JP2014216115A - Negative electrode plate for lead-acid battery, liquid type lead-acid battery using the same, and method of manufacturing lead-acid battery - Google Patents
Negative electrode plate for lead-acid battery, liquid type lead-acid battery using the same, and method of manufacturing lead-acid battery Download PDFInfo
- Publication number
- JP2014216115A JP2014216115A JP2013091018A JP2013091018A JP2014216115A JP 2014216115 A JP2014216115 A JP 2014216115A JP 2013091018 A JP2013091018 A JP 2013091018A JP 2013091018 A JP2013091018 A JP 2013091018A JP 2014216115 A JP2014216115 A JP 2014216115A
- Authority
- JP
- Japan
- Prior art keywords
- lead
- negative electrode
- active material
- acid battery
- electrode plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
この発明は、鉛蓄電池用負極板に関するものであり、より詳細にはアイドリングストップ車に好適な鉛蓄電池用の負極板に関するものである。また、この発明は、前記負極板を用いた液式鉛蓄電池及び鉛蓄電池の製造方法に関するものである。 The present invention relates to a negative electrode plate for a lead storage battery, and more particularly to a negative electrode plate for a lead storage battery suitable for an idling stop vehicle. Moreover, this invention relates to the manufacturing method of the liquid type lead acid battery and lead acid battery which used the said negative electrode plate.
近時、自動車の燃費改善を目的にアイドリングストップ機能を有した自動車の普及が進められている。アイドリングストップ車に搭載される鉛蓄電池は、頻繁に充放電が繰り返されて、低充電状態(低SOC)で完全充電されないまま使用される。このため、電解液が成層化し、正極板及び負極板に硫酸鉛が蓄積しやすく、短期に寿命を迎える傾向にある。 Recently, automobiles having an idling stop function are being promoted for the purpose of improving the fuel efficiency of automobiles. A lead storage battery mounted on an idling stop vehicle is frequently charged and discharged and used without being fully charged in a low charge state (low SOC). For this reason, electrolyte solution is stratified, lead sulfate tends to accumulate on the positive electrode plate and the negative electrode plate, and tends to reach a short life.
これに対して、負極活物質中に添加するカーボン粒子の量を増やすと、充電受入性が向上することに加えて、硫酸鉛が蓄積して導電性が低下するような場合でも、負極活物質中のカーボン粒子が互いに導電パスを形成し、導電性が得られることが知られている(特許文献1)。しかし、一方で、負極活物質に多量のカーボン粒子を添加すると、電解液が濁り、液面の視認性が低下するとともに、カーボン粒子がリグニンを吸着し、低温高率放電性能が低下するという問題がある。 On the other hand, when the amount of carbon particles added to the negative electrode active material is increased, in addition to the improvement in charge acceptance, the negative electrode active material can be used even when lead sulfate accumulates and the conductivity decreases. It is known that the carbon particles inside form a conductive path with each other to obtain conductivity (Patent Document 1). However, on the other hand, when a large amount of carbon particles is added to the negative electrode active material, the electrolyte solution becomes turbid, the visibility of the liquid surface decreases, and the carbon particles adsorb lignin, which lowers the low-temperature high-rate discharge performance. There is.
本発明は、上記現状に鑑み、低SOCで使用しても硫酸鉛の蓄積が抑制され、寿命性能が向上した鉛蓄電池を得ることができる負極板及びそれを用いた液式鉛蓄電池、並びに、鉛蓄電池の製造方法を提供すべく図ったものである。 In view of the above situation, the present invention is a negative electrode plate capable of obtaining a lead storage battery in which the accumulation of lead sulfate is suppressed even when used at a low SOC and the life performance is improved, and a liquid lead storage battery using the negative electrode plate, and The present invention is intended to provide a method for producing a lead-acid battery.
本発明者らは、鋭意検討の結果、負極格子体の格子の細かさや、負極活物質中に添加するカーボン粒子の量、抵抗率、粒子径等が鉛蓄電池の寿命性能に複合的に影響することを見出し、本発明を完成するに至った。 As a result of intensive studies, the inventors of the present invention have a complex influence on the life performance of lead-acid batteries, such as the fineness of the grid of the negative electrode grid, the amount of carbon particles added to the negative electrode active material, the resistivity, and the particle diameter. As a result, the present invention has been completed.
すなわち本発明に係る鉛蓄電池用負極板は、カーボン粒子を含有する活物質と、複数のマス目が形成された格子部を有し前記活物質を保持する格子体と、を備えた鉛蓄電池用の負極板であって、下記式(1)により求められる前記カーボン粒子のカーボン導電性を、下記式(2)により求められる前記格子体のメッシュ面積で除した値(カーボン導電性/メッシュ面積)が、1.0×1017Ω―1・m−4・質量%以上であることを特徴とする。 That is, a negative electrode plate for a lead storage battery according to the present invention is for a lead storage battery comprising an active material containing carbon particles and a lattice body having a lattice portion in which a plurality of grids are formed and holding the active material. A value obtained by dividing the carbon conductivity of the carbon particles obtained by the following formula (1) by the mesh area of the lattice obtained by the following formula (2) (carbon conductivity / mesh area) Is 1.0 × 10 17 Ω −1 · m −4 · mass% or more.
カーボン導電性(×1013Ω―1・m−2・質量%)=化成後の活物質における含有率(質量%)/{粉体抵抗率(×10−4Ω・m)×平均粒子径(×10−9m)}・・・式(1)
メッシュ面積(×10−4m2)=格子部の幅(×10−2m)×格子部の高さ(×10−2m)/マス目の数・・・式(2)
Carbon conductivity (× 10 13 Ω− 1 · m −2 ·% by mass) = content (% by mass) in the active material after chemical conversion / {powder resistivity (× 10 −4 Ω · m) × average particle diameter (× 10 −9 m)} Expression (1)
Mesh area (× 10 −4 m 2 ) = lattice width (× 10 −2 m) × lattice height (× 10 −2 m) / number of squares (2)
ここで、上記式(1)において、粉体抵抗率は、例えば、負極活物質から濾過等により抽出したカーボン粒子を用い、四探針法等により求めることができる。また、平均粒子径(一次粒子の平均粒子径)は、例えば、負極活物質から濾過等により抽出したカーボン粒子を電子顕微鏡等で観察し、観察されたアグリゲート(一次凝集体)中の一次粒子径を単純平均すること等により求めることができる。 Here, in the above formula (1), the powder resistivity can be obtained by, for example, a four-probe method using carbon particles extracted from the negative electrode active material by filtration or the like. The average particle size (average particle size of primary particles) is, for example, the carbon particles extracted from the negative electrode active material by filtration or the like, observed with an electron microscope or the like, and the primary particles in the observed aggregate (primary aggregate) It can be obtained by, for example, simply averaging the diameters.
なお、粉体抵抗率は導電率の逆数であるので、上記式(1)は、以下の式(1)´のように変換することもできる。
カーボン導電性(×1013Ω―1・m−2・質量%)=化成後の活物質における含有率(質量%)×導電率(×104Ω―1・m−1)/平均粒子径(×10−9m)・・・式(1)´
Since the powder resistivity is the reciprocal of the conductivity, the above formula (1) can be converted into the following formula (1) ′.
Carbon conductivity (× 10 13 Ω− 1 · m −2 ·% by mass) = content (% by mass) in the active material after chemical conversion × conductivity (× 10 4 Ω− 1 · m −1 ) / average particle diameter (× 10 −9 m) Expression (1) ′
また、上記式(2)における、「格子部の幅」、「格子部の高さ」及び「マス目の数」を、図1に示すようなエキスパンド格子体1を例に挙げて説明すると、「格子部4の幅」はXX線間の距離を意味する。また、「格子部4の高さ」はYY線間の距離、すなわち上枠骨2と下枠骨3との間の距離を意味する。更に、「マス目の数」はマス目5の個数を意味するが、この際、マス目Aは0.5マスと数え、マス目Bは1マスと数え、マス目Cとマス目Dは合わせて1マスと数える。 Further, in the above formula (2), “the width of the lattice portion”, “the height of the lattice portion”, and “the number of grids” will be described by taking the expanded lattice body 1 as shown in FIG. 1 as an example. “Width of the lattice portion 4” means a distance between XX rays. The “height of the lattice portion 4” means the distance between the YY lines, that is, the distance between the upper frame bone 2 and the lower frame bone 3. Furthermore, “the number of cells” means the number of cells 5; in this case, cell A is counted as 0.5 cell, cell B is counted as 1 cell, cell C and cell D are Together, it counts as one square.
本発明において、化成後の前記活物質の密度は、3.6g/cm3以上であることが好ましい。 In the present invention, the density of the active material after chemical conversion is preferably 3.6 g / cm 3 or more.
本発明に係る負極板は液式(ベント形)鉛蓄電池に好適に用いることができる。このような本発明に係る負極板を有する液式鉛蓄電池もまた、本発明の一つである。 The negative electrode plate according to the present invention can be suitably used for a liquid (bent type) lead acid battery. Such a liquid lead-acid battery having the negative electrode plate according to the present invention is also one aspect of the present invention.
本発明に係る液式鉛蓄電池は、アイドリングストップ車用鉛蓄電池として更に好適に用いられる。 The liquid lead acid battery according to the present invention is more suitably used as a lead acid battery for an idling stop vehicle.
更に、本発明に係る負極板を有する鉛蓄電池の製造方法もまた、本発明の一つである。すなわち本発明に係る鉛蓄電池の製造方法は、カーボン粒子を含有する活物質と、複数のマス目が形成された格子部を有し前記活物質を保持する格子体と、を備えた負極板を有する鉛蓄電池の製造方法であって、上記式(1)により求められる前記カーボン粒子のカーボン導電性を、上記式(2)により求められる前記格子体のメッシュ面積で除した値(カーボン導電性/メッシュ面積)が、1.0×1017Ω―1・m−4・質量%以上になるように、前記活物質中に前記カーボン粒子を添加することを特徴とする。 Furthermore, the manufacturing method of the lead acid battery which has a negative electrode plate which concerns on this invention is also one of this invention. That is, a method for producing a lead-acid battery according to the present invention comprises a negative electrode plate comprising an active material containing carbon particles, and a lattice body having a lattice portion in which a plurality of grids are formed and holding the active material. A value obtained by dividing the carbon conductivity of the carbon particles obtained by the above formula (1) by the mesh area of the lattice body obtained by the above formula (2) (carbon conductivity / The carbon particles are added to the active material so that the mesh area is 1.0 × 10 17 Ω− 1 · m −4 ·% by mass or more.
本発明に係る負極板を用いれば、低SOCで使用しても硫酸鉛の蓄積を抑制して、鉛蓄電池の寿命性能を向上することができる。 If the negative electrode plate according to the present invention is used, accumulation of lead sulfate can be suppressed even when used at a low SOC, and the life performance of the lead storage battery can be improved.
以下に本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.
本発明に係る鉛蓄電池用負極板(以下、単に負極板ともいう。)は、カーボン粒子を含有する活物質と、複数のマス目が形成された格子部を有し前記活物質を保持する格子体と、を備えたものである。 A negative electrode plate for a lead storage battery according to the present invention (hereinafter also simply referred to as a negative electrode plate) includes an active material containing carbon particles and a lattice part in which a plurality of grids are formed and holds the active material. And a body.
ここで、前記カーボン粒子としては導電性を有する粒子状の炭素系物質であれば特に限定されず、例えば、アセチレンブラック、ケッチェンブラック、黒鉛化ブラック等のカーボンブラックや、グラファイト等を用いることができる。これらカーボン粒子は単独で用いられてもよく、2種以上が併用されてもよい。また、カーボンブラックとグラファイトとを併用してもよい。 Here, the carbon particle is not particularly limited as long as it is a particulate carbon-based material having conductivity, and for example, carbon black such as acetylene black, ketjen black, graphitized black, graphite, or the like may be used. it can. These carbon particles may be used independently and 2 or more types may be used together. Carbon black and graphite may be used in combination.
前記活物質は、鉛を主成分とするものであり、カーボン粒子以外に、必要に応じて硫酸バリウムや、リグニン、他の添加剤を含有していてもよい。前記格子体は、例えば、Pb−Sb系合金やPb−Ca系合金等からなるものであり、エキスパンド格子体、鋳造格子体、打ち抜き加工により形成された格子体等のいずれであってもよい。前記格子体は、集電用の耳部を有する上枠骨と当該上枠骨に略平行に設けられた下枠骨との間に、複数のマス目が形成された格子部が形成されたものであり、当該格子部に前記活物質のペーストが充填される。 The active material contains lead as a main component, and may contain barium sulfate, lignin, and other additives as necessary in addition to the carbon particles. The lattice body is made of, for example, a Pb—Sb alloy, a Pb—Ca alloy, or the like, and may be any of an expanded lattice body, a cast lattice body, a lattice body formed by punching, and the like. The lattice body is formed with a lattice portion in which a plurality of grids are formed between an upper frame bone having a current collecting ear portion and a lower frame bone provided substantially parallel to the upper frame bone. The lattice portion is filled with the active material paste.
本発明に係る負極板は、下記式(1)により求められる前記カーボン粒子のカーボン導電性を、下記式(2)により求められる前記格子体のメッシュ面積で除した値(カーボン導電性/メッシュ面積)が、1.0×1017Ω―1・m−4・質量%以上であるものである。 The negative electrode plate according to the present invention is obtained by dividing the carbon conductivity of the carbon particles obtained by the following formula (1) by the mesh area of the lattice body obtained by the following formula (2) (carbon conductivity / mesh area). ) Is 1.0 × 10 17 Ω− 1 · m −4 · mass% or more.
カーボン導電性(×1013Ω―1・m−2・質量%)=化成後の活物質における含有率(質量%)/{粉体抵抗率(×10−4Ω・m)×平均粒子径(×10−9m)}・・・式(1)
メッシュ面積(×10−4m2)=格子部の幅(×10−2m)×格子部の高さ(×10−2m)/マス目の数・・・式(2)
Carbon conductivity (× 10 13 Ω− 1 · m −2 ·% by mass) = content (% by mass) in the active material after chemical conversion / {powder resistivity (× 10 −4 Ω · m) × average particle diameter (× 10 −9 m)} Expression (1)
Mesh area (× 10 −4 m 2 ) = lattice width (× 10 −2 m) × lattice height (× 10 −2 m) / number of squares (2)
本発明者らは、鋭意検討の結果、前記メッシュ面積あたりの前記カーボン導電性が、負極板における硫酸鉛の蓄積に関係することを見出した。 As a result of intensive studies, the present inventors have found that the carbon conductivity per mesh area is related to the accumulation of lead sulfate in the negative electrode plate.
上記式(2)により求められるメッシュ面積が小さい(格子が細かい)ほど、負極板における電流分布が均一になり、低SOCで使用しても硫酸鉛の蓄積を抑制できる。しかし、寿命終期において、負極板に硫酸鉛が蓄積し、抵抗が高くなった場合は、この効果は小さくなる。 The smaller the mesh area determined by the above formula (2) (the finer the lattice), the more uniform the current distribution in the negative electrode plate, and the suppression of lead sulfate accumulation even when used at low SOC. However, when lead sulfate accumulates on the negative electrode plate at the end of the life and the resistance becomes high, this effect is reduced.
一方、上述のとおり、負極活物質が含有するカーボン粒子の量を増やすと、充電受入性が向上するとともに、低SOCで使用することにより、負極板に硫酸鉛が蓄積して導電性が低下するような場合であっても、カーボン粒子が負極活物質中で互いに導電パスを形成して導電性を発現するので、硫酸鉛の蓄積を抑制することができる。しかし、導電パスの形成のしやすさは、カーボン種により異なっている。そこで、本発明者らは、検討の結果、カーボン粒子の導電パスの形成のしやすさが、負極活物質中における含有量に加えて、抵抗率や、粒子径等に依存していることを見出し、当該導電パスの形成のしやすさを、上記式(1)により求められるカーボン導電性により評価できることに想到した。 On the other hand, as described above, when the amount of the carbon particles contained in the negative electrode active material is increased, the charge acceptability is improved, and lead sulfate is accumulated in the negative electrode plate due to use at a low SOC, resulting in a decrease in conductivity. Even in such a case, since the carbon particles form a conductive path with each other in the negative electrode active material to exhibit conductivity, accumulation of lead sulfate can be suppressed. However, the ease of forming a conductive path differs depending on the carbon species. Therefore, as a result of the study, the inventors have determined that the ease of forming the conductive path of the carbon particles depends on the resistivity, the particle diameter, and the like in addition to the content in the negative electrode active material. The inventor has come up with the idea that the ease of forming the conductive path can be evaluated by the carbon conductivity required by the above formula (1).
しかして、寿命初期から中期にかけての、前記メッシュ面積の影響と、寿命終期における前記カーボン導電性の影響と、更にこれらの相乗効果により、前記「カーボン導電性/メッシュ面積」の値が1.0×1017Ω―1・m−4・質量%以上であると、負極板における硫酸鉛の蓄積を極めて良好に抑制することが可能となる。 Thus, the value of the “carbon conductivity / mesh area” is 1.0 due to the influence of the mesh area from the beginning to the middle of the life, the influence of the carbon conductivity at the end of the life, and the synergistic effect thereof. When it is × 10 17 Ω− 1 · m −4 · mass% or more, it becomes possible to very well suppress the accumulation of lead sulfate in the negative electrode plate.
前記「カーボン導電性/メッシュ面積」の値は、3.0×1017Ω―1・m−4・質量%以上、より好ましくは、5.0×1017Ω―1・m−4・質量%以上であることが好ましい。これにより、負極板における硫酸鉛の蓄積を更に良好に抑制することが可能となる。 The value of the “carbon conductivity / mesh area” is 3.0 × 10 17 Ω− 1 · m −4 mass% or more, more preferably 5.0 × 10 17 Ω− 1 · m −4 mass. % Or more is preferable. Thereby, accumulation of lead sulfate in the negative electrode plate can be further suppressed.
前記「カーボン導電性/メッシュ面積」の値の上限としては特に限定されないが、前記カーボン導電性が8.0×1013Ω―1・m−2・質量%以下であることが好ましい。負極活物質中にリグニンが添加されている場合、当該負極活物質中に多量のカーボン粒子が含まれていると、カーボン粒子がリグニンを吸着し、低温高率放電性能が低下することがある。しかし、本発明においては、前記カーボン導電性が8.0×1013Ω―1・m−2・質量%以下であるように、カーボン粒子の含有率が低いか、又は、平均粒子径が大きければ(すなわち、比表面積が小さければ)、リグニンの吸着を抑制することができるので、低温高率放電性能の低下を抑制することができる。 The upper limit of the value of “carbon conductivity / mesh area” is not particularly limited, but the carbon conductivity is preferably 8.0 × 10 13 Ω− 1 · m −2 ·% by mass or less. In the case where lignin is added to the negative electrode active material, if the negative electrode active material contains a large amount of carbon particles, the carbon particles may adsorb lignin and the low-temperature high-rate discharge performance may deteriorate. However, in the present invention, the carbon particle content is low or the average particle diameter is large so that the carbon conductivity is 8.0 × 10 13 Ω− 1 · m −2 ·% by mass or less. For example, if the specific surface area is small, the adsorption of lignin can be suppressed, so that a decrease in the low-temperature high-rate discharge performance can be suppressed.
化成後の前記活物質(以下、負極既化成活物質ともいう。)の密度は、3.6g/cm3以上であることが好ましい。負極活物質に含まれるカーボン粒子の量を増やすことは、負極板における硫酸鉛の蓄積を抑制するためには有効であるが、一方で、液式鉛蓄電池の電解液を濁らせることがある。しかし、本発明においては、負極既化成活物質の密度が3.6g/cm3以上であれば、電解液の濁りを防ぐことができる。なお、負極既化成活物質の密度の上限としては特に限定されないが、4.2g/cm3以下であることが好ましい。負極既化成活物質の密度が4.2g/cm3を超えると、当該活物質のペーストが硬くなりすぎて、格子体への充填が困難になることがある。 The density of the active material after chemical conversion (hereinafter also referred to as negative electrode pre-formed active material) is preferably 3.6 g / cm 3 or more. Increasing the amount of carbon particles contained in the negative electrode active material is effective for suppressing the accumulation of lead sulfate in the negative electrode plate, but on the other hand, the electrolyte of the liquid lead acid battery may become cloudy. However, in the present invention, the turbidity of the electrolyte can be prevented if the density of the negative electrode pre-formed active material is 3.6 g / cm 3 or more. In addition, although it does not specifically limit as an upper limit of the density of a negative electrode preformed active material, It is preferable that it is 4.2 g / cm < 3 > or less. When the density of the negative electrode already formed active material exceeds 4.2 g / cm 3 , the paste of the active material becomes too hard, and it may be difficult to fill the lattice.
本発明に係る負極板は液式鉛蓄電池に好適に用いられる。当該液式鉛蓄電池の構成としては特に限定されないが、例えば、本発明に係る負極板と、二酸化鉛を活物質の主成分とする正極板と、これら極板の間に介在する多孔性のセパレータとからなる極板群を備えたものであり、当該極板群が希硫酸を主成分とする電解液に浸漬されてなるものが挙げられる。 The negative electrode plate according to the present invention is suitably used for a liquid lead-acid battery. Although it does not specifically limit as a structure of the said liquid lead acid battery, For example, from the negative electrode plate which concerns on this invention, the positive electrode plate which has lead dioxide as a main component of an active material, and the porous separator interposed between these electrode plates And an electrode plate group immersed in an electrolyte containing dilute sulfuric acid as a main component.
前記正極板は、ペースト式である場合は、負極板と同様にPb−Sb系合金やPb−Ca系合金等からなる格子体に活物質が担持されているが、クラッド式である場合は、ガラス繊維等からなるチューブと、鉛合金の芯金との間に活物質が充填されている。これらの各構成部材は、目的・用途に応じて適宜公知のものから選択して用いることができる。 When the positive electrode plate is a paste type, an active material is supported on a lattice body made of a Pb—Sb alloy or a Pb—Ca alloy as in the negative electrode plate. An active material is filled between a tube made of glass fiber or the like and a lead alloy core. Each of these constituent members can be appropriately selected from known ones according to the purpose and use.
本発明に係る鉛蓄電池の製造方法は、カーボン粒子を含有する活物質と、複数のマス目が形成された格子部を有し前記活物質を保持する格子体と、を備えた負極板を有する鉛蓄電池の製造方法であって、上記式(1)により求められる前記カーボン粒子のカーボン導電性を、上記式(2)により求められる前記格子体のメッシュ面積で除した値(カーボン導電性/メッシュ面積)が、1.0×1017Ω―1・m−4・質量%以上になるように、前記活物質中に前記カーボン粒子を添加することを特徴とする。このような製造方法を用いることで、上述した本発明に係わる鉛蓄電池用負極板及びそれを用いた液式鉛蓄電池を製造することができる。 A method for manufacturing a lead-acid battery according to the present invention includes a negative electrode plate including an active material containing carbon particles, and a lattice body having a lattice portion in which a plurality of grids are formed and holding the active material. A method of manufacturing a lead-acid battery, wherein the carbon conductivity of the carbon particles obtained by the above formula (1) is divided by the mesh area of the lattice body obtained by the above formula (2) (carbon conductivity / mesh The carbon particles are added to the active material so that (area) is 1.0 × 10 17 Ω− 1 · m −4 · mass% or more. By using such a manufacturing method, the negative electrode plate for a lead storage battery according to the present invention described above and a liquid lead storage battery using the same can be manufactured.
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。 The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.
1.アイドリングストップ寿命試験
一般社団法人電池工業会規格SBA S 0101:2006に準拠して、アイドリングストップ寿命試験を行った。この際、供試電池としては、M−42タイプのアイドリングストップ車用鉛蓄電池を用いた。
1. Idling stop life test An idling stop life test was performed in accordance with the Japan Battery Industry Association Standard SBA S 0101: 2006. At this time, an M-42 type lead-acid battery for an idling stop vehicle was used as a test battery.
2.「カーボン導電性/メッシュ面積」値の測定
以下のようにして、カーボン導電性とメッシュ面積とを求め、「カーボン導電性/メッシュ面積」値を算出した。
2. Measurement of “Carbon Conductivity / Mesh Area” Value Carbon conductivity and mesh area were determined in the following manner, and a “carbon conductivity / mesh area” value was calculated.
<カーボン導電性の測定>
以下に示すようにして、カーボン粒子を抽出し、負極既化成活物質における含有率、粉体抵抗率、及び、平均粒子径を測定し、下記式(1)に従いカーボン導電性を算出した。
・カーボン導電性(×1013Ω―1・m−2・質量%)=化成後の活物質における含有率(質量%)/{粉体抵抗率(×10−4Ω・m)×平均粒子径(×10−9m)}・・・式(1)
<Measurement of carbon conductivity>
As shown below, carbon particles were extracted, the content rate, powder resistivity, and average particle diameter in the negative electrode preformed active material were measured, and carbon conductivity was calculated according to the following formula (1).
Carbon conductivity (× 10 13 Ω− 1 · m −2 · mass%) = content (mass%) in the active material after chemical conversion / {powder resistivity (× 10 −4 Ω · m) × average particle Diameter (× 10 −9 m)} Expression (1)
[1]カーボン粒子の抽出・定量
前記供試電池の負極既化成活物質を粉砕し、硝酸を加えてから加熱して溶解した。ここに更にEDTA、アンモニア水を加え、加熱して溶解した液をフィルターで濾過した。得られた残渣を乾燥し、これを抽出されたカーボン粒子として秤量し、負極既化成活物質における含有率(質量%)を求めた。
[1] Extraction and quantification of carbon particles The negative electrode pre-formed active material of the test battery was pulverized, and nitric acid was added thereto, followed by heating and dissolution. EDTA and ammonia water were further added thereto, and the solution dissolved by heating was filtered through a filter. The obtained residue was dried and weighed as extracted carbon particles to determine the content (mass%) in the negative electrode active material.
[2]粉体抵抗率の測定
抽出されたカーボン粒子の粉体抵抗率を、粉体抵抗測定ユニット(MCP−PD51 三菱アナリティック製)により測定した。測定条件は以下のとおりである。
・試料半径;10mm
・試料の質量;1.5g
・測定荷重;4kN
[2] Measurement of powder resistivity The powder resistivity of the extracted carbon particles was measured by a powder resistance measurement unit (MCP-PD51, manufactured by Mitsubishi Analytics). The measurement conditions are as follows.
・ Sample radius: 10mm
Sample weight: 1.5 g
・ Measurement load: 4kN
[3]平均粒子径の測定
一方、カーボン粒子の平均粒子径は、抽出されたカーボン粒子を電子顕微鏡等で観察し、観察されたアグリゲート(一次凝集体)中の一次粒子径を単純平均することにより求めた。
[3] Measurement of average particle diameter On the other hand, the average particle diameter of carbon particles is obtained by observing the extracted carbon particles with an electron microscope or the like, and simply averaging the primary particle diameters in the observed aggregates (primary aggregates). Was determined by
<メッシュ面積の測定>
図1に示すようにして、格子部の幅、格子部の高さ、及び、マス目の数を測定し、下記式(2)に従いメッシュ面積を算出した。
・メッシュ面積(×10−4m2)=格子部の幅(×10−2m)×格子部の高さ(×10−2m)/マス目の数・・・式(2)
<Measurement of mesh area>
As shown in FIG. 1, the width of the lattice part, the height of the lattice part, and the number of grids were measured, and the mesh area was calculated according to the following formula (2).
Mesh area (× 10 −4 m 2 ) = lattice width (× 10 −2 m) × lattice height (× 10 −2 m) / number of squares (2)
3.負極既化成活物質の密度の測定
負極既化成活物質の密度は、ピクノメーターで測定した。
3. Measurement of Density of Active Material for Negative Electrode The density of the active material for negative electrode was measured with a pycnometer.
4.結果
これらの試験により得られた結果を下記表1並びに図2及び図3のグラフに示す。なお、表1並びに図2及び図3のグラフ中、「寿命性能指数(%)」は、各供試電池の寿命サイクル数を、No.37の電池(従来品に相当)の寿命サイクル数に対する比率で表したものである。また、「硫酸鉛蓄積速度比率(%)」は、各供試電池の硫酸鉛蓄積速度(質量%/サイクル)を、No.37の電池(従来品に相当)の硫酸鉛蓄積速度(質量%/サイクル)に対する比率で表したものであり、以下の式によって算出した。
・硫酸鉛蓄積速度(質量%/サイクル)=硫酸鉛量/サイクル数
・硫酸鉛蓄積速度比率(%)={各供試電池の硫酸鉛蓄積速度(質量%/サイクル)/No.37の電池の硫酸鉛蓄積速度(質量%/サイクル)}×100
4). Results The results obtained by these tests are shown in the following Table 1 and the graphs of FIGS. In Table 1 and the graphs of FIGS. 2 and 3, “Life Performance Index (%)” is the number of life cycles of each test battery. This is expressed as a ratio to the number of life cycles of 37 batteries (corresponding to conventional products). In addition, “lead sulfate accumulation rate ratio (%)” indicates the lead sulfate accumulation rate (mass% / cycle) of each test battery. It was expressed as a ratio to the lead sulfate accumulation rate (mass% / cycle) of 37 batteries (corresponding to conventional products), and was calculated by the following formula.
-Lead sulfate accumulation rate (mass% / cycle) = lead sulfate amount / cycle number-Lead sulfate accumulation rate ratio (%) = {Lead sulfate accumulation rate (mass% / cycle) / No. Accumulation rate of lead sulfate in 37 batteries (mass% / cycle)} × 100
なお、硫酸鉛蓄積速度(質量%/サイクル)の算出に用いる硫酸鉛量としては、電池を解体後、水洗し、乾燥してから、図4に示すように、負極板の中央部において縦に上から下まで既化成活物質をサンプリングして、当該負極既化成活物質粉砕した後、測定して得られた、負極既化成活物質中に占める硫酸鉛の比率(質量%)を用いた。 The amount of lead sulfate used for calculating the lead sulfate accumulation rate (mass% / cycle) is as follows. After the battery is disassembled, it is washed with water and dried, as shown in FIG. The ratio of the lead sulfate in the negative electrode pre-formed active material obtained by sampling after measuring the pre-formed active material from the top to the bottom, pulverizing the negative electrode pre-formed active material, was used.
このようにして算出された「硫酸鉛蓄積速度比率(%)」が100%未満である場合は、負極板における硫酸鉛の蓄積が従来品より抑制されたことを意味する。また、「電解液濁り」については、各供試電池の電解液を目視で観察し、その濁り度合いをNo.37の電池(従来品に相当)の電解液と比較し、濁り度合いがNo.37の電池より低い場合は「○」、No.37の電池と同程度である場合は「△」、No.37の電池より高い場合は「×」と評価した。 When the “lead sulfate accumulation rate ratio (%)” calculated in this way is less than 100%, it means that the accumulation of lead sulfate in the negative electrode plate is suppressed as compared with the conventional product. As for “electrolytic solution turbidity”, the electrolytic solution of each test battery was visually observed, and the degree of turbidity was measured as No. Compared with the electrolyte solution of battery No. 37 (equivalent to the conventional product), the turbidity is When the battery is lower than 37, “◯”, No. In the case of the same level as the battery No. 37, “△”, No. When it was higher than 37 batteries, it was evaluated as “x”.
表1並びに図2及び図3のグラフに示すように、「カーボン導電性/メッシュ面積」の値が1.0×1017Ω―1・m−4・質量%以上である供試電池では、いずれにおいても負極板における硫酸鉛の蓄積が抑制され、寿命性能が向上していた。また、3.0×1017Ω―1・m−4・質量%以上、より好ましくは、5.0×1017Ω―1・m−4・質量%以上であれば更に負極板における硫酸鉛の蓄積が抑制され、寿命性能が向上していた。しかし、負極既化成活物質密度が3.6g/cm3未満である供試電池では電解液に顕著な濁りが発生した。 As shown in the graphs of Table 1 and FIGS. 2 and 3, in the test battery having a value of “carbon conductivity / mesh area” of 1.0 × 10 17 Ω− 1 · m −4 ·% by mass or more, In either case, accumulation of lead sulfate in the negative electrode plate was suppressed, and the life performance was improved. Moreover, if it is 3.0 * 10 < 17 > (omega | ohm) -1 * m- 4 * mass% or more, More preferably, if it is 5.0 * 10 < 17 > (omega | ohm) -1 * m- 4 * mass% or more, it is the lead sulfate in a negative electrode plate further. Accumulation was suppressed and the life performance was improved. However, in the test battery having a negative electrode preformed active material density of less than 3.6 g / cm 3 , significant turbidity occurred in the electrolyte.
1・・・格子体
2・・・上枠骨
3・・・下枠骨
4・・・格子部
5・・・マス目
DESCRIPTION OF SYMBOLS 1 ... Grid body 2 ... Upper frame bone 3 ... Lower frame bone 4 ... Grid part 5 ... Grid
Claims (5)
下記式(1)により求められる前記カーボン粒子のカーボン導電性を、下記式(2)により求められる前記格子体のメッシュ面積で除した値(カーボン導電性/メッシュ面積)が、1.0×1017Ω―1・m−4・質量%以上であることを特徴とする鉛蓄電池用負極板。
カーボン導電性(×1013Ω―1・m−2・質量%)=化成後の活物質における含有率(質量%)/{粉体抵抗率(×10−4Ω・m)×平均粒子径(×10−9m)}・・・式(1)
メッシュ面積(×10−4m2)=格子部の幅(×10−2m)×格子部の高さ(×10−2m)/マス目の数・・・式(2) A negative electrode plate for a lead storage battery, comprising: an active material containing carbon particles; and a lattice body having a lattice portion in which a plurality of grids are formed and holding the active material,
The value obtained by dividing the carbon conductivity of the carbon particles obtained by the following formula (1) by the mesh area of the lattice body obtained by the following formula (2) (carbon conductivity / mesh area) is 1.0 × 10. A negative electrode plate for a lead-acid battery, characterized in that it is 17 Ω −1 · m −4 · mass% or more.
Carbon conductivity (× 10 13 Ω− 1 · m −2 ·% by mass) = content (% by mass) in the active material after chemical conversion / {powder resistivity (× 10 −4 Ω · m) × average particle diameter (× 10 −9 m)} Expression (1)
Mesh area (× 10 −4 m 2 ) = lattice width (× 10 −2 m) × lattice height (× 10 −2 m) / number of squares (2)
下記式(1)により求められる前記カーボン粒子のカーボン導電性を、下記式(2)により求められる前記格子体のメッシュ面積で除した値(カーボン導電性/メッシュ面積)が、1.0×1017Ω―1・m−4・質量%以上になるように、前記活物質中に前記カーボン粒子を添加することを特徴とする鉛蓄電池の製造方法。
カーボン導電性(×1013Ω―1・m−2・質量%)=化成後の活物質における含有率(質量%)/{粉体抵抗率(×10−4Ω・m)×平均粒子径(×10−9m)}・・・式(1)
メッシュ面積(×10−4m2)=格子部の幅(×10−2m)×格子部の高さ(×10−2m)/マス目の数・・・式(2) A method for producing a lead-acid battery having a negative electrode plate comprising: an active material containing carbon particles; and a lattice body having a lattice portion in which a plurality of grids are formed and holding the active material,
The value obtained by dividing the carbon conductivity of the carbon particles obtained by the following formula (1) by the mesh area of the lattice body obtained by the following formula (2) (carbon conductivity / mesh area) is 1.0 × 10. The method for producing a lead storage battery, wherein the carbon particles are added to the active material so as to be 17 Ω− 1 · m −4 · mass% or more.
Carbon conductivity (× 10 13 Ω− 1 · m −2 ·% by mass) = content (% by mass) in the active material after chemical conversion / {powder resistivity (× 10 −4 Ω · m) × average particle diameter (× 10 −9 m)} Expression (1)
Mesh area (× 10 −4 m 2 ) = lattice width (× 10 −2 m) × lattice height (× 10 −2 m) / number of squares (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013091018A JP6210269B2 (en) | 2013-04-24 | 2013-04-24 | Negative electrode plate for lead acid battery, liquid lead acid battery using the same, and method for producing lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013091018A JP6210269B2 (en) | 2013-04-24 | 2013-04-24 | Negative electrode plate for lead acid battery, liquid lead acid battery using the same, and method for producing lead acid battery |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2014216115A true JP2014216115A (en) | 2014-11-17 |
JP2014216115A5 JP2014216115A5 (en) | 2016-06-09 |
JP6210269B2 JP6210269B2 (en) | 2017-10-11 |
Family
ID=51941723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013091018A Active JP6210269B2 (en) | 2013-04-24 | 2013-04-24 | Negative electrode plate for lead acid battery, liquid lead acid battery using the same, and method for producing lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6210269B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016152130A (en) * | 2015-02-17 | 2016-08-22 | 株式会社Gsユアサ | Lead acid storage battery |
JP2016152131A (en) * | 2015-02-17 | 2016-08-22 | 株式会社Gsユアサ | Lead acid storage battery |
JP2017228530A (en) * | 2017-06-29 | 2017-12-28 | 株式会社Gsユアサ | Lead storage battery |
WO2018105005A1 (en) * | 2016-12-05 | 2018-06-14 | 日立化成株式会社 | Lead storage battery |
JP2019050229A (en) * | 2015-01-14 | 2019-03-28 | 日立化成株式会社 | Lead battery, micro hybrid vehicle, and idling stop system vehicle |
CN110546792A (en) * | 2017-04-28 | 2019-12-06 | 株式会社杰士汤浅国际 | Lead-acid battery |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004003097A (en) * | 1999-03-25 | 2004-01-08 | Showa Denko Kk | Carbon fiber, process for producing the same and electrode for electric batteries |
JP2013041848A (en) * | 2012-10-25 | 2013-02-28 | Shin Kobe Electric Mach Co Ltd | Lead battery |
-
2013
- 2013-04-24 JP JP2013091018A patent/JP6210269B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004003097A (en) * | 1999-03-25 | 2004-01-08 | Showa Denko Kk | Carbon fiber, process for producing the same and electrode for electric batteries |
JP2013041848A (en) * | 2012-10-25 | 2013-02-28 | Shin Kobe Electric Mach Co Ltd | Lead battery |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019050229A (en) * | 2015-01-14 | 2019-03-28 | 日立化成株式会社 | Lead battery, micro hybrid vehicle, and idling stop system vehicle |
JP2016152130A (en) * | 2015-02-17 | 2016-08-22 | 株式会社Gsユアサ | Lead acid storage battery |
JP2016152131A (en) * | 2015-02-17 | 2016-08-22 | 株式会社Gsユアサ | Lead acid storage battery |
WO2018105005A1 (en) * | 2016-12-05 | 2018-06-14 | 日立化成株式会社 | Lead storage battery |
CN110546792A (en) * | 2017-04-28 | 2019-12-06 | 株式会社杰士汤浅国际 | Lead-acid battery |
CN110546792B (en) * | 2017-04-28 | 2023-03-14 | 株式会社杰士汤浅国际 | Lead-acid battery |
JP2017228530A (en) * | 2017-06-29 | 2017-12-28 | 株式会社Gsユアサ | Lead storage battery |
Also Published As
Publication number | Publication date |
---|---|
JP6210269B2 (en) | 2017-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6210269B2 (en) | Negative electrode plate for lead acid battery, liquid lead acid battery using the same, and method for producing lead acid battery | |
JP5621841B2 (en) | Lead acid battery | |
JP6136080B2 (en) | Lead acid battery | |
JP5783170B2 (en) | Lead acid battery | |
JP6015427B2 (en) | Negative electrode plate for lead acid battery and method for producing the same | |
JP5598532B2 (en) | Lead acid battery | |
JP5892429B2 (en) | Liquid lead-acid battery | |
JP6176180B2 (en) | Liquid lead acid battery and idling stop vehicle using liquid lead acid battery | |
WO2013046499A1 (en) | Lead acid storage battery for energy storage | |
JP2015128053A (en) | Lead storage battery | |
JP6060909B2 (en) | Positive electrode plate for lead acid battery, method for producing the electrode plate, and lead acid battery using the positive electrode plate | |
WO2019087683A1 (en) | Lead storage battery | |
CN105244544B (en) | Electrolyte composition and battery | |
JP6701600B2 (en) | Lead acid battery | |
JP5211681B2 (en) | Method for producing lead-acid battery | |
JP6136079B2 (en) | Lead acid battery | |
JP6954353B2 (en) | Lead-acid battery | |
JP2016119294A (en) | Lead-acid battery | |
JP2013089450A (en) | Lead acid battery | |
JP2018018800A (en) | Lead-acid battery | |
JP5787181B2 (en) | Lead acid battery | |
JP2012221833A (en) | Lead battery | |
JP5598368B2 (en) | Lead acid battery and negative electrode active material thereof | |
EP3595054A1 (en) | Lead acid battery | |
JP6070126B2 (en) | Negative electrode for lead acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160413 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170830 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6210269 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |