JP6708704B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP6708704B2
JP6708704B2 JP2018136347A JP2018136347A JP6708704B2 JP 6708704 B2 JP6708704 B2 JP 6708704B2 JP 2018136347 A JP2018136347 A JP 2018136347A JP 2018136347 A JP2018136347 A JP 2018136347A JP 6708704 B2 JP6708704 B2 JP 6708704B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
negative electrode
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018136347A
Other languages
Japanese (ja)
Other versions
JP2020013739A (en
Inventor
有一 赤阪
有一 赤阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2018136347A priority Critical patent/JP6708704B2/en
Publication of JP2020013739A publication Critical patent/JP2020013739A/en
Application granted granted Critical
Publication of JP6708704B2 publication Critical patent/JP6708704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、鉛蓄電池に関するものである。 The present invention relates to a lead storage battery.

近年、環境負荷低減のため車両の電動化が急速に進み、アイドリングストップ車やハイブリッド車が登場している。ハイブリッド車には、マイクロハイブリッド車、マイルドハイブリッド車、及びストロングハイブリッド車があり、比較的安価なマイクロハイブリッド車やマイルドハイブリッドの人気が高まっている。
この種の環境対応車に搭載される鉛蓄電池は、従来よりも厳しい環境で使用される。例えば、エンジン始動回数の増加、アイドリングストップ中の電装品への電力供給、ブレーキによる回生充電など、鉛蓄電池にはより高い耐久性と充電受入性が必要とされる。
In recent years, electrification of vehicles has rapidly progressed to reduce environmental load, and idling stop vehicles and hybrid vehicles have appeared. Hybrid vehicles include micro hybrid vehicles, mild hybrid vehicles, and strong hybrid vehicles, and relatively inexpensive micro hybrid vehicles and mild hybrid vehicles are becoming more popular.
Lead-acid batteries installed in this type of environment-friendly vehicle are used in a more severe environment than before. For example, a lead storage battery is required to have higher durability and charge acceptability such as an increase in the number of engine starts, power supply to electric components during idling stop, and regenerative charging by braking.

鉛蓄電池の耐久性を向上させるには、正極板の活物質密度を向上させることが有効である。これは、鉛蓄電池の正極活物質が、充放電により粗大化し、次第に活物質粒子の結合が低下するからである。この現象は軟化と呼ばれ、活物質密度を向上させることによりある程度抑制することが可能であることは周知の事実である。また、充電受入性を向上させるために、負極の導電カーボン量などを増やし、比表面積を上げることも周知の事実である(例えば、特許文献1、2参照)。 In order to improve the durability of the lead storage battery, it is effective to improve the active material density of the positive electrode plate. This is because the positive electrode active material of the lead storage battery is coarsened by charging and discharging, and the binding of the active material particles is gradually reduced. It is a known fact that this phenomenon is called softening and can be suppressed to some extent by increasing the density of the active material. It is also a well-known fact that the specific surface area is increased by increasing the amount of conductive carbon in the negative electrode in order to improve charge acceptability (see, for example, Patent Documents 1 and 2).

特開2013−211205号公報JP, 2013-211205, A 特開2017−16970号公報JP, 2017-16970, A

しかしながら、昨今、環境対応車に搭載される鉛蓄電池から持ち出しの電力をさらに増やし、燃費を改善しようとする動きがある。この場合、放電深度が深くなるため、正極活物質密度を向上させた電池であっても、寿命の低下を招いてしまう。
そこで、本発明は、より高い耐久性と充電受入性を両立可能な鉛蓄電池を提供することを目的としている。
However, recently, there is a movement to further increase electric power taken out from a lead storage battery mounted on an environment-friendly vehicle to improve fuel economy. In this case, since the depth of discharge becomes deep, the life of the battery is shortened even if the battery has an increased density of the positive electrode active material.
Therefore, an object of the present invention is to provide a lead storage battery that can achieve both higher durability and charge acceptance.

上述した課題を解決するため、本発明は、正極活物質を含む正極板と、負極活物質を含む負極板とを備え、希硫酸を含む電解液を使用する鉛蓄電池において、下記式(1)により求められる有効活物質量に対し、電解液中の純硫酸の割合が0.45以上、0.65以下であり、有効負極活物質量に対する有効正極活物質量の比が0.5以上、0.9以下であることを特徴とする。
有効活物質量=正極活物質量×正極利用率/100+負極活物質量×負極利用率/100・・・式(1)
利用率は5時間率利用率(5HR)である。
In order to solve the above-mentioned problems, the present invention provides a lead storage battery that includes a positive electrode plate containing a positive electrode active material and a negative electrode plate containing a negative electrode active material, and uses an electrolytic solution containing dilute sulfuric acid, and has the following formula (1): by contrast effective amount of the active material obtained, the ratio of net sulfuric acid in the electrolyte of 0.45 or more state, and are 0.65 or less, the ratio of the effective amount of the positive electrode active material for an effective negative active material weight is 0.5 or more , and wherein the der Rukoto 0.9 or less.
Effective active material amount=positive electrode active material amount×positive electrode utilization rate/100+negative electrode active material amount×negative electrode utilization rate/100 Equation (1)
The utilization rate is a 5-hour utilization rate (5HR).

また、上記構成において、完成品の電解液の比重が1.275g/cc以上、1.290g/cc以下でもよい。 Further, in the above structure, the specific gravity of the electrolytic solution of the finished product may be 1.275 g/cc or more and 1.290 g/cc or less.

また、上記構成において、前記正極板の正極活物質密度が4.5g/cc以上、かつ、前記負極板の負極活物質比表面積が0.7m2/g以上でもよい。 Further, in the above structure, the positive electrode active material density of the positive electrode plate may be 4.5 g/cc or more, and the negative electrode active material specific surface area of the negative electrode plate may be 0.7 m2/g or more.

本発明によれば、より高い耐久性と充電受入性を両立可能になる。 According to the present invention, both higher durability and charge acceptance can be achieved.

以下、本発明の一実施の形態について説明する。
発明者らが鉛蓄電池について検討したところ、有効活物質量に対する純硫酸の割合が0.45以上、0.65未満の条件を満たしたときに、深い放電でも優れた耐久性を示すことを見出した。
この理由は、耐久性と充電受入性が、電池内のトータルの活物質量ではなく、実際に使用される有効活物質量に対する純硫酸の量が適切の場合に、それらが使用中に維持できるのではないかと推測される。
ここで、純硫酸の量は、鉛蓄電池の電解液中に含まれる硫酸(HSO)の量である。
An embodiment of the present invention will be described below.
When the inventors examined lead acid batteries, they found that when the ratio of pure sulfuric acid to the amount of active active material was 0.45 or more and less than 0.65, excellent durability was exhibited even in deep discharge. It was
The reason for this is that durability and charge acceptance can be maintained during use when the amount of pure sulfuric acid relative to the actual amount of active material actually used is appropriate, not the total amount of active material in the battery. It is speculated that
Here, the amount of pure sulfuric acid is the amount of sulfuric acid (H 2 SO 4 ) contained in the electrolytic solution of the lead storage battery.

有効活物質量は、有効正極活物質量と有効負極活物質量の合計であり、式(1)で表すことができる。
有効活物質量=正極活物質量×正極利用率/100+負極活物質量×負極利用率/100・・・式(1)
利用率は5時間率利用率(5HR)である。
The amount of effective active material is the total of the amount of effective positive electrode active material and the amount of effective negative electrode active material, and can be represented by the formula (1).
Effective active material amount=positive electrode active material amount×positive electrode utilization rate/100+negative electrode active material amount×negative electrode utilization rate/100 Equation (1)
The utilization rate is a 5-hour utilization rate (5HR).

さらに検討を続けたところ、有効負極活物質量に対する有効正極活物質量の比が0.5以上、0.9以下の時、さらに耐久性が向上することも分かった。この理由は、この範囲の有効活物質量のときに、正極側負極側の充電バランスが最適で、寿命性能が延長されるのではないかと推測される。
また、電槽化成後(完成品)の電解液比重は1.275g/cc以上、1.290g/cc以下が好ましい。比重が1.275g/cc未満だと、容量が不足することがあり、過放電放置後にデンドライトショートが発生しやすくなる。一方、比重が1.290g/ccを越えると充電受入性が低下し、正極劣化が進みやすくなることがあるため、耐久性が低下する原因となる。なお、完成品は、電槽化成直後に限定されず、出荷時、保管時及び販売時のいずれの状態でもよい。
As a result of further studies, it was found that the durability was further improved when the ratio of the effective positive electrode active material amount to the effective negative electrode active material amount was 0.5 or more and 0.9 or less. The reason for this is presumed that when the amount of effective active material is within this range, the charge balance on the positive electrode side and the negative electrode side is optimal, and the life performance is extended.
The specific gravity of the electrolytic solution after forming the battery case (finished product) is preferably 1.275 g/cc or more and 1.290 g/cc or less. If the specific gravity is less than 1.275 g/cc, the capacity may be insufficient, and a dendrite short circuit is likely to occur after being left overdischarge. On the other hand, when the specific gravity exceeds 1.290 g/cc, charge acceptability may be deteriorated and the deterioration of the positive electrode may be facilitated, which may cause deterioration of durability. The finished product is not limited to the one immediately after the formation of the battery case, and may be in any state of shipping, storing and selling.

また、正極板の前記正極活物質密度が4.5g/cc以上、かつ、前記負極板の負極活物質比表面積が0.7m/g以上であるとき、優れた耐久性を示すことを見出した。
なお、正極板の活物質密度(正極活物質密度とも称する)は、4.5g/cc以上、5.0g/cc以下が好ましい。当該範囲とすることで、耐久性を向上させることが可能である。なお、正極活物質密度は5.0g/ccを超えても良いが、容量の担保が困難になる。また、正極活物質密度が4.5g/cc未満の場合、耐久性が不十分で、早期に寿命になる。
また、負極板の活物質比表面積(負極活物質比表面積)は、0.7m/g以上、0.9mm/g以下が好ましい。当該範囲とすることで、充電受入性を向上させることが可能である。なお、負極活物質比表面積は0.9m/gを超えても良いが、充電受入性の効果は飽和する。また、負極活物質比表面積が0.7m/g未満の場合、充電受入性が不十分でPSOC耐久性が低下する。
Further, it has been found that when the positive electrode active material density of the positive electrode plate is 4.5 g/cc or more and the negative electrode active material specific surface area of the negative electrode plate is 0.7 m 2 /g or more, excellent durability is exhibited. It was
Note that the active material density of the positive electrode plate (also referred to as positive electrode active material density) is preferably 4.5 g/cc or more and 5.0 g/cc or less. By setting it in the range, it is possible to improve durability. The density of the positive electrode active material may exceed 5.0 g/cc, but it becomes difficult to secure the capacity. Further, when the positive electrode active material density is less than 4.5 g/cc, the durability is insufficient and the life becomes early.
The active material specific surface area (negative electrode active material specific surface area) of the negative electrode plate is preferably 0.7 m 2 /g or more and 0.9 mm 2 /g or less. By setting the range, it is possible to improve charge acceptability. The specific surface area of the negative electrode active material may exceed 0.9 m 2 /g, but the effect of charge acceptance is saturated. Further, when the specific surface area of the negative electrode active material is less than 0.7 m 2 /g, charge acceptability is insufficient and PSOC durability is reduced.

次に、本発明の実施例を比較例とともに説明する。なお、本発明は、以下の実施例に限定されるものではない。 Next, examples of the present invention will be described together with comparative examples. The present invention is not limited to the examples below.

まず、正極板について説明する。一酸化鉛を主成分とする鉛粉と鉛丹、ポリエステル繊維(例えば、テトロン(登録商標))、ビスマス、アンチモンを含有した化合粒とを混合(以下、乾式混合と称する)し、次いで、水を添加し練合わせ(以下、水練りと称する)、その後、希硫酸を添加して、再度練合わせて(以下、酸練りと称する)、ペースト状の正極活物質(以下、正極活物質ペーストと称する)を作製した。
なお、水の量と希硫酸の量は、所望の正極活物質ペースト密度が得られるよう、予め実験により確認しておいた。また、正極活物質ペースト密度は、予め内容積が分かっているステンレス製の容器に正極活物質ペーストを充填し、その充填重量から計算することで得られる。
First, the positive electrode plate will be described. Lead powder containing lead monoxide as a main component is mixed with lead oxide, polyester fiber (for example, Tetron (registered trademark)), bismuth, and compound granules containing antimony (hereinafter, referred to as dry mixing), and then water. And kneaded (hereinafter referred to as water kneading), then diluted sulfuric acid was added and kneaded again (hereinafter referred to as acid kneading) to prepare a paste-like positive electrode active material (hereinafter referred to as positive electrode active material paste). Referred to).
The amount of water and the amount of dilute sulfuric acid were previously confirmed by experiments so that the desired positive electrode active material paste density could be obtained. The positive electrode active material paste density can be obtained by filling the positive electrode active material paste in a stainless steel container whose internal volume is known in advance and calculating from the filling weight.

得られた正極活物質ペーストをJIS−Dサイズの重力鋳造基板(約47g/枚、厚み約1.3mm)に充填し、種々の比重の希硫酸を0.1MPaの圧力で極板表面に均一に噴霧した後、予熱乾燥炉を通過させた。予熱乾燥後、所定条件で熟成・乾燥を行い正極板を作製した。 The obtained positive electrode active material paste was filled in a JIS-D size gravity cast substrate (about 47 g/sheet, thickness about 1.3 mm), and diluted sulfuric acid with various specific gravities was uniformly applied to the surface of the electrode plate at a pressure of 0.1 MPa. After being sprayed on, it was passed through a preheated drying oven. After preheating and drying, aging and drying were performed under predetermined conditions to produce a positive electrode plate.

負極板については、JIS−Dサイズ重力鋳造基板(約40g/枚、厚み約1.1mm)に公知の方法で作製した鉛ペーストを充填し、予熱乾燥炉を通過させ、予熱乾燥後、所定条件で熟成・乾燥を行い負極板を作製した。 Regarding the negative electrode plate, a JIS-D size gravity cast substrate (about 40 g/sheet, thickness about 1.1 mm) was filled with a lead paste prepared by a known method, passed through a preheating drying furnace, and preheated and dried under predetermined conditions. Aged and dried to prepare a negative electrode plate.

次に、上記の正極板7枚と上記の負極板8枚とを、ポリエチレン製のセパレータを挟んで交互に積層し組み合わせ、キャストオンストラップ方式(COS方式とも称する)で同極性の極板同士を溶接して極板群とし、これをポリプロピレン製(PP製)の電槽に入れた。極板群の圧迫力は約10kPaとした。
次いで、ヒートシールによって電槽と蓋を熱溶着し、D23型の液式鉛蓄電池を得、電解液を注入して通電することによって公知の方法で電槽化成を行った。電槽化成後の電解液の比重は1.280g/cc(20℃換算値)に合わせ、これを実施例1とした。
正極活物質密度と負極活物質比表面積に関しては、化成後解体し、それぞれ分析することで値を求めた。正極活物質密度に関してはアルキメデス法を用い、負極活物質比表面積に関しては、活物質を乳鉢ですり潰した後、目開き355μmのふるいにかけ、スルーした粉末を高機能比表面積/細孔分布測定装置ASAP2020シリーズ(Micromeritics社)にて測定した。
Next, the positive electrode plate 7 and the negative electrode plate 8 are alternately laminated with a polyethylene separator sandwiched therebetween and combined with each other by the cast-on-strap method (also referred to as the COS method) to make the electrodes having the same polarity. Welded to form a plate group, which was placed in a polypropylene (PP) battery case. The pressing force of the electrode plate group was set to about 10 kPa.
Then, the battery case and the lid were heat-sealed by heat sealing to obtain a D23 type liquid lead acid battery, and a battery case was formed by a known method by injecting an electrolytic solution and energizing. The specific gravity of the electrolytic solution after forming the battery case was adjusted to 1.280 g/cc (value converted at 20° C.), and this was set as Example 1.
Regarding the positive electrode active material density and the negative electrode active material specific surface area, values were obtained by disassembling after chemical conversion and analyzing each. For the density of the positive electrode active material, the Archimedes method was used, and for the specific surface area of the negative electrode active material, after grinding the active material in a mortar, it was passed through a sieve with an opening of 355 μm, and the passed-through powder was analyzed by a high-performance specific surface area/pore distribution measuring device ASAP2020. It was measured with a series (Micromeritics).

この実施例1に対し、有効活物質量に対する純硫酸の割合(以下、硫酸割合Xと言う)、有効負極活物質量に対する有効正極活物質の比(以下、有効活物質比Yと言う)、及び、電槽化成後(完成品)の電解液の比重(以下、電解液比重Zと言う)が異なる複数種類の鉛蓄電池を作製し、これらを実施例2〜31及び比較例1〜11とした。
なお、実施例1〜21、24〜26、28〜31及び比較例1〜11については正極板の正極活物質密度が4.5g/cc以上、負極板の負極活物比表面積が0.7m/g以上である。
各鉛蓄電池の5HR(5時間率)容量、及び耐久性の試験を行い、試験結果を表1に示す。
In comparison with Example 1, the ratio of pure sulfuric acid to the amount of active active material (hereinafter referred to as sulfuric acid ratio X), the ratio of the effective positive electrode active material to the amount of effective negative electrode active material (hereinafter referred to as effective active material ratio Y), Also, a plurality of types of lead storage batteries having different specific gravities (hereinafter, referred to as electrolytic solution specific gravities Z) of the electrolytic solution after the battery case formation (completed product) were prepared, and these were designated as Examples 2-31 and Comparative Examples 1-11. did.
In addition, about Examples 1-21, 24-26, 28-31 and Comparative Examples 1-11, the positive electrode active material density of a positive electrode plate is 4.5 g/cc or more, and the negative electrode active material specific surface area of a negative electrode plate is 0.7 m. It is 2 /g or more.
Each lead acid battery was tested for 5 HR (5 hour rate) capacity and durability, and the test results are shown in Table 1.

5HR容量はJIS規格(JIS D 5301(2006年版))に従って実施した。具体的に説明すると、鉛蓄電池を25℃±2℃の水槽中に置き、電圧が10.50V±2Vに低下するまで、10.4Aの電流で放電した。持続時間(時間)と電流値(A)を掛け、5HR容量を算出した。 The 5HR capacity was measured according to the JIS standard (JIS D 5301 (2006 version)). Specifically, the lead storage battery was placed in a water tank at 25° C.±2° C. and discharged at a current of 10.4 A until the voltage dropped to 10.50 V±2 V. The duration (hour) and the current value (A) were multiplied to calculate the 5HR capacity.

耐久性は、電池工業会規格(SBA S 0101(2014年版))に従ったアイドリングストップ寿命試験を、放電電流を上げて実施することで評価した。つまり、規格通りであれば、放電1の電流は、I=18.3I20なので、I20=3.05Aとすると、I=18.3×3.05=55.8Aであるが、より厳しい条件にするため、約1.2倍の66.0Aとした。具体的な方法としては、電池を25℃±2℃の気相中に置き(電池近傍の風速は2.0m/s以下)、放電1と放電2及び充電のサイクルを繰り返した。試験中は、3,600回ごとに40〜48時間放置した後、再びサイクルを開始し、試験の終了は試験中の放電時電圧が7.2V未満になったのを確認したときとした。また、補水は30,000回までは行わなかった。 The durability was evaluated by carrying out an idling stop life test according to the battery industry association standard (SBA S 0101 (2014 edition)) while increasing the discharge current. That is, according to the standard, the current of the discharge 1 is I D =18.3I 20, so if I 20 =3.05A, I D =18.3×3.05=55.8A, In order to make the conditions more severe, it was set to 66.0 A, which is about 1.2 times. As a specific method, the battery was placed in a gas phase of 25° C.±2° C. (the wind velocity in the vicinity of the battery was 2.0 m/s or less), and the cycle of discharge 1 and discharge 2 and charging was repeated. During the test, after left for 3,600 times for 40 to 48 hours, the cycle was started again, and the test was terminated when it was confirmed that the discharge voltage during the test became less than 7.2V. Also, replenishing water was not performed up to 30,000 times.

放電条件は次の通りである。
放電1:電流値=66A±1A、保持時間=59.0±0.2秒の条件で放電
放電2:電流値=300A±1A、保持時間=1.0±0.2秒の条件で放電
The discharge conditions are as follows.
Discharge 1: Discharge under the condition of current value=66A±1A, holding time=59.0±0.2 seconds Discharge 2: Discharge under condition of current value=300A±1A, holding time=1.0±0.2 seconds

また、充電条件は次の通りである。
充電電圧値=14.00±0.03V(制限電流100.0±0.5A)の条件で60.0±0.3秒
The charging conditions are as follows.
Charging voltage value=14.00±0.03V (limit current 100.0±0.5A) 60.0±0.3 seconds

正極と負極の利用率は実施例や比較例等とは別に、別途2Vセルを作製し、予め求めておいた値を使用した。
正極側の5HR利用率は、正極板7枚と負極板8枚からなり、且つ、正極活物質量と比較して負極活物質量が十分多い2Vセルを作製することで算出した。電槽化成と5HR容量は上記と同様に実施し、得られた容量(Ah)から、式(2)の計算式によって正極の利用率を算出した。なお、密度によって利用率は異なるので、それぞれの密度によって2Vセルを作製し、それぞれの密度による利用率を求めた。
正極利用率=5HR容量/(セルあたりの正極活物質量/4.463)・・・式(2)
この算出した正極利用率に電池に用いた全ての正極活物質量を掛け合わせて有効正極活物質量を求めることができる。
The utilization rate of the positive electrode and the negative electrode was the value obtained in advance by separately preparing a 2V cell separately from the examples and comparative examples.
The 5 HR utilization rate on the positive electrode side was calculated by preparing a 2V cell composed of 7 positive electrode plates and 8 negative electrode plates and having a sufficiently large amount of negative electrode active material compared to the amount of positive electrode active material. The battery case formation and the 5HR capacity were performed in the same manner as above, and the utilization rate of the positive electrode was calculated from the obtained capacity (Ah) by the calculation formula of the formula (2). In addition, since the utilization factor differs depending on the density, a 2V cell was produced with each concentration, and the utilization factor according to each density was determined.
Positive electrode utilization rate=5 HR capacity/(amount of positive electrode active material per cell/4.463)...Equation (2)
The effective positive electrode active material amount can be obtained by multiplying the calculated positive electrode utilization rate by all the positive electrode active material amounts used in the battery.

負極側の5HR利用率は、正極板8枚と負極板7枚からなり、且つ、負極活物質量と比較して正極活物質量が十分多い2Vセルを作製することで算出した。化成と5HR容量は上記と同様に実施し、得られた容量(Ah)から、式(3)の計算式によって負極の利用率を算出した。
負極利用率=5HR容量/(セルあたりの負極活物質量/3.865)・・・式(3)
この算出した負極利用率に電池に用いた全ての負極活物質量を掛け合わせて有効負極活物質量を求めることができる。
The utilization rate of 5HR on the negative electrode side was calculated by preparing a 2V cell composed of eight positive electrode plates and seven negative electrode plates and having a sufficiently large amount of positive electrode active material as compared with the amount of negative electrode active material. The formation and the 5HR capacity were performed in the same manner as above, and the utilization rate of the negative electrode was calculated from the obtained capacity (Ah) by the calculation formula of the formula (3).
Negative electrode utilization rate=5 HR capacity/(amount of negative electrode active material per cell/3.865)...Equation (3)
The calculated negative electrode utilization rate can be multiplied by the total amount of the negative electrode active material used in the battery to obtain the effective negative electrode active material amount.

実施例1は、サイクル数及び5HR容量のいずれも期待した性能が得られた。より具体的には、環境対応車に求められる性能を満足し、かつ、正負極側の活物質密度や比表面積の調整によって耐久性及び充電受け入れ性を向上する場合と比べて、より高い耐久性と充電受入性を両立可能であった。
表1に、正極活物質密度[g/cc]、負極活物質比表面積[m/g]、硫酸割合X、有効活物質比Y、電解液比重Z、サイクル数及び5HR容量を夫々示した。表1中のサイクル数、及び5HR容量は、実施例1を100%としたときのサイクル数、及び5HR容量のそれぞれの比率を示している。
In Example 1, the expected performance was obtained for both the number of cycles and the 5HR capacity. More specifically, the durability required is higher than that required for an environment-friendly vehicle, and the durability and charge acceptance are improved by adjusting the active material density and specific surface area on the positive and negative electrode sides. It was possible to achieve both charge acceptance and charge acceptance.
Table 1 shows the positive electrode active material density [g/cc], the negative electrode active material specific surface area [m 2 /g], the sulfuric acid ratio X, the effective active material ratio Y, the electrolytic solution specific gravity Z, the number of cycles, and the 5HR capacity. .. The number of cycles and the 5HR capacity in Table 1 show the respective ratios of the number of cycles and the 5HR capacity when Example 1 was set to 100%.

Figure 0006708704
Figure 0006708704

表1に示すように、硫酸割合Xが0.45未満、又は0.65を超える範囲の比較例1〜11は、実施例1と比べて、特にサイクル数が劣り、良好なサイクル特性が得られなかった。
一方、硫酸割合Xが0.45以上、0.65以下の範囲の実施例1〜31は優れたサイクル特性を示した。その理由は、有効活物質量に対する純硫酸の割合が適切であったため、サイクル試験中のバッテリの耐久性と充電受入性の両立ができたものと推測される。
As shown in Table 1, in Comparative Examples 1 to 11 in which the sulfuric acid ratio X is less than 0.45 or exceeds 0.65, the cycle number is particularly inferior to that of Example 1, and good cycle characteristics are obtained. I couldn't do it.
On the other hand, Examples 1 to 31 in which the sulfuric acid ratio X was in the range of 0.45 or more and 0.65 or less showed excellent cycle characteristics. It is presumed that the reason is that the ratio of pure sulfuric acid to the amount of the active active material was appropriate, and thus the durability of the battery during the cycle test and the charge acceptability were compatible.

実施例2〜4、7〜9、12〜14、17〜18、24〜26、28〜31は、実施例1と比べてさらに優れたサイクル特性を示した。その理由は、有効活物質比Y(有効負極活物質量に対する有効正極活物質の比)が適切であったため、正極側と負極側との間の充電バランスが適正となり、サイクル試験中の充電受入性が維持できたからだと推測される。
実施例16、17は、相対的に優れたサイクル特性を示した。その理由は、完成品の電解液比重Zが1.270〜1.275と他の実施例より低く、充電受入性がさらに向上したためと推測される。実施例19もサイクル特性が低下した。電解液比重Zを上げすぎたため、充電受入性が低下してしまったことが原因であると考えられる。
Examples 2 to 4, 7 to 9, 12 to 14, 17 to 18, 24 to 26, 28 to 31 showed more excellent cycle characteristics than Example 1. The reason is that the effective active material ratio Y (the ratio of the effective positive electrode active material to the amount of the effective negative electrode active material) was appropriate, so that the charge balance between the positive electrode side and the negative electrode side was appropriate, and the charge acceptance during the cycle test was accepted. It is presumed that it was possible to maintain sex.
Examples 16 and 17 showed relatively excellent cycle characteristics. It is presumed that the reason is that the electrolyte specific gravity Z of the finished product is 1.270 to 1.275, which is lower than those of the other examples, and the charge acceptability is further improved. Also in Example 19, the cycle characteristics were deteriorated. It is considered that this is because the charge acceptability was lowered because the electrolytic solution specific gravity Z was increased too much.

また、実施例1〜21、24〜26、28〜31では、正極活物質密度を4.5g/cc以上にし、負極板の負極活物質比表面積を0.7m/g以上にしている。なお、前記正極板の正極活物質密度を4.5g/cc未満、前記負極板の負極活物質比表面積を0.7m/g未満にした場合は、純硫酸の割合が範囲内であってもサイクル数や5HR容量は実施例1に比して悪かった。 In Examples 1 to 21, 24 to 26, and 28 to 31, the density of the positive electrode active material is 4.5 g/cc or more, and the specific surface area of the negative electrode active material of the negative electrode plate is 0.7 m 2 /g or more. When the positive electrode active material density of the positive electrode plate was less than 4.5 g/cc and the negative electrode active material specific surface area of the negative electrode plate was less than 0.7 m 2 /g, the proportion of pure sulfuric acid was within the range. Also, the number of cycles and the 5HR capacity were worse than in Example 1.

実施例22は正極活物質密度を4.4g/ccにし、実施例23は正極活物質密度を4.4g/cc、且つ負極板の負極活物質比表面積を0.6m/gにし、実施例27は負極板の負極活物質比表面積を0.6m/gにしているが、硫酸割合X、有効活物質比Y、及び電解液比重Zを表1に示す値に設定することで、実施例1と同等のサイクル数や5HR容量が得られた。
また、実施例24〜26は、正極活物質密度を4.7g/cc〜5.0g/ccと相対的に高い範囲にし、硫酸割合X、有効活物質比Y、及び電解液比重Zを表1に示す値に設定することで、実施例16、17と同等以上のサイクル特性が得られた。
また、実施例28〜31は、負極活物質比表面積を0.9m/g〜1.3m/gと相対的に高い範囲にし、硫酸割合X、有効活物質比Y、及び電解液比重Zを表1に示す値に設定することで、実施例16、17と同程度のサイクル特性が得られた。
Example 22 has a positive electrode active material density of 4.4 g/cc, and Example 23 has a positive electrode active material density of 4.4 g/cc and a negative electrode active material specific surface area of 0.6 m 2 /g. In Example 27, the negative electrode active material specific surface area of the negative electrode plate was set to 0.6 m 2 /g, but by setting the sulfuric acid ratio X, the effective active material ratio Y, and the electrolytic solution specific gravity Z to the values shown in Table 1, The same cycle number and 5HR capacity as in Example 1 were obtained.
Further, in Examples 24 to 26, the positive electrode active material density was set to a relatively high range of 4.7 g/cc to 5.0 g/cc, and the sulfuric acid ratio X, the effective active material ratio Y, and the electrolytic solution specific gravity Z were expressed. By setting the value to 1, the cycle characteristics equivalent to or better than those of Examples 16 and 17 were obtained.
In Examples 28 to 31, the negative electrode active material specific surface area and a relatively high range and 0.9m 2 /g~1.3m 2 / g, the ratio X, the effective active material ratio Y, and electrolyte specific gravity sulfuric acid By setting Z to the value shown in Table 1, cycle characteristics similar to those of Examples 16 and 17 were obtained.

なお、上述の実施形態は、あくまでも本発明の一態様を示すものであり、本発明の主旨を逸脱しない範囲で任意に変形および応用が可能である。例えば、鉛蓄電池を構成する正極板、負極板、及びセパレータといった各部の構成は、公知の構成を広く適用可能である。また、本発明を、アイドリングストップ車用の鉛蓄電池に適用する場合に限らず、様々な用途に使用される鉛蓄電池に適用してもよい。 It should be noted that the above-described embodiment merely shows one aspect of the present invention, and can be arbitrarily modified and applied without departing from the gist of the present invention. For example, as the configuration of each part such as the positive electrode plate, the negative electrode plate, and the separator that form the lead storage battery, known configurations can be widely applied. Further, the present invention is not limited to the case of applying to a lead storage battery for an idling stop vehicle, and may be applied to a lead storage battery used for various purposes.

Claims (3)

正極活物質を含む正極板と、負極活物質を含む負極板とを備え、希硫酸を含む電解液を使用する鉛蓄電池において、
下記式(1)により求められる有効活物質量に対し、電解液中の純硫酸の割合が0.45以上、0.65以下であり、
有効負極活物質量に対する有効正極活物質量の比が0.5以上、0.9以下であることを特徴とする鉛蓄電池。
有効活物質量=正極活物質量×正極利用率/100+負極活物質量×負極利用率/100・・・式(1)
利用率は5時間率利用率(5HR)である。
In a lead acid battery including a positive electrode plate containing a positive electrode active material and a negative electrode plate containing a negative electrode active material, and using an electrolytic solution containing dilute sulfuric acid,
To effective amount of the active material obtained by the following equation (1), the proportion of pure sulfuric acid in the electrolyte of 0.45 or more state, and are 0.65 or less,
Effective anode active ratio of the effective amount of the positive electrode active material to a substance weight of 0.5 or more, the lead-acid battery, characterized in der Rukoto 0.9.
Effective active material amount=positive electrode active material amount×positive electrode utilization rate/100+negative electrode active material amount×negative electrode utilization rate/100 Equation (1)
The utilization rate is a 5-hour utilization rate (5HR).
完成品の電解液の比重が1.275g/cc以上、1.290g/cc以下であることを特徴とする請求項1に記載の鉛蓄電池。The lead acid battery according to claim 1, wherein the specific gravity of the electrolytic solution of the finished product is 1.275 g/cc or more and 1.290 g/cc or less. 前記正極板の正極活物質密度が4.5g/cc以上、かつ、前記負極板の負極活物質比表面積が0.7mThe positive electrode active material density of the positive electrode plate is 4.5 g/cc or more, and the negative electrode active material specific surface area of the negative electrode plate is 0.7 m. Two /g以上であることを特徴とする請求項1又は2に記載の鉛蓄電池。/G or more, The lead acid battery of Claim 1 or 2 characterized by the above-mentioned.
JP2018136347A 2018-07-20 2018-07-20 Lead acid battery Active JP6708704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018136347A JP6708704B2 (en) 2018-07-20 2018-07-20 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018136347A JP6708704B2 (en) 2018-07-20 2018-07-20 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2020013739A JP2020013739A (en) 2020-01-23
JP6708704B2 true JP6708704B2 (en) 2020-06-10

Family

ID=69170785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018136347A Active JP6708704B2 (en) 2018-07-20 2018-07-20 Lead acid battery

Country Status (1)

Country Link
JP (1) JP6708704B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255492B2 (en) * 2017-10-31 2023-04-11 株式会社Gsユアサ lead acid battery

Also Published As

Publication number Publication date
JP2020013739A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
TWI539644B (en) Flooded lead-acid battery and method of making the same
JP5857962B2 (en) Lead acid battery
JP5938254B2 (en) Negative electrode plate for lead acid battery, method for producing the same and lead acid battery
JP5787167B2 (en) Liquid lead-acid battery
JP6660072B2 (en) Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP2008243493A (en) Lead acid storage battery
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP2018055903A (en) Positive electrode plate for lead storage battery and lead storage battery
JP6708704B2 (en) Lead acid battery
JP5720947B2 (en) Lead acid battery
JP5396216B2 (en) Lead acid battery
CN105703001A (en) Lithium battery and manufacturing method thereof
JP5637503B2 (en) Lead acid battery
JP7128482B2 (en) lead acid battery
JP2015176744A (en) Method of manufacturing secondary battery
JP2005025955A (en) Lead acid battery and its manufacturing method
JP2004014283A (en) Valve regulated lead battery
JP5668292B2 (en) Method for producing lead-acid battery
JP5708959B2 (en) Lead acid battery
JP7212649B2 (en) Lead-acid battery and manufacturing method thereof
JP5682530B2 (en) Method for producing paste-like positive electrode active material for lead acid battery and positive electrode plate for lead acid battery
JP6730406B2 (en) Lead acid battery
JP6797752B2 (en) Lead-acid battery
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200521

R150 Certificate of patent or registration of utility model

Ref document number: 6708704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150