WO2018020937A1 - Lead storage cell - Google Patents

Lead storage cell Download PDF

Info

Publication number
WO2018020937A1
WO2018020937A1 PCT/JP2017/023566 JP2017023566W WO2018020937A1 WO 2018020937 A1 WO2018020937 A1 WO 2018020937A1 JP 2017023566 W JP2017023566 W JP 2017023566W WO 2018020937 A1 WO2018020937 A1 WO 2018020937A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode plate
lead
organic
acid battery
Prior art date
Application number
PCT/JP2017/023566
Other languages
French (fr)
Japanese (ja)
Inventor
泰如 ▲浜▼野
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2018020937A1 publication Critical patent/WO2018020937A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead storage battery.
  • Lead acid batteries are used for various purposes in addition to automobiles and industries.
  • the lead acid battery includes a negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolytic solution containing sulfuric acid.
  • the thickness of the positive electrode plate and the negative electrode plate of the lead acid battery for automobiles is usually about 1 mm.
  • a large lead-acid battery having a thicker electrode plate is also used.
  • the negative electrode plate includes a negative electrode current collector and a negative electrode material, and the negative electrode material includes an active material (lead or lead sulfate) that develops capacity by an oxidation-reduction reaction and various additives.
  • the discharge performance of a lead storage battery can be improved by adding an organic shrinkage agent to the negative electrode material.
  • Patent Document 1 proposes to use a bisphenol condensate as an organic shrinking agent.
  • the density of the negative electrode material is controlled in the range of 2.8 to 3.8 g / cm 3 .
  • Patent Document 2 proposes that the active material group of the electrode plate includes a crimped fiber.
  • Patent Document 3 teaches a large lead-acid battery with an electrode plate height of more than 1 m, an anode plate having a height of 120 cm and a thickness of 0.74 cm, and a cathode plate having a height of 120 cm and a thickness of 0.35 cm. And a large lead-acid battery.
  • the density of the negative electrode material of the lead storage battery is 4.0 g / cm 3 or less, and the negative electrode material contains a synthetic organic shrunk agent such as a bisphenol condensate instead of lignin. Capacity reduction can be suppressed.
  • a synthetic organic shrinkage agent such as a bisphenol condensate instead of lignin.
  • One embodiment of the present invention includes a negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolyte.
  • the negative electrode plate includes a negative electrode current collector, a negative electrode
  • the negative electrode material includes an organic shrinkage agent containing sulfur element and a fibrous substance, and the negative electrode material has a density of 2.5 g / cm 3 or more and 4.0 g / cm 3 or less, the content of the sulfur element in the organic expander agent is greater than 3000 ⁇ mol / g, about lead-acid battery.
  • the present invention when a charge / discharge cycle of a lead storage battery in which the density of the negative electrode material is 2.5 g / cm 3 or more and 4.0 g / cm 3 or less is repeated, the voltage drop during high rate discharge is suppressed.
  • FIG. 1 is a perspective view schematically showing a lead storage battery according to an embodiment of the present invention. It is a front view of the lead acid battery of FIG.
  • FIG. 2B is a cross-sectional view taken along line II-II in FIG. 2A. It is a figure which shows the relationship between the charging / discharging cycle number of a lead storage battery, and the voltage drop at the time of high rate discharge. It is a figure which shows the relationship between the density of a negative electrode material, and the voltage drop at the time of the high rate discharge after 600 cycles progress when a charging / discharging cycle is repeated at normal temperature. The relationship between the density of the negative electrode material when the content of the elemental sulfur in the organic shrinking agent is changed and the voltage drop during high rate discharge after 600 cycles when the charge / discharge cycle is repeated at room temperature.
  • the lead acid battery which concerns on 1 aspect of this invention is equipped with a negative electrode plate, a positive electrode plate, the separator interposed between a negative electrode plate and a positive electrode plate, and electrolyte solution.
  • the negative electrode plate includes a negative electrode current collector and a negative electrode material
  • the negative electrode material includes an organic shrinking agent containing a sulfur element and a fibrous substance.
  • the density of the negative electrode material is 2.5 g / cm 3 or more and 4.0 g / cm 3 or less
  • the content of elemental sulfur in the organic anti-shrink agent is larger than 3000 ⁇ mol / g.
  • the organic shrinkage agent as described above is included in the negative electrode material having a density of 4.0 g / cm 3 or less, the voltage drop increases when the lead-acid battery is discharged at a high rate during the charge / discharge cycle. A phenomenon was found. This is presumably because stress is generated in the negative electrode material due to contraction of the active material accompanying charge / discharge, the bond between the active material particles is broken, and the resistance increases. When the voltage drop becomes large, a large current flows to compensate for the decrease in output, so that the durability of the lead-acid battery decreases. In addition, when the density of negative electrode material exceeds 4.0 g / cm ⁇ 3 >, the above remarkable voltage drops are not seen.
  • the negative electrode material contains an organic shrinking agent and a fibrous substance
  • the content of elemental sulfur in the organic shrinking agent exceeds 3000 ⁇ mol / g, particularly 3500 ⁇ mol / g or more, further 4000 ⁇ mol / g.
  • the fibrous substance is considered to suppress the generation of microcracks in the negative electrode plate due to the shrinkage of the negative electrode material.
  • the density of the negative electrode material is preferably 2.5 g / cm 3 or more, and more preferably 2.7 g / cm 3 or more.
  • an organic shrinkage agent having a sulfur element content exceeding 3000 ⁇ mol / g has a small colloid particle diameter formed in an aqueous sulfuric acid solution. It is considered that the stress generated between the active material particles due to charge / discharge is easily suppressed by reducing the colloidal particle size of the organic shrinking agent.
  • the organic shrunk agent is an organic polymer containing a sulfur element, and generally contains one or more, preferably a plurality of aromatic rings in the molecule and a sulfur-containing group.
  • the influence of the organic shrinkage agent on the performance of the lead storage battery does not vary greatly depending on the type of sulfur-containing group.
  • a sulfonic acid group or a sulfonyl group which is a stable form is preferable.
  • the sulfonic acid group may exist in an acid form, or may exist in a salt form such as a Na salt.
  • a condensate of formaldehyde with a compound having a sulfur-containing group and one or more, preferably two or more aromatic rings is preferable.
  • the compound having two or more aromatic rings bisphenols, biphenyls, naphthalenes and the like are preferably used.
  • Bisphenols, biphenyls and naphthalenes are generic names for compounds having a bisphenol skeleton, biphenyl skeleton and naphthalene skeleton, respectively, and each may have a substituent. These may be contained alone in the organic shrinking agent, or a plurality of types may be contained.
  • bisphenol bisphenol A, bisphenol S, bisphenol F and the like are preferable. Among them, bisphenol S has a sulfonyl group (—SO 2 —) in the bisphenol skeleton, so that it is easy to increase the content of elemental sulfur.
  • the sulfur-containing group may be directly bonded to an aromatic ring such as bisphenols, biphenyls, and naphthalenes.
  • the sulfur-containing group may be bonded to the aromatic ring as an alkyl chain having a sulfur-containing group.
  • a monocyclic aromatic compound such as aminobenzenesulfonic acid or alkylaminobenzenesulfonic acid may be condensed with formaldehyde together with a compound having two or more aromatic rings.
  • Condensates of N, N ′-(sulfonyldi-4,1-phenylene) bis (1,2,3,4-tetrahydro-6-methyl-2,4-dioxopyrimidine-5-sulfonamide) and the like are organic It may be used as an anti-shrink agent.
  • the content of the organic shrinking agent contained in the negative electrode material does not greatly affect the action of the organic shrinking agent as long as it is within a general range.
  • the content of the organic shrinking agent contained in the negative electrode material is, for example, preferably 0.01% by mass or more and 1% by mass or less, more preferably 0.02% by mass or more and 0.8% by mass or less, 0.05 More preferably, it is at least 0.3% by mass.
  • the content of the organic shrinking agent contained in the negative electrode material is a content in the negative electrode material collected by a method described later from an already formed lead-acid battery in a fully charged state.
  • the content of elemental sulfur in the organic shrinking agent may be larger than 3000 ⁇ mol / g, preferably 3500 ⁇ mol / g or more, more preferably 4000 ⁇ mol / g or more, and particularly preferably 6000 ⁇ mol / g or more.
  • the content of the elemental sulfur in the organic shrinking agent is preferably 10,000 ⁇ mol / g or less, more preferably 9000 ⁇ mol / g or less, and still more preferably 8000 ⁇ mol / g or less.
  • the content of the elemental sulfur in the organic shrinking agent being X ⁇ mol / g means that the content of the elemental sulfur contained in 1 g of the organic shrinking agent is X ⁇ mol.
  • the fibrous material at least one selected from the group consisting of glass fiber, polymer fiber, carbon fiber and pulp fiber is preferable, and polymer fiber is particularly preferable in terms of stability.
  • the polymer constituting the polymer fiber is not particularly limited as long as it has acid resistance, and examples thereof include polyolefin fiber, polyester fiber, and acrylic fiber. Among these, acrylic fibers are preferable.
  • acrylic fibers are preferable.
  • the acrylic fiber material include polyacrylonitrile, polyacrylic acid, polymethacrylic acid, polyacrylic acid ester (for example, polymethyl acrylate), polymethacrylic acid ester (for example, polymethyl methacrylate), and the like.
  • the average fiber diameter of the fibrous material is preferably 1 ⁇ m or more and 50 ⁇ m or less, for example, and the average fiber length is preferably 1 mm or more and 10 mm or less, for example. These average values can be obtained from an enlarged photograph of selected fibers by arbitrarily selecting 10 or more fibers, as will be described later.
  • the content (mass ratio Cm) of the fibrous substance in the negative electrode material is 0.03% by mass or more and 0.3% by mass or less.
  • the volume ratio Cv of the fibrous substance in the negative electrode material is preferably 0.03% by volume or more and 0.3% by volume or less.
  • content of the fibrous substance contained in negative electrode material is content in the negative electrode material of the lead acid battery of an already formed fully charged state.
  • the negative electrode material contains a fibrous substance and an organic shrinking agent
  • the content of elemental sulfur in the organic shrinking agent is greater than 3000 ⁇ mol / g, it is difficult to suppress a voltage drop without a fibrous substance. That is, the voltage drop is suppressed by the synergistic action of the organic shrinkage agent having a sulfur element content of greater than 3000 ⁇ mol / g and the fibrous material.
  • the effect of suppressing the voltage drop during high rate discharge becomes significant when the thickness of the negative electrode plate is 2 mm or more.
  • a negative electrode plate having a thickness of 2 mm or more is prone to cracks due to the occurrence of stress due to a large amount of deformation due to contraction of the active material.
  • the effect of securing a conductive path by a fibrous material and the effect of suppressing the stress by the organic shrinkage agent are likely to be manifested. Therefore, the effect of suppressing the voltage drop is also likely to be manifested.
  • the thickness of the negative electrode plate may be 3 mm or more, or 4 mm or more. Although the upper limit of the thickness of a negative electrode plate is not specifically limited, 8 mm or less is preferable.
  • the lead acid battery may be a liquid (vented) lead acid battery or a control valve (sealed) lead acid battery.
  • the negative electrode plate having a thickness of 2 mm or more is suitable for a larger lead acid battery than a lead acid battery for automobiles.
  • large lead-acid batteries include lead-acid batteries for stationary uninterruptible power supplies and lead-acid batteries for industrial vehicles such as forklifts.
  • a negative electrode plate of a lead storage battery includes a negative electrode current collector and a negative electrode material.
  • the negative electrode material is held on the negative electrode current collector.
  • the negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead or lead alloy sheet. Examples of the processing method include expanding processing and punching.
  • the lead alloy used for the negative electrode current collector may be any of a Pb—Sb alloy, a Pb—Ca alloy, and a Pb—Ca—Sn alloy. These lead or lead alloy may further contain at least one element selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like as an additive element.
  • the negative electrode current collector may have lead alloy layers having different compositions, and a plurality of lead alloy layers may be provided.
  • the negative electrode material includes a negative electrode active material (lead or lead sulfate) that develops capacity by an oxidation-reduction reaction, an organic shrinkage agent having a sulfur element content of greater than 3000 ⁇ mol / g, and a fibrous material.
  • the negative electrode material may further contain a carbonaceous material such as carbon black, barium sulfate, and the like, and may contain other additives as necessary.
  • the negative electrode plate can be formed by filling a negative electrode current collector with a negative electrode paste, aging and drying to produce an unformed negative electrode plate, and then forming an unformed negative electrode plate. Aging and drying of the unformed negative electrode plate is preferably performed at a temperature higher than room temperature and high humidity. What is necessary is just to prepare a negative electrode paste by adding water and a sulfuric acid to lead powder, an organic shrinking agent, and various additives, and knead
  • the chemical conversion can be performed by charging the electrode plate group in a state where the electrode plate group including the unformed negative electrode plate is immersed in an electrolytic solution containing sulfuric acid in the battery case of the lead storage battery.
  • the chemical conversion may be performed before the assembly of the lead storage battery or the electrode plate group. Sponge-like lead is generated by chemical conversion.
  • the positive electrode plate of the lead storage battery can be classified into a paste type, a clad type and the like.
  • the paste type positive electrode plate includes a positive electrode current collector and a positive electrode material.
  • the positive electrode material is held by the positive electrode current collector.
  • the positive electrode current collector may be formed in the same manner as the negative electrode current collector, and can be formed by casting lead or a lead alloy or processing a lead or lead alloy sheet.
  • the clad positive electrode includes a plurality of porous tubes, a core metal inserted into each tube, a positive electrode material filled in the tube in which the core metal is inserted, and a joint that connects the plurality of tubes. It has.
  • the lead alloy used for the positive electrode current collector a Pb—Ca alloy and a Pb—Ca—Sn alloy are preferable in terms of corrosion resistance and mechanical strength.
  • the positive electrode current collector may have lead alloy layers having different compositions, and a plurality of lead alloy layers may be provided. It is preferable to use a Pb—Sb alloy for the core metal.
  • the positive electrode material includes a positive electrode active material (lead oxide or lead sulfate) that develops capacity by an oxidation-reduction reaction.
  • the positive electrode material may contain additives such as tin sulfate and red lead as necessary.
  • An unformed paste-type positive electrode plate is obtained by filling a positive electrode current collector with a positive electrode paste, aging and drying in accordance with the case of the negative electrode plate.
  • the positive electrode paste may be prepared by kneading lead powder, additives, water, and sulfuric acid. Thereafter, an unformed positive electrode plate is formed.
  • the clad positive electrode plate is formed by filling a porous tube into which a core metal is inserted with lead powder or slurry-like lead powder, and joining a plurality of tubes together.
  • the electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled as necessary.
  • the degree of gelation is not particularly limited.
  • a gel electrolyte may be used from a fluid sol, or a gel electrolyte without fluid may be used.
  • Separator As the separator, a microporous film, a nonwoven fabric, an AGM (Absorbed glass mat), or the like is used. A microporous membrane is usually used for a liquid lead-acid battery. On the other hand, an AGM having a retainer function for holding an electrolytic solution is usually used for a control valve type lead-acid battery.
  • the microporous membrane can be obtained, for example, by extruding a composition containing ultrahigh molecular weight polyethylene, silica powder and oil into a sheet and then extracting the oil to form pores.
  • AGM is a nonwoven fabric mainly composed of glass fibers having an average fiber diameter of 1 ⁇ m or less, for example.
  • the density of the negative electrode material means the value of the bulk density of the negative electrode material after chemical conversion, and is measured as follows. The battery after chemical conversion is fully charged and disassembled, and the obtained negative electrode plate is washed with water and dried to remove the electrolyte in the negative electrode plate. Next, the negative electrode material is separated from the negative electrode plate to obtain an unground measurement sample. After putting the sample into the measurement container and evacuating it, filling the mercury with a pressure of 0.5 to 0.55 psia, measuring the bulk volume of the negative electrode material, and dividing the mass of the measurement sample by the bulk volume The bulk density of the negative electrode material is obtained. The volume obtained by subtracting the injection volume of mercury from the volume of the measurement container is defined as the bulk volume.
  • the 5-hour rate current is 6 A.
  • 1CA is a current value (A) having the same numerical value as the nominal capacity (Ah) of the battery. For example, if the battery has a nominal capacity of 30 Ah, 1CA is 30 A, and 1 mCA is 30 mA.
  • the structural formula of the organic shrinking agent cannot be specified precisely. If it cannot be used, use an organic shrunk agent that is extracted from the negative electrode of the battery and an organic shrunk agent that has a similar shape such as an ultraviolet-visible absorption spectrum, an infrared spectroscopic spectrum, and an NMR spectrum. By creating a calibration curve, the content of the organic anti-shrinking agent is measured using an ultraviolet-visible absorption spectrum.
  • FIG. 1 is a perspective view schematically showing an example in which a lid of a lead storage battery according to an embodiment of the present invention is removed.
  • 2A is a front view of the lead storage battery of FIG. 1
  • FIG. 2B is a cross-sectional view taken along line II-II of FIG. 2A.
  • the lead storage battery 1 includes a battery case 10 that houses an electrode plate group 11 and an electrolyte solution 12.
  • the electrode plate group 11 is configured by laminating a plurality of negative plates 2 and positive plates 3 with a separator 4 interposed therebetween.
  • the negative electrode plate 2 is shown as being wrapped by a separator 4 folded in two, but the form of the separator is not particularly limited.
  • a current collecting ear portion (not shown) protruding upward is provided on each of the plurality of negative electrode plates 2.
  • a current collecting ear (not shown) protruding upward is also provided on each upper portion of the plurality of positive electrode plates 3.
  • edge parts of the negative electrode plate 2 are connected and integrated by the strap 5a for negative electrodes.
  • the ears of the positive electrode plate 3 are connected and integrated by the positive strap 5b.
  • the lower end of the negative pole 6a is fixed to the upper part of the negative strap 5a, and the lower end of the positive pole 6b is fixed to the upper part of the positive strap 5b.
  • Example 1 Production of Negative Electrode Plate
  • Lead powder, water, dilute sulfuric acid, barium sulfate, carbon black, a predetermined amount of organic shrinkage agent, and a predetermined amount of fibrous material were mixed to obtain a negative electrode paste.
  • the negative electrode paste was filled in a mesh part of a cast lattice made of a Pb—Sb alloy and aged and dried to obtain an unformed negative electrode plate.
  • the thickness of the unformed negative electrode plate was designed such that the thickness of the negative electrode plate of the lead storage battery fully charged after the formation was 3 mm. Further, the negative electrode paste was blended so that the negative electrode material of the lead-acid battery fully charged after chemical conversion contained 0.1% by mass of BaSO 4 and 0.2% by mass of carbon black.
  • the organic shrunk agent was blended in the negative electrode paste so that the content of the organic shrunk agent in the negative electrode material of the lead-acid battery fully charged after chemical conversion was 0.1% by mass. Moreover, the amount of water and dilute sulfuric acid added to the negative electrode paste was adjusted so that the density of the negative electrode material of the lead-acid battery fully charged after the formation was 3.0 g / cm 3 .
  • the density measuring device of the negative electrode material Shimadzu Corporation, an automatic porosimeter, and Autopore IV95505 were used and measured using the method described above.
  • organic shrunk agent a condensate (synthetic shrunk agent) of bisphenol A introduced with a sulfonic acid group by formaldehyde was used.
  • the amount of the sulfonic acid group to be introduced was controlled so that the content of the elemental sulfur in the organic shrinking agent was 5000 ⁇ mol / g.
  • the fibrous material was blended in the negative electrode paste so that the content of the fibrous material in the fully formed negative electrode material in the fully formed state was 0.1% by mass.
  • the average fiber length of the acrylic fiber was 3 mm.
  • blended with the negative electrode paste is hold
  • the electrode plate group was accommodated in a polypropylene battery case together with the electrolyte, and chemical conversion was performed in the battery case to obtain a liquid lead-acid battery with 2 V and a rated 5-hour rate capacity of 165 Ah.
  • Comparative Example 1 An electrode plate group was prepared in the same manner as in Example 1 except that the fibrous material was not included in the negative electrode material, and a lead storage battery was assembled.
  • Example 2 The content of elemental sulfur in the organic shrinking agent is set to 4000 ⁇ mol / g, and the density of the negative electrode material of the lead-acid battery fully charged after chemical conversion is changed in the range of 2.3 g / cm 3 to 4.5 g / cm 3.
  • lead storage batteries 4000A and 4000G are reference examples.
  • Comparative Example 2 The density of the negative electrode material of the lead-acid battery fully charged after chemical conversion is 2.3 g / cm 3 to 4.5 g / cm 3 , except that the fibrous material is not included in the negative electrode material.
  • a plurality of types of electrode plates having a negative electrode plate were prepared, and lead-acid batteries 4000a to 4000g shown in Table 3 were assembled.
  • the voltage drop is kept low in all cases except for the reference example in which the negative electrode density is less than 2.5 g / cm 3 .
  • the voltage drop is large except for the case where the negative electrode density exceeds 4.0 g / cm 3 . From this, it can be understood that the negative electrode density should be 2.5 g / cm 3 or more in order to obtain the effect of suppressing the voltage drop.
  • the negative electrode density exceeds 4.0 g / cm 3 , it can be understood that there is no need to dare to use a fibrous substance because a voltage drop phenomenon hardly occurs in the first place.
  • Comparative Example 3 The density of the negative electrode material of the lead-acid battery fully charged after chemical conversion is 2.3 g / cm 3 to 4. 4 except that the content of sulfur element in the synthetic organic shrinking agent is changed to 3000 ⁇ mol / g. A plurality of types of electrode plate groups of 5 g / cm 3 were prepared, and lead-acid batteries 3000A to 3000G shown in Table 5 were assembled.
  • Example 3 The density of the negative electrode material of the lead storage battery fully charged after chemical conversion is 2.3 g / cm 3 to 4. 4 except that the content of elemental sulfur in the synthetic organic shrinking agent is changed to 5000 ⁇ mol / g.
  • a plurality of types of electrode plate groups of 5 g / cm 3 were prepared, and lead storage batteries 5000A to 5000G shown in Table 6 were assembled. Lead storage batteries 5000A and 5000G are reference examples.
  • Example 4 The density of the negative electrode material of the lead-acid battery fully charged after chemical conversion is 2.3 g / cm 3 to 4. 4 except that the content of the elemental sulfur in the synthetic organic shrinking agent is changed to 6000 ⁇ mol / g.
  • a plurality of types of electrode plate groups of 5 g / cm 3 were prepared, and lead storage batteries 6000A to 6000G shown in Table 7 were assembled. Lead storage batteries 6000A and 6000G are reference examples.
  • Example 5 The density of the negative electrode material of the lead-acid battery fully charged after chemical conversion is 2.3 g / cm 3 to 4. 4 except that the content of sulfur element in the synthetic organic shrinking agent is changed to 8000 ⁇ mol / g. A plurality of types of electrode plate groups of 5 g / cm 3 were produced, and lead-acid batteries 8000A to 8000G shown in Table 8 were assembled. Lead storage batteries 8000A and 8000G are reference examples.
  • the voltage drop is large over the entire range of the density of the negative electrode material from 2.3 g / cm 3 to 4.5 g / cm 3 .
  • the voltage drop is suppressed to a low level except for the reference example in which the negative electrode density is less than 2.5 g / cm 3 . From this, it is important in suppressing the voltage drop that the content of the elemental sulfur in the organic shrinkage agent is greater than 3000 ⁇ mol / g. In the organic shrinkage agent having the sulfur element content of 3000 ⁇ mol / g, the fibrous material It can be understood that the voltage drop cannot be suppressed even by using.
  • Comparative Example 4 The density of the elemental sulfur in the synthetic organic shrinking agent is changed to 3000 ⁇ mol / g, 4000 ⁇ mol / g, 6000 ⁇ mol / g or 8000 ⁇ mol / g, and the density of the negative electrode material of the lead-acid battery fully charged after the formation is 3.2 g / cm 3.
  • the lead storage batteries 3000d, 4000d, 5000d, 6000d, and 8000d shown in Table 10 were assembled. It was.
  • the lead storage battery 5000d is the same as one of the lead storage batteries of Comparative Example 1
  • the lead storage battery 4000d is the same as one of the lead storage batteries of Comparative Example 2.
  • Comparative Example 5 >> The synthetic organic pre-shrinking agent was changed to lignin (the content of sulfur element was 600 ⁇ mol / g), and the density of the negative electrode material of the lead-acid battery fully charged after chemical conversion was 3.2 g / cm 3 , Similarly to Example 1, an electrode plate group including a negative electrode plate containing a fibrous substance was produced, and a lead storage battery 600D was assembled.
  • Comparative Example 6 >> The synthetic organic pre-shrinking agent was changed to lignin (the content of sulfur element was 600 ⁇ mol / g), and the density of the negative electrode material of the lead-acid battery fully charged after chemical conversion was 3.2 g / cm 3 , Similar to Comparative Example 1, an electrode plate group including a negative electrode plate not containing a fibrous material was produced, and a lead storage battery 600d was assembled.
  • the voltage drop when the negative electrode material does not contain a fibrous substance does not occur when lignin is used, but is a phenomenon peculiar when a synthetic organic shrinking agent is used. That is, when lignin is used instead of the synthetic organic anti-shrink agent, the voltage drop is small regardless of the presence or absence of the fibrous material.
  • Example 6 A plurality of kinds of electrode plate groups were prepared in the same manner as in Example 1 except that the content of elemental sulfur in the organic shrinking agent was 4000 ⁇ mol / g and the thickness of the negative electrode plate was changed in the range of 2 mm to 6 mm. Then, lead storage batteries 4000X (2) to 4000X (6) shown in Table 12 were assembled. Moreover, the rated capacity was changed according to the thickness of the negative electrode plate.
  • the present invention is applicable to a liquid type lead storage battery and a control valve type lead storage battery, and is suitably used as a power source for an automobile, an industrial vehicle (forklift, etc.), or an uninterruptible power source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a lead storage cell provided with: a negative electrode plate; a positive electrode plate; a separator interposed between the negative electrode plate and the positive electrode plate; and an electrolyte. The negative electrode plate is provided with a negative electrode collector and a negative electrode material. The negative electrode material contains an organic shrink-proofing agent that contains elemental sulfur, and a fibrous material. The density of the negative electrode material is 2.5 g/cm3-4.0 g/cm3. The elemental sulfur content of the organic shrink-proofing agent is greater than 3,000 µmol/g.

Description

鉛蓄電池Lead acid battery
 本発明は、鉛蓄電池に関する。 The present invention relates to a lead storage battery.
 鉛蓄電池は、自動車用、産業用の他、様々な用途で使用されている。鉛蓄電池は、負極板と、正極板と、負極板および正極板の間に介在するセパレータと、硫酸を含む電解液とを含む。自動車用の鉛蓄電池の正極板および負極板の厚さは、通常、いずれも1mm前後である。一方、産業用では、より厚い極板を具備する大型の鉛蓄電池も利用されている。 Lead acid batteries are used for various purposes in addition to automobiles and industries. The lead acid battery includes a negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolytic solution containing sulfuric acid. The thickness of the positive electrode plate and the negative electrode plate of the lead acid battery for automobiles is usually about 1 mm. On the other hand, for industrial use, a large lead-acid battery having a thicker electrode plate is also used.
 負極板は、負極集電体と負極電極材料とを備え、負極電極材料は、酸化還元反応により容量を発現する活物質(鉛もしくは硫酸鉛)と、各種添加剤とを含んでいる。例えば、負極電極材料に有機防縮剤を添加することで、鉛蓄電池の放電性能を高めることができる。 The negative electrode plate includes a negative electrode current collector and a negative electrode material, and the negative electrode material includes an active material (lead or lead sulfate) that develops capacity by an oxidation-reduction reaction and various additives. For example, the discharge performance of a lead storage battery can be improved by adding an organic shrinkage agent to the negative electrode material.
 有機防縮剤としては、天然物由来のリグニンが一般的に用いられている。一方、特許文献1は、有機防縮剤としてビスフェノール類縮合物を用いることを提案している。特許文献1では、負極電極材料の密度を2.8~3.8g/cm3の範囲に制御している。 As an organic shrinking agent, lignin derived from natural products is generally used. On the other hand, Patent Document 1 proposes to use a bisphenol condensate as an organic shrinking agent. In Patent Document 1, the density of the negative electrode material is controlled in the range of 2.8 to 3.8 g / cm 3 .
 鉛蓄電池の寿命性能は、正極板からの正極電極材料の脱落の影響も受ける。これに対し、特許文献2は、極板の活物質群に、縮れ形状の繊維を含ませることを提案している。 The life performance of lead-acid batteries is also affected by the dropout of the positive electrode material from the positive electrode plate. On the other hand, Patent Document 2 proposes that the active material group of the electrode plate includes a crimped fiber.
 特許文献3は、極板の高さが1mを超える大型の鉛蓄電池を教示しており、高さ120cmで厚さ0.74cmの陽極板と、高さ120cmで厚さ0.35cmの陰極板とを具備する大型の鉛蓄電池を教示している。 Patent Document 3 teaches a large lead-acid battery with an electrode plate height of more than 1 m, an anode plate having a height of 120 cm and a thickness of 0.74 cm, and a cathode plate having a height of 120 cm and a thickness of 0.35 cm. And a large lead-acid battery.
国際公開第2015/181865号パンフレットInternational Publication No. 2015/181865 Pamphlet 特開2014-49221号公報JP 2014-49221 A 特開昭59-186262号公報JP 59-186262 A
 鉛蓄電池の負極電極材料の密度を4.0g/cm3以下にし、リグニンに代えてビスフェノール類縮合物のような合成有機防縮剤を負極電極材料に含ませることで、充放電サイクルの繰り返しに伴う容量低下を抑制可能である。しかし、様々な実験を行った結果、合成有機防縮剤を用いると、充放電サイクルを繰り返した後に鉛蓄電池を高率放電する際に、電圧降下が大きくなるという新たな知見が見出された。 The density of the negative electrode material of the lead storage battery is 4.0 g / cm 3 or less, and the negative electrode material contains a synthetic organic shrunk agent such as a bisphenol condensate instead of lignin. Capacity reduction can be suppressed. However, as a result of various experiments, a new finding has been found that when a synthetic organic shrinkage agent is used, a voltage drop increases when a lead-acid battery is discharged at a high rate after repeated charge / discharge cycles.
 本発明の一態様は、負極板と、正極板と、前記負極板と前記正極板との間に介在するセパレータと、電解液と、を備え、前記負極板は、負極集電体と、負極電極材料と、を備え、前記負極電極材料は、硫黄元素を含む有機防縮剤と、繊維状物質と、を含み、前記負極電極材料の密度が、2.5g/cm3以上、4.0g/cm3以下であり、前記有機防縮剤中の前記硫黄元素の含有量が、3000μmol/gより大きい、鉛蓄電池に関する。 One embodiment of the present invention includes a negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolyte. The negative electrode plate includes a negative electrode current collector, a negative electrode The negative electrode material includes an organic shrinkage agent containing sulfur element and a fibrous substance, and the negative electrode material has a density of 2.5 g / cm 3 or more and 4.0 g / cm 3 or less, the content of the sulfur element in the organic expander agent is greater than 3000μmol / g, about lead-acid battery.
 本発明によれば、負極電極材料の密度が2.5g/cm3以上、4.0g/cm3以下である鉛蓄電池の充放電サイクルを繰り返す場合に、高率放電時における電圧降下が抑制される。 According to the present invention, when a charge / discharge cycle of a lead storage battery in which the density of the negative electrode material is 2.5 g / cm 3 or more and 4.0 g / cm 3 or less is repeated, the voltage drop during high rate discharge is suppressed. The
本発明の実施形態に係る鉛蓄電池を模式的に示す斜視図である。1 is a perspective view schematically showing a lead storage battery according to an embodiment of the present invention. 図1の鉛蓄電池の正面図である。It is a front view of the lead acid battery of FIG. 図2AのII-II線による矢示断面図である。FIG. 2B is a cross-sectional view taken along line II-II in FIG. 2A. 鉛蓄電池の充放電サイクル数と、高率放電時の電圧降下との関係を示す図である。It is a figure which shows the relationship between the charging / discharging cycle number of a lead storage battery, and the voltage drop at the time of high rate discharge. 負極電極材料の密度と、常温で充放電サイクルを繰り返したときの600サイクル経過後の高率放電時の電圧降下との関係を示す図である。It is a figure which shows the relationship between the density of a negative electrode material, and the voltage drop at the time of the high rate discharge after 600 cycles progress when a charging / discharging cycle is repeated at normal temperature. 有機防縮剤中の硫黄元素の含有量を変化させたときの、負極電極材料の密度と、常温で充放電サイクルを繰り返したときの600サイクル経過後の高率放電時の電圧降下との関係を示す図である。The relationship between the density of the negative electrode material when the content of the elemental sulfur in the organic shrinking agent is changed and the voltage drop during high rate discharge after 600 cycles when the charge / discharge cycle is repeated at room temperature. FIG.
 本発明の一態様に係る鉛蓄電池は、負極板と、正極板と、負極板と正極板との間に介在するセパレータと、電解液とを備える。負極板は、負極集電体と、負極電極材料とを備え、負極電極材料は、硫黄元素を含む有機防縮剤と、繊維状物質とを含む。ここで、負極電極材料の密度は、2.5g/cm3以上、4.0g/cm3以下であり、有機防縮剤中の硫黄元素の含有量は、3000μmol/gより大きい。 The lead acid battery which concerns on 1 aspect of this invention is equipped with a negative electrode plate, a positive electrode plate, the separator interposed between a negative electrode plate and a positive electrode plate, and electrolyte solution. The negative electrode plate includes a negative electrode current collector and a negative electrode material, and the negative electrode material includes an organic shrinking agent containing a sulfur element and a fibrous substance. Here, the density of the negative electrode material is 2.5 g / cm 3 or more and 4.0 g / cm 3 or less, and the content of elemental sulfur in the organic anti-shrink agent is larger than 3000 μmol / g.
 有機防縮剤としてリグニンを添加し、負極電極材料の密度を4.0g/cm3以下に低減する場合、充放電サイクルに伴う容量低下が大きくなる傾向がある。これは、負極電極材料の密度が小さいほど、負極電極材料中の空隙が多くなるため、空隙の収縮の影響を受けやすいためと考えられる。これに対し、例えば、ビスフェノール類縮合物を負極電極材料に含ませると、空隙の収縮が顕著に抑制され、充放電サイクルに伴う容量低下が抑制される。 When lignin is added as an organic shrunk agent and the density of the negative electrode material is reduced to 4.0 g / cm 3 or less, there is a tendency that the capacity drop associated with the charge / discharge cycle increases. This is presumably because the smaller the density of the negative electrode material, the larger the voids in the negative electrode material, and therefore the more susceptible to the shrinkage of the voids. On the other hand, for example, when a bisphenol condensate is included in the negative electrode material, the shrinkage of the voids is remarkably suppressed, and the capacity reduction accompanying the charge / discharge cycle is suppressed.
 ただし、上記のような有機防縮剤を4.0g/cm3以下の密度を有する負極電極材料に含ませる場合、充放電サイクルの途中で鉛蓄電池を高率放電する際に、電圧降下が大きくなる現象が見出された。これは、充放電に伴う活物質の収縮により、負極電極材料中に応力が発生し、活物質粒子間の結合が破壊され、抵抗が増加するためであると推測される。電圧降下が大きくなると、出力の低下を補うために大電流が流れるため、鉛蓄電池の耐久性が低下する。なお、負極電極材料の密度が4.0g/cm3を超える場合には、上記のような顕著な電圧降下は見られない。 However, when the organic shrinkage agent as described above is included in the negative electrode material having a density of 4.0 g / cm 3 or less, the voltage drop increases when the lead-acid battery is discharged at a high rate during the charge / discharge cycle. A phenomenon was found. This is presumably because stress is generated in the negative electrode material due to contraction of the active material accompanying charge / discharge, the bond between the active material particles is broken, and the resistance increases. When the voltage drop becomes large, a large current flows to compensate for the decrease in output, so that the durability of the lead-acid battery decreases. In addition, when the density of negative electrode material exceeds 4.0 g / cm < 3 >, the above remarkable voltage drops are not seen.
 一方、負極電極材料が、有機防縮剤と繊維状物質とを含み、かつ有機防縮剤中の硫黄元素の含有量が3000μmol/gを超える場合、特に3500μmol/g以上の場合、更には4000μmol/g以上の場合には、高率放電時における電圧降下が顕著に抑制される。繊維状物質は、負極電極材料の収縮による負極板内での微小クラックの発生を抑制しているものと考えられる。これにより、活物質粒子間や、活物質粒子と負極集電体との間の導電経路が確保され、高率放電時の電圧降下が抑制されるものと推測される。 On the other hand, when the negative electrode material contains an organic shrinking agent and a fibrous substance, and the content of elemental sulfur in the organic shrinking agent exceeds 3000 μmol / g, particularly 3500 μmol / g or more, further 4000 μmol / g. In the above case, the voltage drop during the high rate discharge is remarkably suppressed. The fibrous substance is considered to suppress the generation of microcracks in the negative electrode plate due to the shrinkage of the negative electrode material. Thereby, it is presumed that a conductive path between the active material particles or between the active material particles and the negative electrode current collector is secured, and a voltage drop during high rate discharge is suppressed.
 繊維状物質には、4.0g/cm3以下の密度を有する負極電極材料の機械的強度を高める効果も期待できる。よって、負極電極材料の密度をかなり小さくすることが可能である。ただし、負極板の耐久性を確保するとともに電圧降下を十分に抑制する観点からは、負極電極材料の密度は2.5g/cm3以上が望ましく、2.7g/cm3以上がより好ましい。 The effect of increasing the mechanical strength of the negative electrode material having a density of 4.0 g / cm 3 or less can be expected from the fibrous substance. Therefore, the density of the negative electrode material can be considerably reduced. However, from the viewpoint of ensuring the durability of the negative electrode plate and sufficiently suppressing the voltage drop, the density of the negative electrode material is preferably 2.5 g / cm 3 or more, and more preferably 2.7 g / cm 3 or more.
 硫黄元素の含有量が3000μmol/gを超える有機防縮剤は、硫酸水溶液中で形成するコロイド粒子径が小さいことが知られている。有機防縮剤のコロイド粒子径が小さくなることで、充放電によって活物質粒子間で生じる応力が抑制されやすくなるものと考えられる。 It is known that an organic shrinkage agent having a sulfur element content exceeding 3000 μmol / g has a small colloid particle diameter formed in an aqueous sulfuric acid solution. It is considered that the stress generated between the active material particles due to charge / discharge is easily suppressed by reducing the colloidal particle size of the organic shrinking agent.
 有機防縮剤は、硫黄元素を含む有機高分子であり、一般に、分子内に1つ以上、好ましくは複数の芳香環を含むとともに、硫黄含有基を含んでいる。鉛蓄電池の性能に与える有機防縮剤の影響は、硫黄含有基の種類によって大きく異なるものではない。ただし、硫黄含有基の中では、安定形態であるスルホン酸基もしくはスルホニル基が好ましい。スルホン酸基は、酸型で存在してもよく、Na塩のように塩型で存在してもよい。 The organic shrunk agent is an organic polymer containing a sulfur element, and generally contains one or more, preferably a plurality of aromatic rings in the molecule and a sulfur-containing group. The influence of the organic shrinkage agent on the performance of the lead storage battery does not vary greatly depending on the type of sulfur-containing group. However, among the sulfur-containing groups, a sulfonic acid group or a sulfonyl group which is a stable form is preferable. The sulfonic acid group may exist in an acid form, or may exist in a salt form such as a Na salt.
 有機防縮剤の具体例としては、硫黄含有基を有するとともに1つ以上、好ましくは2つ以上の芳香環を有する化合物のホルムアルデヒドによる縮合物が好ましい。2つ以上の芳香環を有する化合物としては、ビスフェノール類、ビフェニル類、ナフタレン類などを用いることが好ましい。ビスフェノール類、ビフェニル類およびナフタレン類とは、それぞれビスフェノール骨格、ビフェニル骨格およびナフタレン骨格を有する化合物の総称であり、それぞれが置換基を有してもよい。これらは、有機防縮剤中に単独で含まれてもよく、複数種が含まれてもよい。ビスフェノールとしては、ビスフェノールA、ビスフェノールS、ビスフェノールFなどが好ましい。中でも、ビスフェノールSは、ビスフェノール骨格内にスルホニル基(-SO2-)を有するため、硫黄元素の含有量を大きくすることが容易である。 As a specific example of the organic shrinking agent, a condensate of formaldehyde with a compound having a sulfur-containing group and one or more, preferably two or more aromatic rings is preferable. As the compound having two or more aromatic rings, bisphenols, biphenyls, naphthalenes and the like are preferably used. Bisphenols, biphenyls and naphthalenes are generic names for compounds having a bisphenol skeleton, biphenyl skeleton and naphthalene skeleton, respectively, and each may have a substituent. These may be contained alone in the organic shrinking agent, or a plurality of types may be contained. As bisphenol, bisphenol A, bisphenol S, bisphenol F and the like are preferable. Among them, bisphenol S has a sulfonyl group (—SO 2 —) in the bisphenol skeleton, so that it is easy to increase the content of elemental sulfur.
 硫黄含有基は、ビスフェノール類、ビフェニル類、ナフタレン類などの芳香環に直接結合していてもよく、例えば硫黄含有基を有するアルキル鎖として芳香環に結合していてもよい。また、例えばアミノベンゼンスルホン酸もしくはアルキルアミノベンゼンスルホン酸のような単環式の芳香族化合物を、2つ以上の芳香環を有する化合物とともにホルムアルデヒドで縮合させてもよい。 The sulfur-containing group may be directly bonded to an aromatic ring such as bisphenols, biphenyls, and naphthalenes. For example, the sulfur-containing group may be bonded to the aromatic ring as an alkyl chain having a sulfur-containing group. Further, for example, a monocyclic aromatic compound such as aminobenzenesulfonic acid or alkylaminobenzenesulfonic acid may be condensed with formaldehyde together with a compound having two or more aromatic rings.
 N,N'-(スルホニルジ-4,1-フェニレン)ビス(1,2,3,4-テトラヒドロ-6-メチル-2,4-ジオキソピリミジン-5-スルホンアミド)の縮合物などを有機防縮剤として用いてもよい。 Condensates of N, N ′-(sulfonyldi-4,1-phenylene) bis (1,2,3,4-tetrahydro-6-methyl-2,4-dioxopyrimidine-5-sulfonamide) and the like are organic It may be used as an anti-shrink agent.
 負極電極材料中に含まれる有機防縮剤の含有量は、一般的な範囲であれば、有機防縮剤の作用を大きく左右するものではない。負極電極材料中に含まれる有機防縮剤の含有量は、例えば0.01質量%以上、1質量%以下が好ましく、0.02質量%以上、0.8質量%以下がより好ましく、0.05質量%以上、0.3質量%以下が更に好ましい。ここで、負極電極材料中に含まれる有機防縮剤の含有量とは、既化成の満充電状態の鉛蓄電池から後述の方法で採取した負極電極材料における含有量である。 The content of the organic shrinking agent contained in the negative electrode material does not greatly affect the action of the organic shrinking agent as long as it is within a general range. The content of the organic shrinking agent contained in the negative electrode material is, for example, preferably 0.01% by mass or more and 1% by mass or less, more preferably 0.02% by mass or more and 0.8% by mass or less, 0.05 More preferably, it is at least 0.3% by mass. Here, the content of the organic shrinking agent contained in the negative electrode material is a content in the negative electrode material collected by a method described later from an already formed lead-acid battery in a fully charged state.
 有機防縮剤中の硫黄元素の含有量は、3000μmol/gより大きければよいが、3500μmol/g以上が好ましく、4000μmol/g以上がより好ましく、6000μmol/g以上が特に好ましい。一方、有機防縮剤中の硫黄元素の含有量を大きくするには限界がある。よって、有機防縮剤中の硫黄元素の含有量は、10000μmol/g以下が好ましく、9000μmol/g以下がより好ましく、8000μmol/g以下が更に好ましい。なお、有機防縮剤中の硫黄元素の含有量がXμmol/gであるとは、有機防縮剤の1g当たりに含まれる硫黄元素の含有量がXμmolであることをいう。 The content of elemental sulfur in the organic shrinking agent may be larger than 3000 μmol / g, preferably 3500 μmol / g or more, more preferably 4000 μmol / g or more, and particularly preferably 6000 μmol / g or more. On the other hand, there is a limit to increasing the content of elemental sulfur in the organic shrinking agent. Therefore, the content of the elemental sulfur in the organic shrinking agent is preferably 10,000 μmol / g or less, more preferably 9000 μmol / g or less, and still more preferably 8000 μmol / g or less. In addition, the content of the elemental sulfur in the organic shrinking agent being X μmol / g means that the content of the elemental sulfur contained in 1 g of the organic shrinking agent is X μmol.
 繊維状物質としては、ガラス繊維、ポリマー繊維、カーボン繊維およびパルプ繊維よりなる群から選択される少なくとも1種が好ましく、中でもポリマー繊維が安定性の点で好ましい。ポリマー繊維を構成するポリマーは、耐酸性を有する限り、特に限定されないが、ポリオレフィン繊維、ポリエステル繊維、アクリル繊維などを挙げることができる。中でも、アクリル繊維が好ましい。アクリル繊維の材料としては、ポリアクリロニトリル、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸エステル(例えばポリアクリル酸メチル)、ポリメタクリル酸エステル(例えばポリメタクリル酸メチル)などが挙げられる。 As the fibrous material, at least one selected from the group consisting of glass fiber, polymer fiber, carbon fiber and pulp fiber is preferable, and polymer fiber is particularly preferable in terms of stability. The polymer constituting the polymer fiber is not particularly limited as long as it has acid resistance, and examples thereof include polyolefin fiber, polyester fiber, and acrylic fiber. Among these, acrylic fibers are preferable. Examples of the acrylic fiber material include polyacrylonitrile, polyacrylic acid, polymethacrylic acid, polyacrylic acid ester (for example, polymethyl acrylate), polymethacrylic acid ester (for example, polymethyl methacrylate), and the like.
 繊維状物質の平均繊維径は、例えば1μm以上、50μm以下が好ましく、平均繊維長は、例えば1mm以上、10mm以下が好ましい。これらの平均値は、後述するように、10本以上の繊維を任意に選択し、選択された繊維の拡大写真から求めることができる。 The average fiber diameter of the fibrous material is preferably 1 μm or more and 50 μm or less, for example, and the average fiber length is preferably 1 mm or more and 10 mm or less, for example. These average values can be obtained from an enlarged photograph of selected fibers by arbitrarily selecting 10 or more fibers, as will be described later.
 容量を確保しながら電圧降下を抑制する効果を十分に得る観点から、負極電極材料中の繊維状物質の含有量(質量割合Cm)は、0.03質量%以上、0.3質量%以下が好ましい。また、負極電極材料中における繊維状物質の体積割合Cvは、0.03体積%以上、0.3体積%以下が好ましい。ここで、負極電極材料中に含まれる繊維状物質の含有量とは、既化成の満充電状態の鉛蓄電池の負極電極材料における含有量である。 From the viewpoint of sufficiently obtaining the effect of suppressing the voltage drop while securing the capacity, the content (mass ratio Cm) of the fibrous substance in the negative electrode material is 0.03% by mass or more and 0.3% by mass or less. preferable. Further, the volume ratio Cv of the fibrous substance in the negative electrode material is preferably 0.03% by volume or more and 0.3% by volume or less. Here, content of the fibrous substance contained in negative electrode material is content in the negative electrode material of the lead acid battery of an already formed fully charged state.
 負極電極材料に、繊維状物質と有機防縮剤とを含ませる場合でも、有機防縮剤中の硫黄元素の含有量が3000μmol/g以下では、電圧降下を抑制することは困難である。これは、有機防縮剤中の硫黄元素の含有量が3000μmol/g以下では、充放電によって活物質粒子間で発生する応力を十分に抑制できないためであると考えられる。また、有機防縮剤中の硫黄元素の含有量が3000μmol/gより大きい場合であっても、繊維状物質がなければ、電圧降下を抑制することは困難である。すなわち、硫黄元素の含有量が3000μmol/gより大きい有機防縮剤と繊維状物質とが相乗的に作用することで、電圧降下が抑制される。 Even when the negative electrode material contains a fibrous substance and an organic shrinking agent, it is difficult to suppress a voltage drop if the content of sulfur element in the organic shrinking agent is 3000 μmol / g or less. This is presumably because the stress generated between the active material particles due to charge / discharge cannot be sufficiently suppressed when the content of the elemental sulfur in the organic shrinking agent is 3000 μmol / g or less. Even when the content of elemental sulfur in the organic shrinking agent is greater than 3000 μmol / g, it is difficult to suppress a voltage drop without a fibrous substance. That is, the voltage drop is suppressed by the synergistic action of the organic shrinkage agent having a sulfur element content of greater than 3000 μmol / g and the fibrous material.
 高率放電時の電圧降下を抑制する効果は、負極板の厚さが2mm以上である場合に顕著になる。厚さが2mm以上の負極板は、活物質の収縮による変形量が大きいことで、応力の発生によるクラックが生じやすい。このような負極板では、例えば繊維状物質による導電経路を確保する作用や、有機防縮剤による応力を抑制する作用が顕在化しやすいため、電圧降下を抑制する効果も顕在化しやすいものと考えられる。負極板の厚さは、3mm以上でもよく、4mm以上でもよい。負極板の厚さの上限は、特に限定されないが、8mm以下が好ましい。 The effect of suppressing the voltage drop during high rate discharge becomes significant when the thickness of the negative electrode plate is 2 mm or more. A negative electrode plate having a thickness of 2 mm or more is prone to cracks due to the occurrence of stress due to a large amount of deformation due to contraction of the active material. In such a negative electrode plate, for example, the effect of securing a conductive path by a fibrous material and the effect of suppressing the stress by the organic shrinkage agent are likely to be manifested. Therefore, the effect of suppressing the voltage drop is also likely to be manifested. The thickness of the negative electrode plate may be 3 mm or more, or 4 mm or more. Although the upper limit of the thickness of a negative electrode plate is not specifically limited, 8 mm or less is preferable.
 鉛蓄電池は、液式(ベント式)鉛蓄電池でもよく、制御弁式(密閉式)鉛蓄電池でもよい。ただし、厚さが2mm以上の負極板は、自動車用の鉛蓄電池よりも、より大型の鉛蓄電池に適している。大型の鉛蓄電池としては、例えば、据置型の無停電電源用の鉛蓄電池やフォークリフトのような産業車両用の鉛蓄電池が挙げられる。 The lead acid battery may be a liquid (vented) lead acid battery or a control valve (sealed) lead acid battery. However, the negative electrode plate having a thickness of 2 mm or more is suitable for a larger lead acid battery than a lead acid battery for automobiles. Examples of large lead-acid batteries include lead-acid batteries for stationary uninterruptible power supplies and lead-acid batteries for industrial vehicles such as forklifts.
 以下、本発明の実施形態に係る鉛蓄電池について構成要件ごとに説明するが、本発明は以下の実施形態に限定されるものではない。
 (負極板)
 鉛蓄電池の負極板は、負極集電体と、負極電極材料とを具備する。負極電極材料は、負極集電体に保持されている。負極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛または鉛合金シートを加工して形成してもよい。加工方法としては、エキスパンド加工や打ち抜き(パンチング)が挙げられる。
Hereinafter, although the lead storage battery which concerns on embodiment of this invention is demonstrated for every structural requirement, this invention is not limited to the following embodiment.
(Negative electrode plate)
A negative electrode plate of a lead storage battery includes a negative electrode current collector and a negative electrode material. The negative electrode material is held on the negative electrode current collector. The negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead or lead alloy sheet. Examples of the processing method include expanding processing and punching.
 負極集電体に用いられる鉛合金は、Pb-Sb系合金、Pb-Ca系合金、Pb-Ca-Sn系合金のいずれであってもよい。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種の元素を含んでもよい。負極集電体は、組成の異なる鉛合金層を有してもよく、鉛合金層は複数でもよい。 The lead alloy used for the negative electrode current collector may be any of a Pb—Sb alloy, a Pb—Ca alloy, and a Pb—Ca—Sn alloy. These lead or lead alloy may further contain at least one element selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like as an additive element. The negative electrode current collector may have lead alloy layers having different compositions, and a plurality of lead alloy layers may be provided.
 負極電極材料は、酸化還元反応により容量を発現する負極活物質(鉛もしくは硫酸鉛)と、硫黄元素の含有量が3000μmol/gより大きい有機防縮剤と、繊維状物質とを含む。負極電極材料は、更に、カーボンブラックのような炭素質材料、硫酸バリウムなどを含んでもよく、必要に応じて、他の添加剤を含んでもよい。 The negative electrode material includes a negative electrode active material (lead or lead sulfate) that develops capacity by an oxidation-reduction reaction, an organic shrinkage agent having a sulfur element content of greater than 3000 μmol / g, and a fibrous material. The negative electrode material may further contain a carbonaceous material such as carbon black, barium sulfate, and the like, and may contain other additives as necessary.
 負極板は、負極集電体に、負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。未化成の負極板の熟成、乾燥は、室温より高温かつ高湿度で行うことが好ましい。負極ペーストは、鉛粉と有機防縮剤と各種添加剤に、水と硫酸を加えて練合することで調製すればよい。 The negative electrode plate can be formed by filling a negative electrode current collector with a negative electrode paste, aging and drying to produce an unformed negative electrode plate, and then forming an unformed negative electrode plate. Aging and drying of the unformed negative electrode plate is preferably performed at a temperature higher than room temperature and high humidity. What is necessary is just to prepare a negative electrode paste by adding water and a sulfuric acid to lead powder, an organic shrinking agent, and various additives, and knead | mixing them.
 化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。 The chemical conversion can be performed by charging the electrode plate group in a state where the electrode plate group including the unformed negative electrode plate is immersed in an electrolytic solution containing sulfuric acid in the battery case of the lead storage battery. However, the chemical conversion may be performed before the assembly of the lead storage battery or the electrode plate group. Sponge-like lead is generated by chemical conversion.
 (正極板)
 鉛蓄電池の正極板は、ペースト式、クラッド式などに分類できる。
 ペースト式正極板は、正極集電体と、正極電極材料とを具備する。正極電極材料は、正極集電体に保持されている。正極集電体は、負極集電体と同様に形成すればよく、鉛または鉛合金の鋳造や、鉛または鉛合金シートの加工により形成することができる。
 クラッド式正極は、複数の多孔質のチューブと、各チューブ内に挿入される芯金と、芯金が挿入されたチューブ内に充填される正極電極材料と、複数のチューブを連結する連座とを具備する。
(Positive electrode plate)
The positive electrode plate of the lead storage battery can be classified into a paste type, a clad type and the like.
The paste type positive electrode plate includes a positive electrode current collector and a positive electrode material. The positive electrode material is held by the positive electrode current collector. The positive electrode current collector may be formed in the same manner as the negative electrode current collector, and can be formed by casting lead or a lead alloy or processing a lead or lead alloy sheet.
The clad positive electrode includes a plurality of porous tubes, a core metal inserted into each tube, a positive electrode material filled in the tube in which the core metal is inserted, and a joint that connects the plurality of tubes. It has.
 正極集電体に用いる鉛合金としては、耐食性および機械的強度の点で、Pb-Ca系合金、Pb-Ca-Sn系合金が好ましい。正極集電体は、組成の異なる鉛合金層を有してもよく、鉛合金層は複数でもよい。芯金には、Pb-Sb系合金を用いることが好ましい。 As the lead alloy used for the positive electrode current collector, a Pb—Ca alloy and a Pb—Ca—Sn alloy are preferable in terms of corrosion resistance and mechanical strength. The positive electrode current collector may have lead alloy layers having different compositions, and a plurality of lead alloy layers may be provided. It is preferable to use a Pb—Sb alloy for the core metal.
 正極電極材料は、酸化還元反応により容量を発現する正極活物質(酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、必要に応じて、硫酸錫、鉛丹などの添加剤を含んでもよい。 The positive electrode material includes a positive electrode active material (lead oxide or lead sulfate) that develops capacity by an oxidation-reduction reaction. The positive electrode material may contain additives such as tin sulfate and red lead as necessary.
 未化成のペースト式正極板は、負極板の場合に準じて、正極集電体に、正極ペーストを充填し、熟成および乾燥することにより得られる。正極ペーストは、鉛粉、添加剤、水、硫酸を練合することで調製すればよい。その後、未化成の正極板を化成する。クラッド式正極板は、芯金が挿入された多孔質なチューブに鉛粉またはスラリー状の鉛粉を充填し、複数のチューブを連座で結合することにより形成される。 An unformed paste-type positive electrode plate is obtained by filling a positive electrode current collector with a positive electrode paste, aging and drying in accordance with the case of the negative electrode plate. The positive electrode paste may be prepared by kneading lead powder, additives, water, and sulfuric acid. Thereafter, an unformed positive electrode plate is formed. The clad positive electrode plate is formed by filling a porous tube into which a core metal is inserted with lead powder or slurry-like lead powder, and joining a plurality of tubes together.
 (電解液)
 電解液は、硫酸を含む水溶液であり、必要に応じてゲル化させてもよい。ゲル化の程度は、特に限定されない。流動性を有するゾルからゲル状態の電解液を用いてもよく、流動性を有さないゲル状態の電解質を用いてもよい。
(Electrolyte)
The electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled as necessary. The degree of gelation is not particularly limited. A gel electrolyte may be used from a fluid sol, or a gel electrolyte without fluid may be used.
 (セパレータ)
 セパレータには、微多孔膜、不織布、AGM(Absorbed glass mat)などが用いられる。液式鉛蓄電池には、通常、微多孔膜が用いられる。一方、制御弁式鉛蓄電池には、通常、電解液を保持するリテーナの機能を有するAGMが用いられる。
(Separator)
As the separator, a microporous film, a nonwoven fabric, an AGM (Absorbed glass mat), or the like is used. A microporous membrane is usually used for a liquid lead-acid battery. On the other hand, an AGM having a retainer function for holding an electrolytic solution is usually used for a control valve type lead-acid battery.
 微多孔膜は、例えば、超高分子量ポリエチレン、シリカ粉末およびオイルを含む組成物をシート状に押し出し成形した後、オイルを抽出して細孔を形成することにより得られる。AGMは、例えば平均繊維径が1μm以下のガラス繊維を主成分とする不織布である。 The microporous membrane can be obtained, for example, by extruding a composition containing ultrahigh molecular weight polyethylene, silica powder and oil into a sheet and then extracting the oil to form pores. AGM is a nonwoven fabric mainly composed of glass fibers having an average fiber diameter of 1 μm or less, for example.
 次に、各物性の分析方法について説明する。
(1)負極電極材料の密度
 負極電極材料の密度は化成後の負極電極材料のかさ密度の値を意味し、以下のようにして測定する。化成後の電池を満充電してから解体し、入手した負極板に、水洗と乾燥とを施すことにより負極板中の電解液を除く。次いで、負極板から負極電極材料を分離して、未粉砕の測定試料を入手する。測定容器に試料を投入し、真空排気した後、0.5~0.55psiaの圧力で水銀を満たして、負極電極材料のかさ容積を測定し、測定試料の質量をかさ容積で除すことにより、負極電極材料のかさ密度を求める。なお、測定容器の容積から、水銀の注入容積を差し引いた容積をかさ容積とする。
Next, a method for analyzing each physical property will be described.
(1) Density of negative electrode material The density of the negative electrode material means the value of the bulk density of the negative electrode material after chemical conversion, and is measured as follows. The battery after chemical conversion is fully charged and disassembled, and the obtained negative electrode plate is washed with water and dried to remove the electrolyte in the negative electrode plate. Next, the negative electrode material is separated from the negative electrode plate to obtain an unground measurement sample. After putting the sample into the measurement container and evacuating it, filling the mercury with a pressure of 0.5 to 0.55 psia, measuring the bulk volume of the negative electrode material, and dividing the mass of the measurement sample by the bulk volume The bulk density of the negative electrode material is obtained. The volume obtained by subtracting the injection volume of mercury from the volume of the measurement container is defined as the bulk volume.
 電池を満充電状態にするには、液式鉛蓄の電池の場合、25℃、水槽中で、5時間率電流で2.5V/セルに達するまで定電流充電を行った後、さらに5時間率電流で2時間、定電流充電を行う。また、制御弁式の鉛蓄電池の場合、25℃、気槽中で、5時間率電流で、2.23V/セルの定電流定電圧充電を行い、定電圧充電時の充電電流が1mCA以下になった時点で充電を終了する。
 この明細書における5時間率電流は、電池公称容量を5時間で放電する電流値であり、例えば公称容量が30Ahの電池であれば、5時間率電流は6Aである。1CAとは電池の公称容量(Ah)と同じ数値の電流値(A)である。例えば、公称容量が30Ahの電池であれば、1CAは30Aであり、1mCAは30mAである。
In order to fully charge the battery, in the case of a liquid lead-acid battery, constant current charging is performed in a water bath at 25 ° C. until it reaches 2.5 V / cell at a 5-hour rate current, and then for another 5 hours. Charge at a constant current for 2 hours. In the case of a control valve type lead-acid battery, a constant current and constant voltage charge of 2.23 V / cell is performed at 25 ° C. in an air tank at a 5-hour rate current, and the charge current during constant voltage charge is 1 mCA or less. When it is time to finish charging.
The 5-hour rate current in this specification is a current value for discharging the battery nominal capacity in 5 hours. For example, if the battery has a nominal capacity of 30 Ah, the 5-hour rate current is 6 A. 1CA is a current value (A) having the same numerical value as the nominal capacity (Ah) of the battery. For example, if the battery has a nominal capacity of 30 Ah, 1CA is 30 A, and 1 mCA is 30 mA.
(2)有機防縮剤の分析
 まず、化成後に満充電した鉛蓄電池を分解し、負極板を取り出し、水洗により硫酸を除去し、乾燥する。次に、乾燥した負極板から負極電極材料(初期試料)を採取し、初期試料を下記方法で分析する。
(2) Analysis of Organic Shrinkage Agent First, a lead-acid battery fully charged after chemical conversion is disassembled, the negative electrode plate is taken out, sulfuric acid is removed by washing with water, and dried. Next, a negative electrode material (initial sample) is collected from the dried negative electrode plate, and the initial sample is analyzed by the following method.
(2-1)負極電極材料中の有機防縮剤の定性
 初期試料を1mol/LのNaOH水溶液に浸漬し、有機防縮剤を抽出する。次に、抽出された有機防縮剤を含むNaOH水溶液から不溶成分を濾過で取り除き、得られた濾液を透析により脱塩した後、濃縮し、乾燥する。脱塩は、濾液を透析チューブに入れて蒸留水中に浸すことにより行えばよい。これにより有機防縮剤の粉末試料が得られる。
(2-1) Qualitative characteristics of organic shrinkage agent in negative electrode material The initial sample is immersed in a 1 mol / L NaOH aqueous solution to extract the organic shrinkage agent. Next, insoluble components are removed by filtration from the extracted aqueous NaOH solution containing the organic shrinking agent, and the obtained filtrate is desalted by dialysis, then concentrated and dried. Desalting may be performed by placing the filtrate in a dialysis tube and immersing it in distilled water. Thereby, a powder sample of the organic shrinking agent is obtained.
 このようにして得た有機防縮剤の粉末試料を用いて測定した赤外分光スペクトル、さらに粉末試料を適当な溶媒で溶解し、紫外可視吸光度計で測定した紫外可視吸収スペクトルやNMRスペクトルなどから得た情報を組み合わせて用いて、有機防縮剤種を特定する。 Obtained from the infrared spectroscopic spectrum measured using a powder sample of the organic shrinkage agent thus obtained, and the UV-visible absorption spectrum and NMR spectrum measured with an ultraviolet-visible absorptiometer after the powder sample was dissolved in an appropriate solvent. Information is used in combination to identify the organic pre-shrinking agent species.
(2-2)負極電極材料中における有機防縮剤の含有量
 上記(2-1)と同様に、有機防縮剤を含むNaOH水溶液の濾液を得た後、濾液の紫外可視吸収スペクトルを測定する。スペクトル強度と、予め作成した検量線とを用いて、負極電極材料中の有機防縮剤の含有量を定量することができる。
(2-2) Content of Organic Shrinking Agent in Negative Electrode Material As in the case of (2-1) above, after obtaining a filtrate of an NaOH aqueous solution containing an organic shrinking agent, the ultraviolet-visible absorption spectrum of the filtrate is measured. Using the spectrum intensity and a calibration curve prepared in advance, the content of the organic shrinking agent in the negative electrode material can be quantified.
 有機防縮剤の含有量が未知の鉛蓄電池を入手して有機防縮剤の含有量を測定する際に、有機防縮剤の構造式の厳密な特定ができないために検量線に同一の有機防縮剤が使用できない場合には、当該電池の負極から抽出した有機防縮剤と、紫外可視吸収スペクトル、赤外分光スペクトル、およびNMRスペクトルなどが類似の形状を示す、別途入手可能な有機防縮剤を使用して検量線を作成することで、紫外可視吸収スペクトルを用いて有機防縮剤の含有量を測定する。  When obtaining a lead-acid battery with an unknown content of the organic shrinking agent and measuring the content of the organic shrinking agent, the structural formula of the organic shrinking agent cannot be specified precisely. If it cannot be used, use an organic shrunk agent that is extracted from the negative electrode of the battery and an organic shrunk agent that has a similar shape such as an ultraviolet-visible absorption spectrum, an infrared spectroscopic spectrum, and an NMR spectrum. By creating a calibration curve, the content of the organic anti-shrinking agent is measured using an ultraviolet-visible absorption spectrum. *
(2-3)有機防縮剤中の硫黄元素の含有量
 上記(2-1)と同様に、有機防縮剤の粉末試料を得た後、酸素燃焼フラスコ法によって、0.1gの有機防縮剤中の硫黄元素を硫酸に変換する。このとき、吸着液を入れたフラスコ内で粉末試料を燃焼させることで、硫酸イオンが吸着液に溶け込んだ溶出液が得られる。次に、トリン(thorin)を指示薬として、溶出液を過塩素酸バリウムで滴定することにより、0.1gの有機防縮剤中の硫黄元素の含有量(C1)を求める。次に、C1を10倍して1g当たりの有機防縮剤中の硫黄元素の含有量(μmol/g)を算出する。
(2-3) Content of elemental sulfur in organic shrinkage agent In the same manner as in (2-1) above, after obtaining a powder sample of an organic shrinkage agent, 0.1 g of the organic shrinkage agent was obtained by an oxygen combustion flask method. The elemental sulfur is converted to sulfuric acid. At this time, an eluate in which sulfate ions are dissolved in the adsorbent is obtained by burning the powder sample in the flask containing the adsorbent. Next, the eluate is titrated with barium perchlorate using thorin as an indicator to determine the content (C1) of elemental sulfur in 0.1 g of the organic shrinking agent. Next, C1 is multiplied by 10, and the content (μmol / g) of elemental sulfur in the organic shrinkage agent per gram is calculated.
(3)繊維状物質の分析
 水洗と乾燥とを施した負極電極材料10gを粉砕し、1:2硝酸(濃硝酸と水とを容積比で1:2に混合)50mLにより加熱下で溶解し、大過剰の過飽和酢酸アンモニウム水溶液を加えて撹拌し、硫酸鉛を完全に溶解させる。この溶液をグラスフィルターで濾過し、繊維状物質を濾集する。繊維状物質を洗浄、乾燥させた後に、その質量を測定し、繊維状物質の含有量を算出する。また、平均繊維長および平均繊維径は、得られた繊維状物質を光学顕微鏡で観察して求める。
(3) Analysis of fibrous substance 10 g of negative electrode material that had been washed and dried was pulverized and dissolved under heating with 50 mL of 1: 2 nitric acid (concentrated nitric acid and water mixed in a volume ratio of 1: 2). Add a large excess of supersaturated aqueous ammonium acetate solution and stir to completely dissolve the lead sulfate. The solution is filtered through a glass filter and the fibrous material is collected by filtration. After the fibrous substance is washed and dried, its mass is measured, and the content of the fibrous substance is calculated. The average fiber length and average fiber diameter are determined by observing the obtained fibrous substance with an optical microscope.
 図1は、本発明の実施形態に係る鉛蓄電池の蓋を外した一例を模式的に示す斜視図である。図2Aは、図1の鉛蓄電池の正面図であり、図2Bは、図2AのII-II線による矢示断面図である。
 鉛蓄電池1は、極板群11と電解液12とを収容する電槽10を具備する。極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2が、2つに折り畳まれたセパレータ4で包まれている状態を示すが、セパレータの形態は特に限定されない。
FIG. 1 is a perspective view schematically showing an example in which a lid of a lead storage battery according to an embodiment of the present invention is removed. 2A is a front view of the lead storage battery of FIG. 1, and FIG. 2B is a cross-sectional view taken along line II-II of FIG. 2A.
The lead storage battery 1 includes a battery case 10 that houses an electrode plate group 11 and an electrolyte solution 12. The electrode plate group 11 is configured by laminating a plurality of negative plates 2 and positive plates 3 with a separator 4 interposed therebetween. Here, the negative electrode plate 2 is shown as being wrapped by a separator 4 folded in two, but the form of the separator is not particularly limited.
 複数の負極板2のそれぞれの上部には、上方に突出する集電用の耳部(図示せず)が設けられている。複数の正極板3のそれぞれの上部にも、上方に突出する集電用の耳部(図示せず)が設けられている。そして、負極板2の耳部同士は負極用ストラップ5aにより連結され一体化されている。同様に、正極板3の耳部同士も正極用ストラップ5bにより連結されて一体化されている。負極用ストラップ5aの上部には負極柱6aの下端部が固定され、正極用ストラップ5bの上部には正極柱6bの下端部が固定されている。 A current collecting ear portion (not shown) protruding upward is provided on each of the plurality of negative electrode plates 2. A current collecting ear (not shown) protruding upward is also provided on each upper portion of the plurality of positive electrode plates 3. And the ear | edge parts of the negative electrode plate 2 are connected and integrated by the strap 5a for negative electrodes. Similarly, the ears of the positive electrode plate 3 are connected and integrated by the positive strap 5b. The lower end of the negative pole 6a is fixed to the upper part of the negative strap 5a, and the lower end of the positive pole 6b is fixed to the upper part of the positive strap 5b.
 以下、本発明を実施例および比較例に基づいて更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
《実施例1》
(1)負極板の作製
 鉛粉、水、希硫酸、硫酸バリウム、カーボンブラック、所定量の有機防縮剤、および所定量の繊維状物質を混合して、負極ペーストを得た。負極ペーストを、Pb-Sb系合金製の鋳造格子の網目部に充填し、熟成乾燥し、未化成の負極板を得た。未化成の負極板の厚さは、化成後に満充電した鉛蓄電池の負極板の厚さが3mmになるように設計した。また、化成後に満充電した鉛蓄電池の負極電極材料が0.1質量%のBaSO4と0.2質量%のカーボンブラックを含むように負極ペーストを配合した。
Example 1
(1) Production of Negative Electrode Plate Lead powder, water, dilute sulfuric acid, barium sulfate, carbon black, a predetermined amount of organic shrinkage agent, and a predetermined amount of fibrous material were mixed to obtain a negative electrode paste. The negative electrode paste was filled in a mesh part of a cast lattice made of a Pb—Sb alloy and aged and dried to obtain an unformed negative electrode plate. The thickness of the unformed negative electrode plate was designed such that the thickness of the negative electrode plate of the lead storage battery fully charged after the formation was 3 mm. Further, the negative electrode paste was blended so that the negative electrode material of the lead-acid battery fully charged after chemical conversion contained 0.1% by mass of BaSO 4 and 0.2% by mass of carbon black.
 有機防縮剤は、化成後に満充電した鉛蓄電池の負極電極材料における有機防縮剤の含有量が0.1質量%になるように、負極ペーストに配合した。また、化成後に満充電した鉛蓄電池の負極電極材料の密度が3.0g/cm3になるように、負極ペーストに加える水と希硫酸の量を調整した。
 負極電極材料の密度の測定装置には、島津製作所製、自動ポロシメータ、オートポアIV9505を用い、前述の方法を用いて測定した。
The organic shrunk agent was blended in the negative electrode paste so that the content of the organic shrunk agent in the negative electrode material of the lead-acid battery fully charged after chemical conversion was 0.1% by mass. Moreover, the amount of water and dilute sulfuric acid added to the negative electrode paste was adjusted so that the density of the negative electrode material of the lead-acid battery fully charged after the formation was 3.0 g / cm 3 .
For the density measuring device of the negative electrode material, Shimadzu Corporation, an automatic porosimeter, and Autopore IV95505 were used and measured using the method described above.
 有機防縮剤には、スルホン酸基を導入したビスフェノールAのホルムアルデヒドによる縮合物(合成防縮剤)を用いた。ここでは、有機防縮剤中の硫黄元素の含有量が5000μmol/gになるように、導入するスルホン酸基の量を制御した。 As the organic shrunk agent, a condensate (synthetic shrunk agent) of bisphenol A introduced with a sulfonic acid group by formaldehyde was used. Here, the amount of the sulfonic acid group to be introduced was controlled so that the content of the elemental sulfur in the organic shrinking agent was 5000 μmol / g.
 繊維状物質には、アクリル繊維を用いた。繊維状物質は、既化成の満充電状態の負極電極材料における繊維状物質の含有量が0.1質量%になるように、負極ペーストに配合した。アクリル繊維の平均繊維長は3mmとした。なお、負極ペーストに配合した繊維状物質の形状は、既化成の負極電極材料においても保持される。 An acrylic fiber was used as the fibrous material. The fibrous material was blended in the negative electrode paste so that the content of the fibrous material in the fully formed negative electrode material in the fully formed state was 0.1% by mass. The average fiber length of the acrylic fiber was 3 mm. In addition, the shape of the fibrous substance mix | blended with the negative electrode paste is hold | maintained also in the already formed negative electrode material.
(2)正極板の作製
 鉛粉を含む正極ペーストを調製し、複数のPb-Sb系合金製の芯金がそれぞれ挿入されたガラス繊維製の複数のチューブに正極ペーストを充填し、樹脂製の連座でチューブの開口を閉じて、未化成の正極板を組み立てた。
(2) Preparation of positive electrode plate A positive electrode paste containing lead powder was prepared, and a plurality of glass fiber tubes into which a plurality of Pb-Sb alloy cores were respectively inserted were filled with the positive electrode paste. The tube opening was closed at the joint, and an unformed positive electrode plate was assembled.
(3)鉛蓄電池の作製
 未化成の負極板を、袋状のポリエチレン製の微多孔膜(セパレータ)に収容し、未化成の負極板4枚と未化成の正極板3枚とで極板群を形成した。
(3) Production of lead-acid battery An unformed negative electrode plate is accommodated in a bag-like polyethylene microporous membrane (separator), and an electrode plate group consisting of four unformed negative electrode plates and three unformed positive electrode plates Formed.
 極板群をポリプロピレン製の電槽に電解液とともに収容して、電槽内で化成を施し、2V、定格5時間率容量が165Ahである液式の鉛蓄電池とした。 The electrode plate group was accommodated in a polypropylene battery case together with the electrolyte, and chemical conversion was performed in the battery case to obtain a liquid lead-acid battery with 2 V and a rated 5-hour rate capacity of 165 Ah.
《比較例1》
 負極電極材料に繊維状物質を含ませなかったこと以外、実施例1と同様に極板群を作製し、鉛蓄電池を組み立てた。
<< Comparative Example 1 >>
An electrode plate group was prepared in the same manner as in Example 1 except that the fibrous material was not included in the negative electrode material, and a lead storage battery was assembled.
[評価1]
 実施例1および比較例1の鉛蓄電池に関し、30℃の水槽中で、41.3A×3時間の放電と、29.7A×5時間の充電との充放電サイクルを繰り返し、200サイクル経過毎に、165Aで100秒間の高率放電を行った。このとき、100秒目の放電電圧と開回路電圧(OCV)との差を、電圧降下として求めた。
 表1および図3に、充放電サイクル数と電圧降下との関係を示す。
[Evaluation 1]
Regarding the lead acid batteries of Example 1 and Comparative Example 1, a charge / discharge cycle of 41.3 A × 3 hours of discharge and 29.7 A × 5 hours of charge was repeated in a 30 ° C. water tank, every 200 cycles. , High-rate discharge for 100 seconds at 165A. At this time, the difference between the discharge voltage at 100 seconds and the open circuit voltage (OCV) was determined as a voltage drop.
Table 1 and FIG. 3 show the relationship between the number of charge / discharge cycles and the voltage drop.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図3において、比較例1の鉛蓄電池では、200サイクルを超えると、電圧降下が大きくなり始め、1000サイクル目には、電圧降下が初期より50%近く大きくなっている。一方、実施例1の鉛蓄電池では、1000サイクル目でも、電圧降下がほとんど増加していない。このことから、繊維状物質が、電圧降下の抑制において重要な役割を果たしていることが理解できる。 In FIG. 3, in the lead storage battery of Comparative Example 1, the voltage drop starts to increase after 200 cycles, and at 1000 cycles, the voltage drop is nearly 50% larger than the initial value. On the other hand, in the lead storage battery of Example 1, the voltage drop hardly increases even at the 1000th cycle. From this, it can be understood that the fibrous material plays an important role in suppressing the voltage drop.
《実施例2》
 有機防縮剤中の硫黄元素の含有量を4000μmol/gにするとともに、化成後に満充電した鉛蓄電池の負極電極材料の密度を2.3g/cm3~4.5g/cm3の範囲で変化させたこと以外、実施例1と同様に、複数種の極板群を作製し、表2に示す鉛蓄電池4000A~4000Gを組み立てた。鉛蓄電池4000A、4000Gは参考例である。
Example 2
The content of elemental sulfur in the organic shrinking agent is set to 4000 μmol / g, and the density of the negative electrode material of the lead-acid battery fully charged after chemical conversion is changed in the range of 2.3 g / cm 3 to 4.5 g / cm 3. In the same manner as in Example 1, a plurality of types of electrode plate groups were prepared, and lead storage batteries 4000A to 4000G shown in Table 2 were assembled. Lead storage batteries 4000A and 4000G are reference examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
《比較例2》
 負極電極材料に繊維状物質を含ませなかったこと以外、実施例2と同様に、化成後に満充電した鉛蓄電池の負極電極材料の密度が2.3g/cm3~4.5g/cm3の負極板を具備する複数種の極板群を作製し、表3に示す鉛蓄電池4000a~4000gを組み立てた。
<< Comparative Example 2 >>
The density of the negative electrode material of the lead-acid battery fully charged after chemical conversion is 2.3 g / cm 3 to 4.5 g / cm 3 , except that the fibrous material is not included in the negative electrode material. A plurality of types of electrode plates having a negative electrode plate were prepared, and lead-acid batteries 4000a to 4000g shown in Table 3 were assembled.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[評価2]
 実施例2および比較例2の鉛蓄電池に関し、評価1と同様の充放電サイクルを繰り返し、600サイクル経過後の高率放電時の電圧降下を求めた。
 表4および図4に、負極電極材料の密度と600サイクル目の電圧降下との関係を示す。
[Evaluation 2]
For the lead storage batteries of Example 2 and Comparative Example 2, the same charge / discharge cycle as in Evaluation 1 was repeated, and the voltage drop during high-rate discharge after 600 cycles had been determined.
Table 4 and FIG. 4 show the relationship between the density of the negative electrode material and the voltage drop at the 600th cycle.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図4において、実施例2の鉛蓄電池では、負極電極密度が2.5g/cm3を下回る参考例を除いて、いずれも電圧降下が低く抑えられている。一方、比較例2の鉛蓄電池では、負極電極密度が4.0g/cm3を上回る場合を除いて、いずれも電圧降下が大きくなっている。このことから、電圧降下を抑制する効果を得るためには、負極電極密度を2.5g/cm3以上にすべきことが理解できる。また、負極電極密度が4.0g/cm3を超えると、そもそも電圧降下の現象が生じにくいため、敢えて繊維状物質を用いる必要性がないことが理解できる。 In FIG. 4, in the lead storage battery of Example 2, the voltage drop is kept low in all cases except for the reference example in which the negative electrode density is less than 2.5 g / cm 3 . On the other hand, in the lead storage battery of Comparative Example 2, the voltage drop is large except for the case where the negative electrode density exceeds 4.0 g / cm 3 . From this, it can be understood that the negative electrode density should be 2.5 g / cm 3 or more in order to obtain the effect of suppressing the voltage drop. In addition, when the negative electrode density exceeds 4.0 g / cm 3 , it can be understood that there is no need to dare to use a fibrous substance because a voltage drop phenomenon hardly occurs in the first place.
《比較例3》
 合成有機防縮剤の硫黄元素の含有量を3000μmol/gに変更したこと以外、実施例2と同様に、化成後に満充電した鉛蓄電池の負極電極材料の密度が2.3g/cm3~4.5g/cm3である複数種の極板群を作製し、表5に示す鉛蓄電池3000A~3000Gを組み立てた。
<< Comparative Example 3 >>
The density of the negative electrode material of the lead-acid battery fully charged after chemical conversion is 2.3 g / cm 3 to 4. 4 except that the content of sulfur element in the synthetic organic shrinking agent is changed to 3000 μmol / g. A plurality of types of electrode plate groups of 5 g / cm 3 were prepared, and lead-acid batteries 3000A to 3000G shown in Table 5 were assembled.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
《実施例3》
 合成有機防縮剤の硫黄元素の含有量を5000μmol/gに変更したこと以外、実施例2と同様に、化成後に満充電した鉛蓄電池の負極電極材料の密度が2.3g/cm3~4.5g/cm3である複数種の極板群を作製し、表6に示す鉛蓄電池5000A~5000Gを組み立てた。鉛蓄電池5000A、5000Gは参考例である。
Example 3
The density of the negative electrode material of the lead storage battery fully charged after chemical conversion is 2.3 g / cm 3 to 4. 4 except that the content of elemental sulfur in the synthetic organic shrinking agent is changed to 5000 μmol / g. A plurality of types of electrode plate groups of 5 g / cm 3 were prepared, and lead storage batteries 5000A to 5000G shown in Table 6 were assembled. Lead storage batteries 5000A and 5000G are reference examples.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
《実施例4》
 合成有機防縮剤の硫黄元素の含有量を6000μmol/gに変更したこと以外、実施例2と同様に、化成後に満充電した鉛蓄電池の負極電極材料の密度が2.3g/cm3~4.5g/cm3である複数種の極板群を作製し、表7に示す鉛蓄電池6000A~6000Gを組み立てた。鉛蓄電池6000A、6000Gは参考例である。
Example 4
The density of the negative electrode material of the lead-acid battery fully charged after chemical conversion is 2.3 g / cm 3 to 4. 4 except that the content of the elemental sulfur in the synthetic organic shrinking agent is changed to 6000 μmol / g. A plurality of types of electrode plate groups of 5 g / cm 3 were prepared, and lead storage batteries 6000A to 6000G shown in Table 7 were assembled. Lead storage batteries 6000A and 6000G are reference examples.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
《実施例5》
 合成有機防縮剤の硫黄元素の含有量を8000μmol/gに変更したこと以外、実施例2と同様に、化成後に満充電した鉛蓄電池の負極電極材料の密度が2.3g/cm3~4.5g/cm3である複数種の極板群を作製し、表8に示す鉛蓄電池8000A~8000Gを組み立てた。鉛蓄電池8000A、8000Gは参考例である。
Example 5
The density of the negative electrode material of the lead-acid battery fully charged after chemical conversion is 2.3 g / cm 3 to 4. 4 except that the content of sulfur element in the synthetic organic shrinking agent is changed to 8000 μmol / g. A plurality of types of electrode plate groups of 5 g / cm 3 were produced, and lead-acid batteries 8000A to 8000G shown in Table 8 were assembled. Lead storage batteries 8000A and 8000G are reference examples.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[評価3]
 実施例2、3~5および比較例3の鉛蓄電池に関し、評価1と同様の充放電サイクルを繰り返し、600サイクル経過後の高率放電時の電圧降下を求めた。
 表9および図5に、有機防縮剤中の硫黄元素の含有量を変化させたときの、負極電極材料の密度と、600サイクル経過後の高率放電時の電圧降下との関係を示す。
[Evaluation 3]
For the lead storage batteries of Examples 2, 3 to 5 and Comparative Example 3, the same charge / discharge cycle as in Evaluation 1 was repeated, and the voltage drop during high rate discharge after 600 cycles was determined.
Table 9 and FIG. 5 show the relationship between the density of the negative electrode material and the voltage drop during high-rate discharge after elapse of 600 cycles when the content of elemental sulfur in the organic shrinking agent is changed.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図5において、比較例3の鉛蓄電池では、負極電極材料の密度が2.3g/cm3~4.5g/cm3の全範囲で電圧降下が大きくなっている。一方、実施例3~5の鉛蓄電池では、負極電極密度が2.5g/cm3を下回る参考例を除いて、いずれも電圧降下が低く抑えられている。このことから、有機防縮剤中の硫黄元素の含有量を3000μmol/gより大きくすることが電圧降下の抑制において重要であり、硫黄元素の含有量が3000μmol/gの有機防縮剤では、繊維状物質を用いても電圧降下を抑制できないことが理解できる。 In FIG. 5, in the lead storage battery of Comparative Example 3, the voltage drop is large over the entire range of the density of the negative electrode material from 2.3 g / cm 3 to 4.5 g / cm 3 . On the other hand, in the lead storage batteries of Examples 3 to 5, the voltage drop is suppressed to a low level except for the reference example in which the negative electrode density is less than 2.5 g / cm 3 . From this, it is important in suppressing the voltage drop that the content of the elemental sulfur in the organic shrinkage agent is greater than 3000 μmol / g. In the organic shrinkage agent having the sulfur element content of 3000 μmol / g, the fibrous material It can be understood that the voltage drop cannot be suppressed even by using.
《比較例4》
 合成有機防縮剤の硫黄元素の含有量を3000μmol/g、4000μmol/g、6000μmol/gまたは8000μmol/gに変更し、化成後に満充電した鉛蓄電池の負極電極材料の密度が3.2g/cm3になるようにしたこと以外、比較例1と同様に、繊維状物質を含まない負極板を具備する極板群を作製し、表10に示す鉛蓄電池3000d、4000d、5000d、6000dおよび8000dを組み立てた。なお、表10中、鉛蓄電池5000dは比較例1の鉛蓄電池の一つと同じであり、鉛蓄電池4000dは比較例2の鉛蓄電池の一つと同じである。
<< Comparative Example 4 >>
The density of the elemental sulfur in the synthetic organic shrinking agent is changed to 3000 μmol / g, 4000 μmol / g, 6000 μmol / g or 8000 μmol / g, and the density of the negative electrode material of the lead-acid battery fully charged after the formation is 3.2 g / cm 3. In the same manner as in Comparative Example 1, except that the electrode plate group including the negative electrode plate not containing the fibrous material was prepared, the lead storage batteries 3000d, 4000d, 5000d, 6000d, and 8000d shown in Table 10 were assembled. It was. In Table 10, the lead storage battery 5000d is the same as one of the lead storage batteries of Comparative Example 1, and the lead storage battery 4000d is the same as one of the lead storage batteries of Comparative Example 2.
《比較例5》
 合成有機防縮剤を、リグニン(硫黄元素の含有量は600μmol/g)に変更し、化成後に満充電した鉛蓄電池の負極電極材料の密度が3.2g/cm3になるようにしたこと以外、実施例1と同様に、繊維状物質を含む負極板を具備する極板群を作製し、鉛蓄電池600Dを組み立てた。
<< Comparative Example 5 >>
The synthetic organic pre-shrinking agent was changed to lignin (the content of sulfur element was 600 μmol / g), and the density of the negative electrode material of the lead-acid battery fully charged after chemical conversion was 3.2 g / cm 3 , Similarly to Example 1, an electrode plate group including a negative electrode plate containing a fibrous substance was produced, and a lead storage battery 600D was assembled.
《比較例6》
 合成有機防縮剤を、リグニン(硫黄元素の含有量は600μmol/g)に変更し、化成後に満充電した鉛蓄電池の負極電極材料の密度が3.2g/cm3になるようにしたこと以外、比較例1と同様に、繊維状物質を含まない負極板を具備する極板群を作製し、鉛蓄電池600dを組み立てた。
<< Comparative Example 6 >>
The synthetic organic pre-shrinking agent was changed to lignin (the content of sulfur element was 600 μmol / g), and the density of the negative electrode material of the lead-acid battery fully charged after chemical conversion was 3.2 g / cm 3 , Similar to Comparative Example 1, an electrode plate group including a negative electrode plate not containing a fibrous material was produced, and a lead storage battery 600d was assembled.
[評価4]
 比較例4~6の鉛蓄電池に関し、評価1と同様の充放電サイクルを繰り返し、600サイクル経過後の高率放電時の電圧降下を求めた。表10に、比較例1、4~6の鉛蓄電池の電圧降下を示す。
[Evaluation 4]
For the lead acid batteries of Comparative Examples 4 to 6, the same charge / discharge cycle as in Evaluation 1 was repeated, and the voltage drop during high rate discharge after 600 cycles had been determined. Table 10 shows the voltage drop of the lead acid batteries of Comparative Examples 1 and 4 to 6.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10より、負極電極材料が繊維状物質を含まない場合の電圧降下は、リグニンを用いる場合には生じず、合成有機防縮剤を用いる場合に特有の現象であることが理解できる。すなわち、合成有機防縮剤ではなく、リグニンを用いる場合には、繊維状物質の有無にかかわらず、電圧降下は小さくなっている。 From Table 10, it can be understood that the voltage drop when the negative electrode material does not contain a fibrous substance does not occur when lignin is used, but is a phenomenon peculiar when a synthetic organic shrinking agent is used. That is, when lignin is used instead of the synthetic organic anti-shrink agent, the voltage drop is small regardless of the presence or absence of the fibrous material.
 また、比較例4および比較例6の鉛蓄電池に関し、上記充放電サイクルの800サイクル目に得られた放電容量を相対値で表11に示す。表11には、実施例3の鉛蓄電池5000Dの800サイクル目の放電容量も示す。 Also, regarding the lead storage batteries of Comparative Example 4 and Comparative Example 6, the discharge capacity obtained at the 800th cycle of the charge / discharge cycle is shown in Table 11 as a relative value. Table 11 also shows the discharge capacity at the 800th cycle of the lead storage battery 5000D of Example 3.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11より、リグニンを用いる場合には、常温で充放電サイクルを繰り返す場合に容量低下が生じることがわかる。また、このような容量低下は、リグニンの代わりに合成有機防縮剤を用いることで抑制されることが理解できる。 From Table 11, it can be seen that when lignin is used, the capacity decreases when the charge / discharge cycle is repeated at room temperature. Moreover, it can be understood that such a decrease in capacity is suppressed by using a synthetic organic shrinking agent instead of lignin.
《実施例6》
 有機防縮剤中の硫黄元素の含有量を4000μmol/gにするとともに、負極板の厚さを2mm~6mmの範囲で変更したこと以外、実施例1と同様に、複数種の極板群を作製し、表12に示す鉛蓄電池4000X(2)~4000X(6)を組み立てた。また、負極板の厚さに応じて、定格容量を変化させた。
Example 6
A plurality of kinds of electrode plate groups were prepared in the same manner as in Example 1 except that the content of elemental sulfur in the organic shrinking agent was 4000 μmol / g and the thickness of the negative electrode plate was changed in the range of 2 mm to 6 mm. Then, lead storage batteries 4000X (2) to 4000X (6) shown in Table 12 were assembled. Moreover, the rated capacity was changed according to the thickness of the negative electrode plate.
[評価5]
 実施例6の鉛蓄電池に関し、評価1と同様の充放電サイクルを繰り返し、600サイクル経過後の高率放電時の電圧降下を求めた。表12に、実施例6の鉛蓄電池の電圧降下を、初期値に対する百分率(%)で示す。
[Evaluation 5]
For the lead storage battery of Example 6, the same charge / discharge cycle as in Evaluation 1 was repeated, and the voltage drop during high-rate discharge after 600 cycles had been determined. Table 12 shows the voltage drop of the lead storage battery of Example 6 as a percentage (%) with respect to the initial value.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表12より、電圧降下を抑制する効果は、負極板の厚さを変化させた場合でも同様に得られることが理解できる。 From Table 12, it can be understood that the effect of suppressing the voltage drop can be obtained even when the thickness of the negative electrode plate is changed.
 本発明は、液式の鉛蓄電池および制御弁式の鉛蓄電池に適用可能であり、例えば自動車、産業車両(フォークリフトなど)などの電源や、無停電電源として好適に用いられる。 The present invention is applicable to a liquid type lead storage battery and a control valve type lead storage battery, and is suitably used as a power source for an automobile, an industrial vehicle (forklift, etc.), or an uninterruptible power source.
 1:鉛蓄電池
 2:負極板
 3:正極板
 4:セパレータ
 5a:負極用ストラップ
 5b:正極用ストラップ
 6a:負極柱
 6b:正極柱
 10:電槽
 11:極板群
 12:電解液
1: lead acid battery 2: negative electrode plate 3: positive electrode plate 4: separator 5a: strap for negative electrode 5b: strap for positive electrode 6a: negative electrode column 6b: positive electrode column 10: battery case 11: electrode plate group 12: electrolyte

Claims (12)

  1.  負極板と、正極板と、前記負極板と前記正極板との間に介在するセパレータと、電解液と、を備え、
     前記負極板は、負極集電体と、負極電極材料と、を備え、
     前記負極電極材料は、硫黄元素を含む有機防縮剤と、繊維状物質と、を含み、
     前記負極電極材料の密度が、2.5g/cm3以上、4.0g/cm3以下であり、
     前記有機防縮剤中の前記硫黄元素の含有量が、3000μmol/gより大きい、鉛蓄電池。
    A negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolyte solution,
    The negative electrode plate includes a negative electrode current collector and a negative electrode material,
    The negative electrode material includes an organic shrinkage agent containing sulfur element, and a fibrous substance,
    The negative electrode material has a density of 2.5 g / cm 3 or more and 4.0 g / cm 3 or less,
    The lead acid battery whose content of the said sulfur element in the said organic shrink-proof agent is larger than 3000 micromol / g.
  2.  前記負極電極材料の密度が、2.7g/cm3以上、4.0g/cm3以下である、請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the density of the negative electrode material is 2.7 g / cm 3 or more and 4.0 g / cm 3 or less.
  3.  前記負極板の厚さが、2mm以上である、請求項1または2に記載の鉛蓄電池。 The lead acid battery according to claim 1 or 2, wherein the thickness of the negative electrode plate is 2 mm or more.
  4.  前記繊維状物質が、ポリマー繊維である、請求項1~3のいずれか1項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 3, wherein the fibrous substance is a polymer fiber.
  5. 前記有機防縮剤中の前記硫黄元素の含有量が、3500μmol/gより大きい、
    請求項1~4のいずれか1項に記載の鉛蓄電池。
    The content of the sulfur element in the organic shrinkage agent is greater than 3500 μmol / g,
    The lead acid battery according to any one of claims 1 to 4.
  6. 前記有機防縮剤中の前記硫黄元素の含有量が、4000μmol/gより大きい、
    請求項1~4のいずれか1項に記載の鉛蓄電池。
    The content of the elemental sulfur in the organic shrinking agent is greater than 4000 μmol / g,
    The lead acid battery according to any one of claims 1 to 4.
  7. 前記有機防縮剤中の前記硫黄元素の含有量が、6000μmol/gより大きい、
    請求項1~4のいずれか1項に記載の鉛蓄電池。
    The content of the sulfur element in the organic shrinkage agent is greater than 6000 μmol / g,
    The lead acid battery according to any one of claims 1 to 4.
  8. 前記有機防縮剤中の前記硫黄元素の含有量が、10000μmol/g以下である、
    請求項1~7のいずれか1項に記載の鉛蓄電池。
    The content of the sulfur element in the organic shrinking agent is 10000 μmol / g or less,
    The lead acid battery according to any one of claims 1 to 7.
  9. 前記有機防縮剤中の前記硫黄元素の含有量が、8000μmol/g以下である、
    請求項1~7のいずれか1項に記載の鉛蓄電池。
    The content of the sulfur element in the organic shrinking agent is 8000 μmol / g or less.
    The lead acid battery according to any one of claims 1 to 7.
  10.  前記負極板の厚さが、3mm以上である、請求項1~9のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 9, wherein the thickness of the negative electrode plate is 3 mm or more.
  11.  前記負極板の厚さが、4mm以上である、請求項1~9のいずれか1項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 9, wherein the thickness of the negative electrode plate is 4 mm or more.
  12.  前記負極板の厚さが、8mm以下である、請求項1~9のいずれか1項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 9, wherein a thickness of the negative electrode plate is 8 mm or less.
PCT/JP2017/023566 2016-07-29 2017-06-27 Lead storage cell WO2018020937A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-150862 2016-07-29
JP2016150862A JP6756181B2 (en) 2016-07-29 2016-07-29 Lead-acid battery

Publications (1)

Publication Number Publication Date
WO2018020937A1 true WO2018020937A1 (en) 2018-02-01

Family

ID=61015812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023566 WO2018020937A1 (en) 2016-07-29 2017-06-27 Lead storage cell

Country Status (2)

Country Link
JP (1) JP6756181B2 (en)
WO (1) WO2018020937A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150562A (en) * 1984-02-17 1985-08-08 Hitachi Chem Co Ltd Lead storage battery
JPH11339842A (en) * 1998-05-26 1999-12-10 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2013048082A (en) * 2011-07-25 2013-03-07 Gs Yuasa Corp Lead acid battery
JP2015128053A (en) * 2013-11-29 2015-07-09 株式会社Gsユアサ Lead storage battery
WO2015181865A1 (en) * 2014-05-26 2015-12-03 株式会社Gsユアサ Lead storage cell
WO2016157884A1 (en) * 2015-03-30 2016-10-06 株式会社Gsユアサ Lead acid storage battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150562A (en) * 1984-02-17 1985-08-08 Hitachi Chem Co Ltd Lead storage battery
JPH11339842A (en) * 1998-05-26 1999-12-10 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2013048082A (en) * 2011-07-25 2013-03-07 Gs Yuasa Corp Lead acid battery
JP2015128053A (en) * 2013-11-29 2015-07-09 株式会社Gsユアサ Lead storage battery
WO2015181865A1 (en) * 2014-05-26 2015-12-03 株式会社Gsユアサ Lead storage cell
WO2016157884A1 (en) * 2015-03-30 2016-10-06 株式会社Gsユアサ Lead acid storage battery

Also Published As

Publication number Publication date
JP2018018799A (en) 2018-02-01
JP6756181B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP7143927B2 (en) lead acid battery
JP7380580B2 (en) lead acid battery
JP6766504B2 (en) Lead-acid battery
JP6756182B2 (en) Lead-acid battery
JP6750377B2 (en) Lead acid battery
JP7314950B2 (en) Lead-acid battery separator and lead-acid battery
WO2018020937A1 (en) Lead storage cell
JP7124828B2 (en) lead acid battery
JP7424371B2 (en) Separators for liquid lead-acid batteries and liquid lead-acid batteries
JP7424310B2 (en) lead acid battery
JP7111099B2 (en) lead acid battery
JP6958034B2 (en) Lead-acid battery
JP7099448B2 (en) Lead-acid battery
WO2019225161A1 (en) Lead-acid battery
JP7099450B2 (en) Lead-acid battery
WO2018199242A1 (en) Lead acid storage battery
JP7099451B2 (en) Lead-acid battery
WO2022137700A1 (en) Clad positive-electrode plate for lead storage battery, and lead storage battery
JP7127529B2 (en) lead acid battery
WO2020066808A1 (en) Lead acid storage battery
JP6750376B2 (en) Lead acid battery
JP2024029809A (en) lead acid battery
JP2024029810A (en) lead acid battery
JP2021061171A (en) Lead acid battery
JP2018018801A (en) Lead-acid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833946

Country of ref document: EP

Kind code of ref document: A1