after drying The mass of the positive electrode current collector and the negative electrode current collector are measured, and the respective total values are calculated as “the mass of the dried positive electrode current collector per cell chamber” and “the mass of the dried negative electrode current collector per cell chamber.” "
The values obtained from these measurement results were substituted into the above three equations to calculate the ratio M p /M n and the ratio M s /M p of each example and each comparative example.

[試験および評価]
また、実施例1~5および比較例1~4の制御弁式鉛蓄電池について、各水準の制御弁式鉛蓄電池をもう1つずつ同様に作製し、比率M/Mおよび比率M/Mを測定したものと実質的に同一とみなして、以下の試験を行った。
先ず、周囲温度25℃、放電電流0.25C20Aで終止電圧10.2Vまで放電する初期容量試験を行い、初期放電容量を確認した。
次に、放電電流0.25C20Aで2時間放電し、充電電流0.25C20A、定電圧14.7Vで6時間充電する、これを50回繰り返す充放電工程と、その後24時間休止して、再度、放電電流0.25C20Aで終止電圧10.2Vまで放電する放電工程およびその回復充電工程を1サイクルとするサイクル寿命試験を行った。上記放電工程の際に、放電持続時間が2時間以上であった場合は、再度、上記充放電工程を行った後、上記放電工程を行う。一方、放電持続時間が2時間未満となった場合は、寿命に達したと判定し、それまで行ったサイクル数を電池寿命とするとともに、水酸化ナトリウム水溶液による中和滴定により、電池の上部と下部で電解液の比重を測定し、これらの測定値から上下の比重差を算出した。

[Test and Evaluation]
Further, for the valve regulated lead-acid batteries of Examples 1 to 5 and Comparative Examples 1 to 4, one more valve regulated lead-acid battery of each level was produced in the same manner, and the ratio M p /M n and the ratio M s / The following tests were performed assuming that M p was substantially the same as that measured.
First, an initial capacity test was performed by discharging to a final voltage of 10.2 V at an ambient temperature of 25° C. and a discharge current of 0.25 C 20 A to confirm the initial discharge capacity.
Next, discharge at a discharge current of 0.25 C 20 A for 2 hours, charge at a charge current of 0.25 C 20 A and a constant voltage of 14.7 V for 6 hours, repeat this 50 times, and then rest for 24 hours. Then, a cycle life test was performed again, in which one cycle was a discharge step in which the battery was discharged to a final voltage of 10.2 V at a discharge current of 0.25 C 20 A and a recovery charge step. In the case of the discharging process, if the discharge duration is 2 hours or more, the charging/discharging process is performed again, and then the discharging process is performed. On the other hand, when the discharge duration is less than 2 hours, it is determined that the life has been reached, and the number of cycles performed up to that time is taken as the battery life. The specific gravity of the electrolyte solution was measured in the lower part, and the difference in specific gravity between the upper and lower parts was calculated from these measured values.

これらの試験の結果を、表1に示す。表1における判定は、電解液の上下比重差が0.01以下であるという条件Aと、寿命性能(サイクル数)が2000サイクル以上であるという条件Bと、初期放電容量が24Ah以上であるという条件Cとを全て満たす場合は〇印で示した。また、条件A、条件Bまたは条件Cのうちいずれかを満たさない場合は、×印で示した。 The results of these tests are shown in Table 1. Judgment in Table 1 is based on condition A that the upper and lower specific gravity difference of the electrolyte solution is 0.01 or less, condition B that the life performance (number of cycles) is 2000 cycles or more, and initial discharge capacity that is 24 Ah or more. When all of the conditions C and C are satisfied, the ◯ mark is shown. In addition, when any one of condition A, condition B, or condition C is not satisfied, it is indicated by an X mark.

Figure 2022109137000001
Figure 2022109137000001

表1に示す評価結果から、化成後のセル室あたりの負極活物質の質量Mに対する正極活物質の質量Mの比率M/Mが1.30以上1.65以下であり、かつ化成後のセル室あたりの正極活物質の質量Mに対する電解液中に含まれる純硫酸の質量Mの比率M/Mが0.34である実施例1~3の制御弁式鉛蓄電池は、上下比重差が小さく、成層化現象を抑制でき、サイクル数が向上しているとともに、所期の放電容量を有することが分かる。 From the evaluation results shown in Table 1, the ratio Mp / Mn of the mass Mp of the positive electrode active material to the mass Mn of the negative electrode active material per cell chamber after formation is 1.30 or more and 1.65 or less, and The valve-controlled lead of Examples 1 to 3 in which the ratio M s /M p of the mass M s of pure sulfuric acid contained in the electrolyte to the mass M p of the positive electrode active material per cell chamber after chemical conversion is 0.34. It can be seen that the storage battery has a small difference in specific gravity between the upper and lower sides, can suppress the stratification phenomenon, has an improved number of cycles, and has the desired discharge capacity.

これに対して、比率M/Mが1.25である比較例1の制御弁式鉛蓄電池では、上下比重差は小さいが、サイクル数が向上していないことが分かる。これは、負極活物質量に対し正極活物質量が少なく、充電時の水の電気分解が増加し、正極から酸素ガスが多量に発生して、負極での酸素ガスの消費が不完全となり、酸素ガスが電池外部に放出されて電解液量が減少する、所謂液枯れが発生したことが起因すると考えられる。また、充放電を繰り返した場合、負極活物質量に対して正極活物質量が少ないため、正極活物質の軟化も進み易く、正極活物質の脱落を招き、サイクル寿命性能が低下したためだと考えられる。
また、比率M/Mが1.70である比較例2の制御弁式鉛蓄電池では、上下比重差が大きく、サイクル数が向上していないことが分かる。これは、負極活物質量に対し正極活物質量が多く、充電が負極で制限され、正極が充電不足になり、正極から発生する酸素ガスの量が減少するため、電解液の成層化現象が発生し易くなり、サイクル寿命性能が低下したためだと考えられる。
On the other hand, in the valve-regulated lead-acid battery of Comparative Example 1 in which the ratio M p /M n is 1.25, the difference in specific gravity between the upper and lower sides is small, but the number of cycles is not improved. This is because the amount of the positive electrode active material is less than the amount of the negative electrode active material, the electrolysis of water during charging increases, a large amount of oxygen gas is generated from the positive electrode, and the consumption of oxygen gas at the negative electrode becomes incomplete. This is thought to be caused by so-called liquid depletion, in which oxygen gas is released to the outside of the battery and the amount of electrolyte decreases. In addition, when charging and discharging were repeated, the amount of the positive electrode active material was smaller than the amount of the negative electrode active material, so the softening of the positive electrode active material was likely to proceed, causing the positive electrode active material to fall off, and the cycle life performance to deteriorate. be done.
Further, in the valve-regulated lead-acid battery of Comparative Example 2 in which the ratio M p /M n is 1.70, the difference in specific gravity between the upper and lower sides is large, indicating that the number of cycles is not improved. This is because the amount of the positive electrode active material is larger than that of the negative electrode active material, charging is limited at the negative electrode, the positive electrode becomes insufficiently charged, and the amount of oxygen gas generated from the positive electrode decreases, so the stratification phenomenon of the electrolyte occurs. It is considered that this is because the cycle life performance has deteriorated due to the fact that it is more likely to occur.

次いで、化成後のセル室あたりの負極活物質の質量Mに対する正極活物質の質量Mの比率M/Mが1.50であり、かつ化成後のセル室あたりの正極活物質の質量Mに対する電解液中に含まれる純硫酸の質量Mの比率M/Mが0.30以上0.40以下である実施例2、実施例4および実施例5の制御弁式鉛蓄電池は、上下比重差が小さく、成層化現象を抑制でき、サイクル数が向上しているとともに、所期の放電容量を有することが分かる。 Next, the ratio M p /M n of the mass M p of the positive electrode active material to the mass M n of the negative electrode active material per cell chamber after chemical formation is 1.50, and the mass M p of the positive electrode active material per cell chamber after chemical conversion is Valve regulated leads of Examples 2, 4 and 5 in which the ratio M s /M p of the mass M s of pure sulfuric acid contained in the electrolyte to the mass M p is 0.30 or more and 0.40 or less It can be seen that the storage battery has a small difference in specific gravity between the upper and lower sides, can suppress the stratification phenomenon, has an improved number of cycles, and has the desired discharge capacity.

これに対して、比率M/Mが0.25である比較例3の制御弁式鉛蓄電池では、初期放電容量が小さかった。これは、正極活物質量に対して電解液中に含まれる純硫酸量が不足し、放電容量が低下したためだと考えられる。
また、比率M/Mが0.45である比較例4の制御弁式鉛蓄電池では、上下比重差が大きく、サイクル数が向上していないことが分かる。これは、正極活物質量に対して電解液中に含まれる純硫酸量が多く、成層化現象が発生し易く、正極活物質に対する硫酸の供給量が多いため、正極活物質の軟化も進み易く、正極活物質の脱落を招き、サイクル寿命性能が低下したためだと考えられる。
In contrast, the valve-regulated lead-acid battery of Comparative Example 3, in which the ratio M s /M p was 0.25, had a small initial discharge capacity. It is considered that this is because the amount of pure sulfuric acid contained in the electrolytic solution was insufficient with respect to the amount of the positive electrode active material, and the discharge capacity decreased.
Further, in the valve-regulated lead-acid battery of Comparative Example 4 in which the ratio M s /M p is 0.45, the difference in specific gravity between the upper and lower sides is large, indicating that the number of cycles is not improved. This is because the amount of pure sulfuric acid contained in the electrolyte solution is large relative to the amount of the positive electrode active material, so the stratification phenomenon is likely to occur, and the amount of sulfuric acid supplied to the positive electrode active material is large, so the positive electrode active material is easily softened. , leading to detachment of the positive electrode active material, leading to deterioration in cycle life performance.

したがって、化成後のセル室あたりの負極活物質の質量Mに対する正極活物質の質量Mの比率M/Mが1.30以上1.65以下であり、かつ化成後のセル室あたりの正極活物質の質量Mに対する電解液中に含まれる純硫酸の質量Mの比率M/Mが0.30以上0.40以下である制御弁式鉛蓄電池は、電解液の成層化現象を抑制することができ、優れたサイクル寿命性能を有することを確認できた。 Therefore, the ratio M p /M n of the mass M p of the positive electrode active material to the mass M n of the negative electrode active material per cell chamber after formation is 1.30 or more and 1.65 or less, and A valve-regulated lead-acid battery in which the ratio M s /M p of the mass M s of pure sulfuric acid contained in the electrolyte to the mass M p of the positive electrode active material is 0.30 or more and 0.40 or less, the stratification of the electrolyte It was confirmed that the sintering phenomenon could be suppressed and excellent cycle life performance was obtained.

Claims (4)

隔壁により区画された複数のセル室を有する電槽と、前記複数のセル室にそれぞれ収納された複数の極板群と、前記複数のセル室に注入された電解液とを備え、
前記極板群は、交互に配置された複数枚の正極板および負極板と、前記正極板と前記負極板との間に配置されたセパレータとからなり、
前記正極板は、正極集電体と、前記正極集電体に充填された正極活物質とからなり、
前記負極板は、負極集電体と、前記負極集電体に充填された負極活物質とからなる制御弁式鉛蓄電池において、
化成後の前記セル室あたりの前記負極活物質の質量Mに対する前記正極活物質の質量Mの比率M/Mが1.30以上1.65以下であり、
化成後の前記セル室あたりの前記正極活物質の質量Mに対する前記電解液中に含まれる純硫酸の質量Mの比率M/Mが0.30以上0.40以下であることを特徴とする制御弁式鉛蓄電池。
a battery container having a plurality of cell chambers partitioned by partition walls; a plurality of electrode plate groups respectively housed in the plurality of cell chambers; and an electrolytic solution injected into the plurality of cell chambers,
The electrode plate group includes a plurality of positive electrode plates and negative electrode plates alternately arranged, and a separator disposed between the positive electrode plate and the negative electrode plate,
The positive electrode plate comprises a positive electrode current collector and a positive electrode active material filled in the positive electrode current collector,
In a valve-regulated lead-acid battery in which the negative electrode plate comprises a negative electrode current collector and a negative electrode active material filled in the negative electrode current collector,
A ratio M p /M n of the mass M p of the positive electrode active material to the mass M n of the negative electrode active material per cell chamber after chemical conversion is 1.30 or more and 1.65 or less,
The ratio M s /M p of the mass M s of the pure sulfuric acid contained in the electrolytic solution to the mass M p of the positive electrode active material per cell chamber after chemical conversion is 0.30 or more and 0.40 or less. Characteristic valve-regulated lead-acid battery.
化成後の前記正極活物質の密度が、4.2g/cm以上4.9g/cm以下であることを特徴とする請求項1に記載の制御弁式鉛蓄電池。 2. The valve regulated lead-acid battery according to claim 1, wherein the density of the positive electrode active material after chemical conversion is 4.2 g/cm 3 or more and 4.9 g/cm 3 or less. 前記正極集電体の鉛合金が、カルシウムが0.02質量%以上0.09質量%以下、錫が0.4質量%以上2.5質量%以下、アルミニウムが0.005質量%以上0.04質量%以下、および残部が鉛と不可避の不純物からなる組成を有することを特徴とする請求項1または2に記載の制御弁式鉛蓄電池。 The lead alloy of the positive electrode current collector contains 0.02% to 0.09% by mass of calcium, 0.4% to 2.5% by mass of tin, and 0.005% to 0.005% by mass of aluminum. 3. The valve-regulated lead-acid battery according to claim 1, wherein the composition is 04% by mass or less and the balance is lead and unavoidable impurities. 前記電解液はシリカ微粒子を含み、前記電解液中の前記シリカ微粒子の含有率が0.5質量%以上5質量%未満であることを特徴とする請求項1~3のいずれか一項に記載の制御弁式鉛蓄電池。 4. The electrolytic solution according to any one of claims 1 to 3, wherein the electrolytic solution contains silica fine particles, and the content of the silica fine particles in the electrolytic solution is 0.5% by mass or more and less than 5% by mass. valve-regulated lead-acid battery.
JP2021004493A 2021-01-14 2021-01-14 Control valve type lead-acid storage battery Pending JP2022109137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021004493A JP2022109137A (en) 2021-01-14 2021-01-14 Control valve type lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021004493A JP2022109137A (en) 2021-01-14 2021-01-14 Control valve type lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2022109137A true JP2022109137A (en) 2022-07-27

Family

ID=82557025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021004493A Pending JP2022109137A (en) 2021-01-14 2021-01-14 Control valve type lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2022109137A (en)

Similar Documents

Publication Publication Date Title
TWI459610B (en) Flooded lead-acid battery and method of making the same
CN112042041B (en) Lead-acid battery
US9570779B2 (en) Flooded lead-acid battery
JP2013211205A (en) Negative electrode plate for lead-acid storage battery, manufacturing method therefor and lead-acid storage battery
JP5241264B2 (en) Control valve type lead storage battery manufacturing method
JP6043734B2 (en) Lead acid battery
JP2021163612A (en) Lead-acid battery
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP6725386B2 (en) Positive plate for lead acid battery and lead acid battery
JP2022109137A (en) Control valve type lead-acid storage battery
JP2005044759A (en) Lead-acid storage battery and manufacturing method of the same
JP6143066B2 (en) A positive electrode plate for a lead storage battery and a control valve type lead storage battery using the positive electrode plate.
JP5787181B2 (en) Lead acid battery
JP4538864B2 (en) Lead acid battery and manufacturing method thereof
JP2005025955A (en) Lead acid battery and its manufacturing method
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP6528571B2 (en) Lead storage battery
JP2002008644A (en) Production method of positive electrode plate for lead storage battery
JP2019079778A (en) Lead acid battery
JP4069743B2 (en) Lead acid battery
JPH05242887A (en) Manufacture of electrode plate for lead-acid battery
JP2022138753A (en) Lead-acid battery
JP2024025093A (en) Lead storage battery
JP6708704B2 (en) Lead acid battery
JP6730406B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231107