JP7248425B2 - Separator for flooded lead-acid battery - Google Patents

Separator for flooded lead-acid battery Download PDF

Info

Publication number
JP7248425B2
JP7248425B2 JP2018509493A JP2018509493A JP7248425B2 JP 7248425 B2 JP7248425 B2 JP 7248425B2 JP 2018509493 A JP2018509493 A JP 2018509493A JP 2018509493 A JP2018509493 A JP 2018509493A JP 7248425 B2 JP7248425 B2 JP 7248425B2
Authority
JP
Japan
Prior art keywords
microporous film
separator
weight
sheet
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018509493A
Other languages
Japanese (ja)
Other versions
JPWO2017170977A1 (en
Inventor
貴史 蔀
忠正 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENTEK ASIA INC
Original Assignee
ENTEK ASIA INC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENTEK ASIA INC filed Critical ENTEK ASIA INC
Publication of JPWO2017170977A1 publication Critical patent/JPWO2017170977A1/en
Priority to JP2022072931A priority Critical patent/JP7444920B2/en
Application granted granted Critical
Publication of JP7248425B2 publication Critical patent/JP7248425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電解液を非流動化させてメンテナンスフリー化したいわゆる密閉型鉛蓄電池(制御弁式鉛蓄電池とも言う)ではなく、旧来の方式である流動性をもった電解液を有したいわゆる液式鉛蓄電池(ベント式鉛蓄電池、開放型鉛蓄電池とも言う)に用いる、液式鉛蓄電池用セパレータに関する。 The present invention is not a so-called sealed lead-acid battery (also referred to as a valve-controlled lead-acid battery) in which the electrolyte is made non-fluid to make it maintenance-free, but a so-called liquid battery with a fluid electrolyte, which is the conventional method. The present invention relates to a liquid lead-acid battery separator used in a lead-acid battery (also referred to as a vented lead-acid battery or an open lead-acid battery).

従来、液式鉛蓄電池用セパレータとして、ポリエチレンセパレータと呼ばれる、通常、重量平均分子量が50万以上のポリオレフィン系樹脂(通常超高分子量ポリエチレン)20~60重量%と、比表面積が50m/g以上の無機粉体(通常シリカ微粉)40~80重量%と、開孔剤を兼ねる可塑剤(通常鉱物オイル)0~30重量%と、界面活性剤(固形分)0~10重量%と、添加剤(酸化防止剤、耐候剤等)0~5重量%とからなる微多孔質フィルム製セパレータがある。Conventionally, as a separator for a liquid lead-acid battery, a polyolefin resin (usually ultra-high molecular weight polyethylene) with a weight average molecular weight of 500,000 or more, which is called a polyethylene separator, is usually used in an amount of 20 to 60% by weight and a specific surface area of 50 m 2 /g or more. 40 to 80% by weight of inorganic powder (usually silica fine powder), 0 to 30% by weight of a plasticizer (usually mineral oil) that also serves as a pore opening agent, and 0 to 10% by weight of a surfactant (solid content). There is a microporous film separator containing 0 to 5% by weight of an agent (antioxidant, weathering agent, etc.).

前記微多孔質フィルム製セパレータは、通常、前記ポリオレフィン系樹脂と前記無機粉体と前記可塑剤(上記セパレータ組成よりも多めに配合)と前記界面活性剤と前記添加剤を混合した原料組成物を加熱溶融混練しながらシート状に押し出し、所定の厚さにロール圧延成形した後、前記可塑剤の全部または一部を抽出除去することによって得られる、ベース厚さが0.1~0.3mm程度、平均細孔径(水銀圧入法)が0.01~0.5μm程度、空隙率(水銀圧入法)が50~90体積%程度のシートである。 The microporous film separator is usually a raw material composition obtained by mixing the polyolefin resin, the inorganic powder, the plasticizer (mixed in a larger amount than the separator composition), the surfactant, and the additive. A base thickness of about 0.1 to 0.3 mm is obtained by extruding into a sheet while heat-melting and kneading, roll-molding to a predetermined thickness, and then extracting and removing all or part of the plasticizer. The sheet has an average pore size (by mercury porosimetry) of about 0.01 to 0.5 μm and a porosity (by mercury porosimetry) of about 50 to 90% by volume.

前記無機粉体の役割は、原料組成物を加熱溶融混練する際に可塑剤を吸着担持しておくこと、微多孔質フィルムの微多孔構造(緻密で複雑な孔構造と高空隙率)を作り出すこと、微多孔質フィルムの製造過程で可塑剤を除去した際に生じるシート収縮に耐え寸法安定性を保つこと、微多孔質フィルムの電池組み込み時の使用前に行われる乾燥工程(水分除去工程)のような加熱処理時にもシート収縮に耐え寸法安定性を保つこと、微多孔質フィルムの電解液吸液性を良くすること、微多孔質フィルムの電解液濡れ性を良くすること、微多孔質フィルムの電解液保持性を良くすること、などである。 The role of the inorganic powder is to adsorb and support the plasticizer when the raw material composition is heated, melted and kneaded, and to create a microporous structure (dense and complex pore structure and high porosity) of the microporous film. To withstand the sheet shrinkage that occurs when the plasticizer is removed during the manufacturing process of the microporous film, and to maintain dimensional stability. To withstand sheet shrinkage and maintain dimensional stability even during heat treatment such as and improving the film's ability to retain electrolyte.

よって、通常、前記無機粉体としては、シリカ微粉が用いられ、特に、比表面積が大きいこと、吸油量が大きいこと、親水基(シラノール基)が多いこと、などの観点から、乾式法または湿式法の製造方法のうち、湿式法の沈降法で製造された合成非晶質シリカが、用いられている。 Therefore, silica fine powder is usually used as the inorganic powder, and in particular, from the viewpoints of large specific surface area, large oil absorption, and many hydrophilic groups (silanol groups), dry method or wet method is used. Among the production methods of the method, synthetic amorphous silica produced by a wet precipitation method is used.

一方、鉛蓄電池の車載用途においては、アイドリングストップ車に搭載される鉛蓄電池では、放電量が多くなるため、充電受入性の高いことが求められるようになってきている。鉛蓄電池の充電受入性を高めようとする場合、電解液中にアルカリ金属(Li、Na、K、Rb、Cs)イオンが多く存在すると、充電受入性の向上の妨げになることが知られている(特許文献1)。 On the other hand, in on-vehicle applications of lead-acid batteries, lead-acid batteries mounted in idling stop vehicles are required to have high charge acceptance because the amount of discharge increases. It is known that the presence of a large amount of alkali metal (Li, Na, K, Rb, Cs) ions in the electrolyte interferes with the improvement of the charge acceptance of a lead-acid battery. (Patent Document 1).

また、鉛蓄電池においては、ハロゲン(F、Cl、Br、I)の不純物が多く混入すると、鉛または鉛合金製の極板格子や極柱を腐食させ、電池寿命性能を低下させる要因になり得ることも知られている(特許文献2)。 In addition, in lead-acid batteries, if a large amount of halogen (F, Cl, Br, I) impurities are mixed in, lead or lead alloy electrode plate grids and electrode poles will corrode, which can be a factor in reducing battery life performance. It is also known (Patent Document 2).

前記沈降法で製造される合成非晶質シリカとは、中性またはアルカリ性下でアルカリ珪酸塩(珪酸ナトリウム)水溶液と鉱酸(硫酸)を反応させて非晶質シリカを沈殿析出させるという方法によるものであり、生成された非晶質シリカには、副生物として硫酸ナトリウム等の塩類が含まれており、後工程で濾過・水洗の処理により塩類を除去する処理(純度を高める処理)が行われている。 Synthetic amorphous silica produced by the precipitation method is a method of reacting an alkali silicate (sodium silicate) aqueous solution and a mineral acid (sulfuric acid) under neutral or alkaline conditions to precipitate amorphous silica. The amorphous silica produced contains salts such as sodium sulfate as a by-product, and is filtered and washed with water in the post-process to remove salts (treatment to increase purity). It is

国際公開第2014/128803号WO2014/128803 特開2005-251394号公報JP 2005-251394 A

しかし、前記非晶質シリカの製造工程における塩類の除去処理は完全ではないため、通常、製造された前記非晶質シリカは、副生物の硫酸ナトリウムを微量含んでいる。よって、このようなシリカ微粉を用いて製造した前記微多孔質フィルムにも、微量の硫酸ナトリウムが含まれており、鉛蓄電池用セパレータとして使用された場合には、電池使用が進むにつれて、電解液中にNaイオンを溶出させてしまい、溶出量が多い場合には、充電受入性の向上を妨げる要因になり得る。 However, since the salt removal treatment in the manufacturing process of the amorphous silica is not perfect, the manufactured amorphous silica usually contains a small amount of by-product sodium sulfate. Therefore, the microporous film produced using such fine silica powder also contains a small amount of sodium sulfate, and when used as a separator for a lead-acid battery, the electrolytic solution If Na ions are eluted inside and the amount of elution is large, it may be a factor that hinders the improvement of charge acceptance.

また、前記非晶質シリカの製造工程における塩類の除去処理を水洗にて行うに際し、水洗に使用する水が、ハロゲンであるCl分を混入させてしまうことも起こり得る。つまり、水道水(残留塩素が含まれる)を使う場合や、塩分(塩化ナトリウム)を含んだ地下水を使う場合などである。よって、このような水を用いて水洗処理が行われたシリカ微粉を用いて製造した前記微多孔質フィルムにも、微量のCl分が含まれており、鉛蓄電池用セパレータとして使用された場合には、電池使用が進むにつれて、電解液中にClイオンを溶出させてしまい、溶出量が多い場合には、極板格子や極柱の腐食を促し、電池寿命性能を低下させる要因になり得る。 In addition, when the salt removal treatment in the manufacturing process of the amorphous silica is performed by washing with water, the water used for washing may be mixed with Cl, which is a halogen. That is, when using tap water (which contains residual chlorine), or when using groundwater containing salt (sodium chloride). Therefore, the microporous film produced using silica fine powder that has been washed with water also contains a small amount of Cl, and when used as a lead-acid battery separator, As the use of the battery progresses, Cl ions are eluted into the electrolyte, and if the amount of elution is large, corrosion of the electrode plate lattice and electrode pillars may be accelerated, resulting in a decrease in battery life performance.

よって、本発明は、前記従来の問題点に鑑み、主原料として沈降法で製造された合成非晶質シリカであるシリカ微粉を用いて製造した微多孔質膜からなる液式鉛蓄電池用セパレータにあって、これを使用した電池で電池使用が進んだ場合にも、セパレータから電解液中に溶出するアルカリ金属イオン量やハロゲンイオン量を少なくすることができ、充電受入性の向上を妨げにくくでき、電池寿命性能の低下を招きにくくできるセパレータを提供することを目的とする。 Therefore, in view of the above conventional problems, the present invention provides a separator for a liquid lead-acid battery comprising a microporous film produced using silica fine powder, which is synthetic amorphous silica produced by a precipitation method, as a main raw material. Therefore, even if batteries using this material are used more frequently, the amount of alkali metal ions and halogen ions eluted from the separator into the electrolyte can be reduced, making it difficult to prevent the improvement of charge acceptance. An object of the present invention is to provide a separator that is less likely to cause deterioration in battery life performance.

本発明の液式鉛蓄電池用セパレータは、前記目的を達成するべく、請求項1に記載の通り、アルカリ珪酸塩水溶液と鉱酸を反応させ沈殿析出により非晶質シリカを合成後、濾過・水洗により純度の調整を行う沈降法で製造された合成非晶質シリカであるシリカ微粉を40重量%以上含む微多孔質膜からなる液式鉛蓄電池用セパレータであって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)であることを特徴とする。In order to achieve the above object, the separator for a liquid lead-acid battery of the present invention, as described in claim 1, reacts an alkaline silicate aqueous solution with a mineral acid to precipitate and precipitate amorphous silica, which is then filtered and washed with water. A separator for a liquid lead-acid battery comprising a microporous film containing 40% by weight or more of silica fine powder, which is synthetic amorphous silica manufactured by a precipitation method in which the purity is adjusted by the above microporous film (10 cm × 10 cm × 2 sheets) was immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours and left to stand. is 5 mg/100 cm 2 /sheet or less (however, the base thickness of the microporous membrane is equivalent to 0.2 mm), and the halogen content (F, Cl, Br, I) concentration (ICP emission spectroscopic analysis) is 0.00. It is characterized by being 4 mg/100 cm 2 /sheet or less (however, the base thickness of the microporous membrane is converted to 0.2 mm).

また、請求項2に記載の液式鉛蓄電池用セパレータは、請求項1に記載の液式鉛蓄電池用セパレータにおいて、前記濾過・水洗は、イオン交換水、または、塩分(塩化ナトリウム)を含まない地下水を使用して行われることを特徴とする。 Further, the liquid lead-acid battery separator according to claim 2 is the liquid lead-acid battery separator according to claim 1, wherein the filtering and washing with water does not contain ion-exchanged water or salt (sodium chloride). It is characterized by being carried out using groundwater.

また、請求項3に記載の液式鉛蓄電池用セパレータは、請求項1または2に記載の液式鉛蓄電池用セパレータにおいて、前記微多孔質膜は、前記シリカ微粉とポリオレフィン系樹脂を主体としてなる微多孔質フィルムであることを特徴とする。 The separator for a liquid lead-acid battery according to claim 3 is the separator for a liquid lead-acid battery according to claim 1 or 2, wherein the microporous film is mainly composed of the fine silica powder and polyolefin resin. It is characterized by being a microporous film.

また、請求項4に記載の液式鉛蓄電池用セパレータは、請求項3に記載の液式鉛蓄電池用セパレータにおいて、前記微多孔質フィルムは、ベース厚さが0.1~0.3mm、平均細孔径(水銀圧入法)が0.01~0.5μm、空隙率(水銀圧入法)が50~90体積%の微多孔質フィルムであることを特徴とする。 The separator for a liquid lead-acid battery according to claim 4 is the separator for a liquid lead-acid battery according to claim 3, wherein the microporous film has a base thickness of 0.1 to 0.3 mm, an average It is characterized by being a microporous film having a pore diameter (mercury porosimetry) of 0.01 to 0.5 μm and a porosity (mercury porosimetry) of 50 to 90% by volume.

本発明によれば、主原料として沈降法で製造された合成非晶質シリカであるシリカ微粉を用いて製造した微多孔質膜からなる鉛蓄電池用セパレータにあって、これを使用した電池で電池使用が進んだ場合にも、セパレータから電解液中に溶出するアルカリ金属イオン量やハロゲンイオン量を少なくすることができ、充電受入性の向上を妨げにくくでき、電池寿命性能の低下を招きにくくできるセパレータを提供することができる。 According to the present invention, there is provided a lead-acid battery separator comprising a microporous film produced using silica fine powder, which is synthetic amorphous silica produced by a precipitation method, as a main raw material, and a battery using this separator. Even when use progresses, the amount of alkali metal ions and halogen ions eluted from the separator into the electrolyte can be reduced, making it less likely to hinder improvement in charge acceptance and reduce battery life performance. A separator can be provided.

本発明の液式鉛蓄電池用セパレータは、アルカリ珪酸塩水溶液と鉱酸を反応させ沈殿析出により非晶質シリカを合成後、濾過・水洗により純度の調整(副生物である塩類を除去し非晶質シリカの純度を高める)を行う沈降法で製造された合成非晶質シリカであるシリカ微粉(以下、単に「前記シリカ微粉」と言う場合がある)を40重量%以上含む微多孔質膜であって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)であることを条件とする。The separator for a liquid lead-acid battery of the present invention is prepared by reacting an alkaline silicate aqueous solution and a mineral acid to form amorphous silica by precipitation, and then adjusting the purity by filtration and washing (removing salts as by-products to obtain an amorphous silica). A microporous membrane containing 40% by weight or more of silica fine powder (hereinafter sometimes simply referred to as "silica fine powder") that is synthetic amorphous silica produced by a sedimentation method that increases the purity of silica) There, the alkali metal content (Li, Na, K, Rb, Cs) concentration (ICP emission spectroscopic analysis) is 5 mg/100 cm 2 /sheet or less (however, the base thickness of the microporous membrane is converted to 0.2 mm), and the halogen content (F, Cl, Br, I) The condition is that the concentration (ICP emission spectroscopic analysis) is 0.4 mg/100 cm 2 /sheet or less (however, the base thickness of the microporous membrane is converted to 0.2 mm).

前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm/枚以下であるようにすることで、本発明の液式鉛蓄電池用セパレータを用いた液式鉛蓄電池において、セパレータから電解液中に溶出するアルカリ金属イオン量を抑えることができるようになるので、充電受入性の向上を妨げにくくなる。よって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)は4mg/100cm/枚以下がより好ましい。The alkali metal content (Li, Na, K, Rb, Cs) when the microporous membrane (10 cm × 10 cm × 2 sheets) was immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours and left to stand. By setting the concentration (ICP emission spectroscopic analysis) to 5 mg/100 cm 2 /sheet or less, in a flooded lead-acid battery using the separator for a flooded lead-acid battery of the present invention, alkalinity eluted from the separator into the electrolyte solution Since the amount of metal ions can be suppressed, the improvement of charge acceptance is less likely to be hindered. Therefore, when the microporous membrane (10 cm × 10 cm × 2 sheets) was immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours and left to stand, the alkali metal concentration (ICP emission spectroscopic analysis) was 4 mg. /100 cm 2 /sheet or less is more preferable.

前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下であるようにすることで、本発明の液式鉛蓄電池用セパレータを用いた液式鉛蓄電池において、セパレータから電解液中に溶出するハロゲンイオン量を抑えることができるようになるので、極板格子や極柱の腐食を促すことによる電池寿命性能の低下を招きにくくなる。よって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、ハロゲン分の濃度(ICP発光分光分析)は0.2mg/100cm/枚以下がより好ましく、0.1mg/100cm/枚以下が更に好ましい。Concentration of halogen content (F, Cl, Br, I) (ICP emission spectroscopic analysis) is 0.4 mg/100 cm 2 /sheet or less, in a flooded lead-acid battery using the separator for a flooded lead-acid battery of the present invention, halogen ions eluted from the separator into the electrolyte Since the amount can be suppressed, deterioration of battery life performance due to accelerated corrosion of the electrode plate lattice and electrode columns is less likely to occur. Therefore, when the microporous membrane (10 cm x 10 cm x 2 sheets) was immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50°C for 24 hours and allowed to stand, the concentration of halogen (ICP emission spectroscopic analysis) was 0.00. 2 mg/100 cm 2 /sheet or less is more preferable, and 0.1 mg/100 cm 2 /sheet or less is even more preferable.

前記微多孔質膜は、前記シリカ微粉とポリオレフィン系樹脂を主体としてなる微多孔質フィルムであることが好ましく、また、その微多孔質フィルムは、ベース厚さが0.1~0.3mm、平均細孔径(水銀圧入法)が0.01~0.5μm、空隙率(水銀圧入法)が50~90体積%の微多孔質フィルムであることが好ましい。なお、ベース厚さとは、例えば、微多孔質フィルムがリブ状突起を有する場合に、リブ状突起を含めた総厚さと区別するために用いる用語で、リブ状突起の高さを除外した(リブ状突起を設けない場合の)膜厚さを言う。 The microporous film is preferably a microporous film mainly composed of the fine silica powder and polyolefin resin, and the microporous film has a base thickness of 0.1 to 0.3 mm and an average It is preferably a microporous film having a pore diameter (mercury porosimetry) of 0.01 to 0.5 μm and a porosity (mercury porosimetry) of 50 to 90% by volume. Note that the base thickness is a term used, for example, when the microporous film has rib-like projections, to distinguish it from the total thickness including the rib-like projections, excluding the height of the rib-like projections (rib It refers to the film thickness when no protrusions are provided).

前記シリカ微粉は、前述したように、原料組成物を加熱溶融混練する際に可塑剤を吸着担持しておくこと、微多孔質フィルムの微多孔構造(緻密で複雑な孔構造と高空隙率)を作り出すこと、微多孔質フィルムの製造過程で可塑剤を除去した際に生じるシート収縮に耐え寸法安定性を保つこと、微多孔質フィルムの電池組み込み時の使用前に行われる乾燥工程(水分除去工程)のような加熱処理時にもシート収縮に耐え寸法安定性を保つこと、微多孔質フィルムの電解液吸液性を良くすること、微多孔質フィルムの電解液濡れ性を良くすること、微多孔質フィルムの電解液保持性を良くすること、等の役割があり、よって、比表面積が大きいこと、吸油量が大きいこと、親水基(シラノール基)が多いこと、等の観点から、乾式法または湿式法の製造方法のうち、湿式法の沈降法で製造された合成非晶質シリカであることが必要であるが、湿式法の沈降法で製造された合成非晶質シリカには、副生物として硫酸ナトリウム等の塩類が含まれており、後工程で濾過・水洗の処理により塩類を除去する処理が行われているものの、塩類の除去処理は完全ではなく、また、水洗処理に水道水(残留塩素が含まれる)や塩分(塩化ナトリウム)を含んだ地下水が使われ得るため、電池性能に悪影響を与え得るNa分やCl分を微量含んでいる。よって、本発明では、シリカ微粉として、湿式法の沈降法で製造された合成非晶質シリカであって、アルカリ金属分(Li、Na、K、Rb、Cs)やハロゲン分(F、Cl、Br、I)の含有量を、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm/枚以下、かつ、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下となるようなレベルにまで低減したシリカ微粉を用いる。また、本発明の前記非晶質シリカの製造工程における水洗処理(副生物の塩類を除去する処理)は、イオン交換水、または、塩分(塩化ナトリウム)を含まない地下水を使用して行われることが好ましい。なお、本願において、塩分(塩化ナトリウム)を含まない地下水とは、塩分(塩化ナトリウム)濃度が300ppm以下である地下水を指す。As described above, the silica fine powder should adsorb and support a plasticizer when heat-melting and kneading the raw material composition, and the microporous structure of the microporous film (dense and complicated pore structure and high porosity) resistance to sheet shrinkage that occurs when the plasticizer is removed during the manufacturing process of the microporous film and maintains dimensional stability; To withstand sheet shrinkage and maintain dimensional stability even during heat treatment such as step), to improve the electrolyte solution absorption of the microporous film, to improve the electrolyte solution wettability of the microporous film, It has a role of improving the electrolyte retention of the porous film, etc. Therefore, from the viewpoint of a large specific surface area, a large oil absorption, a large number of hydrophilic groups (silanol groups), etc., the dry method Alternatively, of the wet method production methods, it is necessary that the synthetic amorphous silica is produced by the wet precipitation method, but the synthetic amorphous silica produced by the wet precipitation method has Salts such as sodium sulfate are included in organisms, and although the salts are removed by filtration and washing in the post-process, the removal of salts is not complete, and tap water is used for washing. Since groundwater containing residual chlorine (residual chlorine) and salt (sodium chloride) can be used, it contains minute amounts of Na and Cl that can adversely affect battery performance. Therefore, in the present invention, the silica fine powder is a synthetic amorphous silica produced by a wet precipitation method, which contains alkali metal content (Li, Na, K, Rb, Cs) and halogen content (F, Cl, The content of Br, I) was measured by immersing the finally obtained microporous membrane (10 cm × 10 cm × 2 sheets) in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours and leaving it to stand. Silica reduced to a level such that the concentration (ICP emission spectroscopic analysis) is 5 mg/100 cm 2 /sheet or less and the halogen concentration (ICP emission spectroscopic analysis) is 0.4 mg/100 cm 2 /sheet or less Use fine powder. In addition, the water washing treatment (treatment for removing by-product salts) in the manufacturing process of the amorphous silica of the present invention is performed using ion-exchanged water or groundwater that does not contain salt (sodium chloride). is preferred. In the present application, groundwater not containing salt (sodium chloride) refers to groundwater having a salt (sodium chloride) concentration of 300 ppm or less.

前記微多孔質フィルムのベース厚さは、0.1~0.3mmであることが好ましいが、0.3mmを超えると電気抵抗が悪化し、0.1mm未満であると、良好な耐短絡性(ここで言う短絡とは、デンドライトショートと呼ばれる浸透短絡、局部的な基材の弱い部分、極板の凸部からの高圧迫や衝撃や突刺し、極板からの酸化力による酸化損耗等、が原因で孔が開くまたは割れを生じることで引き起こされる通常の短絡の両方を指す)が維持できにくくなる。 The base thickness of the microporous film is preferably 0.1 to 0.3 mm, but if it exceeds 0.3 mm, the electrical resistance deteriorates, and if it is less than 0.1 mm, good short circuit resistance (The term “short circuit” here means permeation short circuit called dendrite short, local weak base material, high pressure, impact or piercing from the convex part of the electrode plate, oxidation loss due to oxidative power from the electrode plate, etc. This refers to both normal short circuits caused by pitting or cracking due to short circuits) become difficult to maintain.

前記微多孔質フィルムの空隙率(水銀圧入法)は、50体積%以上であることが好ましいが、50体積%以上であることで、液式鉛蓄電池用セパレータとして内部抵抗(電気抵抗)を低く抑えることができ、液式鉛蓄電池の高性能化に寄与する。よって、微多孔質フィルムの空隙率(水銀圧入法)は、60~90体積%、更には70~90体積%であることがより好ましい。 The porosity (mercury intrusion method) of the microporous film is preferably 50% by volume or more. This contributes to improving the performance of liquid lead-acid batteries. Therefore, the porosity of the microporous film (by mercury intrusion method) is preferably 60 to 90% by volume, more preferably 70 to 90% by volume.

前記微多孔質フィルムを得る方法は、ポリオレフィン系樹脂と前記シリカ微粉と可塑剤を主体とする原料組成物を溶融混練して製膜後可塑剤の一部または全部を除去することによるのが好ましい。これにより、膜全体に均一かつ微細で複雑に入り組んだ複雑な経路を有する無数の連通孔が形成された膜が得られる。具体的な製造法の一例を以下に示す。まず、所定量のポリオレフィン系樹脂、前記シリカ微粉、可塑剤に、必要に応じて各種添加剤(界面活性剤、酸化防止剤、耐候剤等)を加えた原材料をヘンシェルミキサーまたはレーディゲミキサー等の混合機により攪拌・混合し、原料混合物を得る。次に、この混合物を先端にTダイを取り付けた二軸押出機に投入し加熱溶融・混練しながらシート状に押し出し、一方のロールに所定の溝を刻設した一対の成形ロール間を通すことで、平板状シートの片面に所定形状のリブを一体に成形したフィルム状物を得る。次に、このフィルム状物を、適当な溶剤(例えば、n-ヘキサン)中に浸漬し、鉱物オイルの所定量を抽出除去し乾燥すれば、目的の微多孔質フィルムが得られる。なお、原料組成物とは、溶融混練工程に持ち込まれる全原材料からなる組成物のことを言い、あくまでも「すべての原材料(の組成物)」のことを指す意味であり、特定的に、原料混合物や溶融混練物のことを指す意味ではない。 The method for obtaining the microporous film is preferably by melt-kneading a raw material composition mainly composed of a polyolefin resin, the silica fine powder, and a plasticizer, and removing part or all of the plasticizer after film formation. . As a result, a membrane is obtained in which a large number of uniform, fine, and intricately intricate channels are formed throughout the membrane. An example of a specific manufacturing method is shown below. First, a raw material obtained by adding various additives (surfactants, antioxidants, weathering agents, etc.) to a predetermined amount of polyolefin resin, the silica fine powder, and a plasticizer as needed is mixed with a Henschel mixer or Loedige mixer, etc. to obtain a raw material mixture. Next, this mixture is put into a twin-screw extruder equipped with a T-die at the tip, extruded into a sheet while being heated, melted and kneaded, and passed between a pair of forming rolls, one of which is provided with a predetermined groove. Then, a film-like material is obtained in which ribs of a predetermined shape are integrally formed on one side of the flat sheet. Next, this film-like product is immersed in a suitable solvent (eg, n-hexane) to extract and remove a predetermined amount of mineral oil, followed by drying to obtain the desired microporous film. In addition, the raw material composition refers to a composition composed of all raw materials brought into the melt-kneading step, and only means "all raw materials (composition of)". Specifically, raw material mixture or a melt-kneaded product.

前記微多孔質フィルムは、ポリオレフィン系樹脂と前記シリカ微粉と可塑剤の合計含有量が90重量%以上、ポリオレフィン系樹脂の含有量が20~60重量%、前記シリカ微粉の含有量が40~80重量%、可塑剤の含有量が0~30重量%、界面活性剤の含有量が0~8重量%であることが好ましい。ポリオレフィン系樹脂の含有量が20重量%未満あるいは前記シリカ微粉の含有量が80重量%超えであると、ポリオレフィン系樹脂による微多孔質フィルムへの機械的強度や耐酸化性やシール性の確保が十分でなくなり、ポリオレフィン系樹脂の含有量が60重量%超えあるいは前記シリカ微粉の含有量が40重量%未満であると、微多孔質フィルムの大きな空隙率や微細かつ複雑な孔構造を確保しづらくなり微多孔質フィルム製セパレータの良好な電気抵抗特性を維持できなくなる。 In the microporous film, the total content of the polyolefin resin, the silica fine powder and the plasticizer is 90% by weight or more, the polyolefin resin content is 20 to 60% by weight, and the silica fine powder content is 40 to 80%. It is preferable that the content of the plasticizer is 0 to 30% by weight and the content of the surfactant is 0 to 8% by weight. If the polyolefin resin content is less than 20% by weight or the silica fine powder content is more than 80% by weight, the polyolefin resin cannot ensure the mechanical strength, oxidation resistance, and sealability of the microporous film. If the polyolefin resin content exceeds 60% by weight or the silica fine powder content is less than 40% by weight, it is difficult to ensure a large porosity and a fine and complicated pore structure of the microporous film. As a result, good electrical resistance characteristics of the microporous film separator cannot be maintained.

前記ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等の単独重合体または共重合体およびこれらの混合物が使用できる。中でも、成形性や経済性の面で、ポリエチレンを主体とすることが好ましい。ポリエチレンは、溶融成形温度がポリプロピレンよりも低く、生産性が良好で製造コストを抑えられる。ポリオレフィン系樹脂は、重量平均分子量が50万以上とすることにより、シリカ微粉を多く含んだ微多孔質フィルムにあっても、膜の機械的強度を確保することができる。このため、ポリオレフィン系樹脂は、重量平均分子量が100万以上、更には150万以上であることがより好ましい。ポリオレフィン系樹脂は、シリカ微粉との混合性も良好で、微多孔質フィルムにあってシリカ微粉の骨格を接着機能材料として結合させながら強度を維持するとともに、化学的に安定であり安全性が高い。 As the polyolefin resin, homopolymers or copolymers such as polyethylene, polypropylene, polybutene, polymethylpentene, and mixtures thereof can be used. Among them, it is preferable to use polyethylene as a main component in terms of moldability and economy. Polyethylene has a melt-molding temperature lower than that of polypropylene, and has good productivity and low production costs. By setting the weight average molecular weight of the polyolefin resin to 500,000 or more, the mechanical strength of the film can be ensured even in a microporous film containing a large amount of fine silica powder. For this reason, the polyolefin resin preferably has a weight average molecular weight of 1,000,000 or more, more preferably 1,500,000 or more. Polyolefin-based resins have good mixability with fine silica powder, and maintain strength while binding the skeleton of fine silica powder in the microporous film as an adhesive functional material, and are chemically stable and highly safe. .

前記シリカ微粉としては、粒径が細かく内部や表面に孔構造を備えたものが使用できる。無機粉体の中でもシリカは、粒子径、比表面積等の各種粉体特性の選択範囲が広く、比較的安価で入手しやすく、不純物が少ない。前記シリカ微粉は、比表面積が100m/g以上であると、微多孔質フィルムの孔構造をより微細化(緻密化)かつ複雑化して耐短絡性を高め、微多孔質フィルムの電解液保持力を高め、粉体表面に多数の親水基(-OH)を備えることにより微多孔質フィルムの親水性を高めるため好ましい。このため、前記シリカ微粉の比表面積は150m/g以上であることがより好ましい。また、前記シリカ微粉の比表面積は400m/g以下であることが好ましい。前記シリカ微粉の比表面積が400m/gを超える場合は、粒子の表面活性度が高く凝集力が強くなるため、微多孔質フィルム中で前記シリカ微粉が均一分散されにくくなるため好ましくない。As the silica fine powder, one having a fine particle size and having a pore structure inside or on the surface can be used. Among inorganic powders, silica has a wide selection range for various powder characteristics such as particle diameter and specific surface area, is relatively inexpensive and readily available, and contains few impurities. When the silica fine powder has a specific surface area of 100 m 2 /g or more, the pore structure of the microporous film is made finer (densified) and more complicated to improve the short circuit resistance, and the electrolyte solution retention of the microporous film. It is preferable because it enhances the hydrophilicity of the microporous film by increasing the strength and providing a large number of hydrophilic groups (--OH) on the powder surface. Therefore, it is more preferable that the specific surface area of the silica fine powder is 150 m 2 /g or more. Further, the specific surface area of the fine silica powder is preferably 400 m 2 /g or less. When the specific surface area of the silica fine powder exceeds 400 m 2 /g, the surface activity of the particles is high and the cohesive force is strong, which makes it difficult to uniformly disperse the silica fine powder in the microporous film, which is not preferable.

前記可塑剤としては、ポリオレフィン系樹脂の可塑剤となり得る材料を選択することが好ましく、ポリオレフィン系樹脂と相溶性を有し各種溶剤等で容易に抽出できる各種有機液状体が使用でき、具体的には、飽和炭化水素(パラフィン)からなる工業用潤滑油等の鉱物オイル、ステアリルアルコール等の高級アルコール、フタル酸ジオクチル等のエステル系可塑剤等が使用できる。中でも、再利用がしやすい点で、鉱物オイルが好ましい。可塑剤は、ポリオレフィン系樹脂、シリカ微粉、可塑剤を主体とした原料組成物中に、30~70重量%配合されることが好ましい。 As the plasticizer, it is preferable to select a material that can be used as a plasticizer for polyolefin resins. Various organic liquids that are compatible with polyolefin resins and can be easily extracted with various solvents can be used. Mineral oils such as industrial lubricating oils composed of saturated hydrocarbons (paraffin), higher alcohols such as stearyl alcohol, and ester plasticizers such as dioctyl phthalate can be used. Among them, mineral oil is preferable because it is easy to reuse. The plasticizer is preferably blended in an amount of 30 to 70% by weight in the raw material composition mainly composed of polyolefin resin, fine silica powder and plasticizer.

前記可塑剤は、前述した通り、ポリオレフィン系樹脂とシリカ微粉と可塑剤を主体とした原料組成物を溶融混練して所定形状のフィルム状物に成形された後、除去されることで、多孔質化するものであり、微多孔質フィルム製セパレータ中の可塑剤の含有量はゼロであっても構わない。しかし、液式鉛蓄電池用セパレータにおいては、鉱物オイルのような可塑剤を適量含有させておくことで、耐酸化性の向上に寄与させることができる。このような場合、セパレータ中の可塑剤の含有量は5~30重量%とすることが好ましい。但し、可塑剤の含有量を多くすると、微多孔質フィルムの空隙率が低下し、微多孔質フィルム製セパレータの電気抵抗が悪化するため、このような観点からは、可塑剤の含有量は20重量%以下であることがより好ましい。 As described above, the plasticizer is melt-kneaded with a raw material composition mainly composed of a polyolefin resin, silica fine powder, and a plasticizer to form a film-like material having a predetermined shape, and then removed to form a porous film. The content of the plasticizer in the microporous film separator may be zero. However, in a separator for a liquid lead-acid battery, by containing an appropriate amount of a plasticizer such as mineral oil, it is possible to contribute to improvement in oxidation resistance. In such a case, the content of the plasticizer in the separator is preferably 5 to 30% by weight. However, if the content of the plasticizer is increased, the porosity of the microporous film decreases and the electrical resistance of the microporous film separator deteriorates. % by weight or less is more preferable.

前記可塑剤を抽出除去するために用いる溶剤としては、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の飽和炭化水素系の有機溶剤を使用することができる。 As a solvent used for extracting and removing the plasticizer, a saturated hydrocarbon-based organic solvent such as hexane, heptane, octane, nonane, and decane can be used.

前記原料組成物または前記微多孔質フィルムには、その他、必要に応じて、界面活性剤(親水化剤)、酸化防止剤、紫外線吸収剤、耐候剤、滑剤、抗菌剤、防黴剤、顔料、染料、着色剤、防曇剤、艶消し剤等の添加剤を、本発明の目的および効果を損なわない範囲で添加(配合)または含有させてもよい。 In addition, if necessary, the raw material composition or the microporous film may contain a surfactant (hydrophilic agent), an antioxidant, an ultraviolet absorber, a weathering agent, a lubricant, an antibacterial agent, an antifungal agent, and a pigment. , dyes, coloring agents, anti-fogging agents, matting agents, etc., may be added (compounded) or contained within a range that does not impair the object and effect of the present invention.

前記微多孔質フィルムは、比表面積が大きく親水性が高い前記シリカ微粉を多量に含有しており、それだけでも、親水性を有し、水溶液である液式鉛蓄電池の硫酸電解液に対する濡れ性や硫酸電解液の浸透性(浸み込み性)を有するが、電槽内に極板とセパレータが密に組み込まれた積層体に対し硫酸電解液を注液した際に、速やかにセパレータの空隙中に電解液が吸液され速やかにセパレータの空隙が電解液に置換されるようにするため、微多孔質フィルム中には界面活性剤(固形分)を0.2~8重量%含ませることが好ましい。 The microporous film contains a large amount of the silica fine powder having a large specific surface area and high hydrophilicity. Sulfuric acid electrolyte has permeability (penetrability), but when sulfuric acid electrolyte is poured into a laminate in which electrode plates and separators are densely assembled in a battery case, it quickly penetrates into the gaps of the separator. 0.2 to 8% by weight of a surfactant (solid content) may be contained in the microporous film in order to absorb the electrolytic solution and quickly replace the voids in the separator with the electrolytic solution. preferable.

前記界面活性剤を微多孔質フィルムに含ませる方法としては、製膜前の原料組成物中に予め分散状態に添加しておく方法(内添法)、製膜され可塑剤が除去された微多孔質フィルムに対して後処理(付着処理)する方法(外添法)があるが、製造工程が簡略化できる点と、本発明の微多孔質フィルムから界面活性剤を染み出しにくくできる点で、原料組成物中に予め添加する方法(内添法)が好ましい。界面活性剤(固形分)の含有量(必要量)は、微多孔質フィルム中に0.2~8重量%である。界面活性剤(固形分)の含有量をこの範囲以上に増量しても、微多孔質フィルムの親水性を向上させる効果は大きく伸びず、逆に、微多孔質フィルムの空隙率を低下させて液式鉛蓄電池用セパレータとして内部抵抗(電気抵抗)の増大を招いたり、液式鉛蓄電池用セパレータとして自己放電の増大を招く。よって、界面活性剤(固形分)の含有量は、微多孔質フィルム中に0.2~5重量%であることがより好ましい。 As a method for incorporating the surfactant into the microporous film, there is a method in which the surfactant is added in advance in a dispersed state to the raw material composition before film formation (internal addition method), There is a method (external addition method) of post-processing (adhesion treatment) to the porous film, but it is possible to simplify the manufacturing process and to prevent the surfactant from oozing out from the microporous film of the present invention. A method of preliminarily adding to the raw material composition (internal addition method) is preferred. The content (required amount) of the surfactant (solid content) is 0.2 to 8% by weight in the microporous film. Even if the content of the surfactant (solid content) is increased beyond this range, the effect of improving the hydrophilicity of the microporous film does not increase significantly, and conversely, the porosity of the microporous film decreases. As a separator for a liquid lead-acid battery, it causes an increase in internal resistance (electrical resistance), and as a separator for a liquid lead-acid battery, it causes an increase in self-discharge. Therefore, the content of the surfactant (solid content) is more preferably 0.2 to 5% by weight in the microporous film.

前記界面活性剤としては、微多孔質フィルムの親水性を向上できる材料であればよく、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤の何れも使用できる。ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、脂肪酸モノグリセリド、ソルビタン脂肪酸エステル類等が使用できる。カチオン系界面活性剤としては、脂肪族アミン塩類、第四級アンモニウム塩、ポリオキシエチレンアルキルアミン、アルキルアミンオキシド等が使用できる。アニオン系界面活性剤としては、アルキルスルフォン酸塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、アルキルスルホコハク酸塩、ドデシルベンゼンスルフォン酸塩等が使用できる。中でも、ポリオレフィン系樹脂に対して少量の添加で高い親水性の付与が可能であること、比較的高い耐熱性を有することで界面活性剤を予め原料組成物中に添加して微多孔質フィルムの製造(加熱溶融成形による製造)が行えることなどから、アルキルベンゼンスルフォン酸塩、アルキルスルホコハク酸塩、ドデシルベンゼンスルフォン酸塩が好ましい。 Any of nonionic surfactants, cationic surfactants, and anionic surfactants can be used as the surfactant as long as it can improve the hydrophilicity of the microporous film. As nonionic surfactants, polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene alkyl allyl ethers, fatty acid monoglycerides, sorbitan fatty acid esters and the like can be used. As cationic surfactants, aliphatic amine salts, quaternary ammonium salts, polyoxyethylene alkylamines, alkylamine oxides and the like can be used. As the anionic surfactant, alkylsulfonate, alkylbenzenesulfonate, alkylnaphthalenesulfonate, alkylsulfosuccinate, dodecylbenzenesulfonate and the like can be used. Among them, it is possible to impart high hydrophilicity to polyolefin resins by adding a small amount, and has relatively high heat resistance, so that surfactants can be added in advance to the raw material composition to form a microporous film. Alkylbenzenesulfonates, alkylsulfosuccinates, and dodecylbenzenesulfonates are preferred because they can be manufactured (manufacture by heat-melting molding).

次に、本発明の実施例について、比較例とともに詳細に説明する。
(実施例1)
ポリオレフィン系樹脂として重量平均分子量が150万の超高分子量ポリエチレン樹脂粉体(融点約135℃)1000重量部と、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量を、水洗処理水の流量を従来よりも多くして低減し、かつ、従来よりもCl分の少ない水洗処理水を使う事で、Cl分の混入を低減し、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm/枚以下、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下となるようにしたもの)2590重量部と、可塑剤としてパラフィン系鉱物オイル5380重量部と、界面活性剤としてアルキルスルホコハク酸塩(固形分)109重量部とをレーディゲミキサーにて混合し、この原料組成物を先端にTダイを取り付けた二軸押出機を用い加熱溶融混練しながらシート状に押し出し、一方のロールに極板当接用主リブのための所定の溝を刻設した一対の成形ロール間を通し、平板状シートの一方の面に所定形状の極板当接用主リブを一体に成形加工したフィルム状物を得た。次に、このフィルム状物をn-ヘキサン中に浸漬し、パラフィン系鉱物オイルの所定量を抽出除去し、乾燥させて、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを実施例1の液式鉛蓄電池用セパレータとした。
Next, examples of the present invention will be described in detail together with comparative examples.
(Example 1)
1,000 parts by weight of ultra-high molecular weight polyethylene resin powder (melting point: about 135°C) with a weight average molecular weight of 1,500,000 as a polyolefin resin, and synthetic amorphous silica produced by a sedimentation method, which has a specific surface area of 200 m 2 by the BET method. / g of silica fine powder (However, the content of salts such as sodium sulfate generated as a by-product in the manufacturing process is reduced by increasing the flow rate of the washing water than before, and the Cl content is higher than before. By using a small amount of water for washing, the contamination of Cl is reduced, and the finally obtained microporous membrane (10 cm x 10 cm x 2 sheets) is immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C for 24 hours. Alkaline metal content (Li, Na, K, Rb, Cs) concentration (ICP emission spectroscopic analysis) is 5 mg/100 cm 2 /sheet or less, and halogen content (F, Cl, Br, I) when left to stand. concentration (ICP emission spectroscopic analysis) of 0.4 mg/100 cm 2 /sheet or less) 2590 parts by weight, 5380 parts by weight of paraffinic mineral oil as a plasticizer, and alkyl sulfosuccinate as a surfactant (Solid content) 109 parts by weight are mixed in a Lödige mixer, and this raw material composition is extruded into a sheet while being heated and melted and kneaded using a twin-screw extruder equipped with a T-die at the tip, and transferred to one roll. A film obtained by passing between a pair of forming rolls having predetermined grooves for electrode plate contact main ribs and integrally forming the electrode plate contact main ribs of a predetermined shape on one surface of a flat sheet. I got something. Next, this film-like material is immersed in n-hexane to extract and remove a predetermined amount of paraffinic mineral oil, and dried to obtain 22.9% by weight of polyethylene resin, 59.3% by weight of silica fine powder, and paraffin. Base mineral oil 16.0% by weight, surfactant (solid content) 1.8% by weight, base thickness 0.20 mm, porosity by mercury intrusion method 62% by volume, by mercury intrusion method A ribbed microporous film having an average pore size of 0.09 μm and a maximum pore size of 0.65 μm by mercury porosimetry was obtained. This was used as a separator for a liquid lead-acid battery of Example 1.

(実施例2)
ポリオレフィン系樹脂として重量平均分子量が150万の超高分子量ポリエチレン樹脂粉体(融点約135℃)1000重量部と、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量を、水洗処理水の流量を実施例1よりも多くして更に低減し、かつ、従来よりもCl分の少ない水洗処理水を使う事で、Cl分の混入を低減し、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が4mg/100cm/枚以下、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下となるようにしたもの)2590重量部と、可塑剤としてパラフィン系鉱物オイル5380重量部と、界面活性剤としてアルキルスルホコハク酸塩(固形分)109重量部とをレーディゲミキサーにて混合し、この原料組成物を先端にTダイを取り付けた二軸押出機を用い加熱溶融混練しながらシート状に押し出し、一方のロールに極板当接用主リブのための所定の溝を刻設した一対の成形ロール間を通し、平板状シートの一方の面に所定形状の極板当接用主リブを一体に成形加工したフィルム状物を得た。次に、このフィルム状物をn-ヘキサン中に浸漬し、パラフィン系鉱物オイルの所定量を抽出除去し、乾燥させて、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを実施例2の液式鉛蓄電池用セパレータとした。
(Example 2)
1,000 parts by weight of ultra-high molecular weight polyethylene resin powder (melting point: about 135°C) with a weight average molecular weight of 1,500,000 as a polyolefin resin, and synthetic amorphous silica produced by a sedimentation method, which has a specific surface area of 200 m 2 by the BET method. / g of silica fine powder (however, the content of salts such as sodium sulfate generated as a by-product in the manufacturing process is further reduced by increasing the flow rate of the water for washing treatment than in Example 1, and By using washed water with a low Cl content, the contamination of Cl content is reduced, and the finally obtained microporous membrane (10 cm × 10 cm × 2 sheets) is placed in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50 ° C. The concentration of alkali metals (Li, Na, K, Rb, Cs) (ICP emission spectroscopic analysis) is 4 mg/100 cm 2 or less when immersed in water for 24 hours and left to stand, and the halogen content (F, Cl, Br , I) so that the concentration (ICP emission spectroscopic analysis) is 0.4 mg/100 cm 2 /sheet or less) 2590 parts by weight, 5380 parts by weight of paraffinic mineral oil as a plasticizer, and alkyl as a surfactant 109 parts by weight of a sulfosuccinate (solid content) was mixed in a Loedige mixer, and this raw material composition was extruded into a sheet while being heated and melted and kneaded using a twin-screw extruder equipped with a T-die at the tip. The rolls are passed between a pair of forming rolls in which predetermined grooves for the electrode plate contacting main ribs are engraved, and the electrode plate contacting main ribs of a predetermined shape are integrally formed on one surface of the flat sheet. A processed film was obtained. Next, this film-like material is immersed in n-hexane to extract and remove a predetermined amount of paraffinic mineral oil, and dried to obtain 22.9% by weight of polyethylene resin, 59.3% by weight of silica fine powder, and paraffin. Base mineral oil 16.0% by weight, surfactant (solid content) 1.8% by weight, base thickness 0.20 mm, porosity by mercury intrusion method 62% by volume, by mercury intrusion method A ribbed microporous film having an average pore size of 0.09 μm and a maximum pore size of 0.65 μm by mercury porosimetry was obtained. This was used as a separator for a liquid lead-acid battery of Example 2.

(実施例3)
ポリオレフィン系樹脂として重量平均分子量が150万の超高分子量ポリエチレン樹脂粉体(融点約135℃)1000重量部と、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量を、水洗処理水の流量を従来よりも多くして低減し、かつ、実施例1よりもCl分の少ない水洗処理水を使う事で、Cl分の混入を更に低減し、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm/枚以下、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.1mg/100cm/枚以下となるようにしたもの)2590重量部と、可塑剤としてパラフィン系鉱物オイル5380重量部と、界面活性剤としてアルキルスルホコハク酸塩(固形分)109重量部とをレーディゲミキサーにて混合し、この原料組成物を先端にTダイを取り付けた二軸押出機を用い加熱溶融混練しながらシート状に押し出し、一方のロールに極板当接用主リブのための所定の溝を刻設した一対の成形ロール間を通し、平板状シートの一方の面に所定形状の極板当接用主リブを一体に成形加工したフィルム状物を得た。次に、このフィルム状物をn-ヘキサン中に浸漬し、パラフィン系鉱物オイルの所定量を抽出除去し、乾燥させて、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを実施例3の液式鉛蓄電池用セパレータとした。
(Example 3)
1,000 parts by weight of ultra-high molecular weight polyethylene resin powder (melting point: about 135°C) with a weight average molecular weight of 1,500,000 as a polyolefin resin, and synthetic amorphous silica produced by a sedimentation method, which has a specific surface area of 200 m 2 by the BET method. / g of silica fine powder (However, the content of salts such as sodium sulfate generated as a by-product in the manufacturing process is reduced by increasing the flow rate of the water for washing treatment than before, and Cl By using washed water with a small content, the contamination of Cl content is further reduced, and the finally obtained microporous membrane (10 cm × 10 cm × 2 sheets) is placed in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50 ° Alkali metal content (Li, Na, K, Rb, Cs) concentration (ICP emission spectroscopic analysis) is 5 mg/100 cm 2 /sheet or less, and halogen content (F, Cl, Br , I) having a concentration (ICP emission spectroscopic analysis) of 0.1 mg/100 cm 2 /sheet or less) 2590 parts by weight, 5380 parts by weight of paraffinic mineral oil as a plasticizer, and an alkyl as a surfactant 109 parts by weight of a sulfosuccinate (solid content) was mixed in a Loedige mixer, and this raw material composition was extruded into a sheet while being heated and melted and kneaded using a twin-screw extruder equipped with a T-die at the tip. The rolls are passed between a pair of forming rolls in which predetermined grooves for the electrode plate contacting main ribs are engraved, and the electrode plate contacting main ribs of a predetermined shape are integrally formed on one surface of the flat sheet. A processed film was obtained. Next, this film-like material is immersed in n-hexane to extract and remove a predetermined amount of paraffinic mineral oil, and dried to obtain 22.9% by weight of polyethylene resin, 59.3% by weight of silica fine powder, and paraffin. Base mineral oil 16.0% by weight, surfactant (solid content) 1.8% by weight, base thickness 0.20 mm, porosity by mercury intrusion method 62% by volume, by mercury intrusion method A ribbed microporous film having an average pore size of 0.09 μm and a maximum pore size of 0.65 μm by mercury porosimetry was obtained. This was used as a separator for a liquid lead-acid battery of Example 3.

(比較例1)
ポリオレフィン系樹脂として重量平均分子量が150万の超高分子量ポリエチレン樹脂粉体(融点約135℃)1000重量部と、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量は従来通りで、Cl分が従来通りの水洗処理水を使った場合、Cl分の混入を低減せず、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm/枚超え、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm/枚超えとなるようにしたもの)2590重量部と、可塑剤としてパラフィン系鉱物オイル5380重量部と、界面活性剤としてアルキルスルホコハク酸塩(固形分)109重量部とをレーディゲミキサーにて混合し、この原料組成物を先端にTダイを取り付けた二軸押出機を用い加熱溶融混練しながらシート状に押し出し、一方のロールに極板当接用主リブのための所定の溝を刻設した一対の成形ロール間を通し、平板状シートの一方の面に所定形状の極板当接用主リブを一体に成形加工したフィルム状物を得た。次に、このフィルム状物をn-ヘキサン中に浸漬し、パラフィン系鉱物オイルの所定量を抽出除去し、乾燥させて、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを比較例1の液式鉛蓄電池用セパレータとした。
(Comparative example 1)
1,000 parts by weight of ultra-high molecular weight polyethylene resin powder (melting point: about 135°C) with a weight average molecular weight of 1,500,000 as a polyolefin resin, and synthetic amorphous silica produced by a sedimentation method, which has a specific surface area of 200 m 2 by the BET method. / g of silica fine powder (However, the content of salts such as sodium sulfate generated as a by-product in the manufacturing process is the same as before, and when using washing water with the same Cl content as before, the contamination of Cl is reduced. The concentration of alkali metals (ICP emission spectroscopic analysis) exceeds 5 mg/100 cm 2 /sheet, and the halogen concentration (ICP emission spectroscopic analysis) exceeds 0.4 mg/100 cm 2 /sheet) 2590 parts by weight, and a paraffinic mineral as a plasticizer 5380 parts by weight of oil and 109 parts by weight of alkyl sulfosuccinate (solid content) as a surfactant are mixed in a Lödige mixer, and this raw material composition is extruded using a twin-screw extruder equipped with a T-die at the tip. The sheet is extruded while being heated, melted and kneaded, passed between a pair of forming rolls, one of which is provided with a predetermined groove for the electrode plate contacting main rib, and a predetermined shape is formed on one surface of the flat sheet. A film-like material was obtained in which the main ribs for contacting the electrode plate were integrally formed. Next, this film-like material is immersed in n-hexane to extract and remove a predetermined amount of paraffinic mineral oil, and dried to obtain 22.9% by weight of polyethylene resin, 59.3% by weight of silica fine powder, and paraffin. Base mineral oil 16.0% by weight, surfactant (solid content) 1.8% by weight, base thickness 0.20 mm, porosity by mercury intrusion method 62% by volume, by mercury intrusion method A ribbed microporous film having an average pore size of 0.09 μm and a maximum pore size of 0.65 μm by mercury porosimetry was obtained. This was used as a liquid lead-acid battery separator of Comparative Example 1.

(比較例2)
シリカ微粉体として、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量は従来通りであるが、従来よりもCl分の少ない水洗処理水を使う事で、Cl分の混入を低減し、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm/枚超え、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下となるようにしたもの)を使用するようにした以外は比較例1と同様にして、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを比較例2の液式鉛蓄電池用セパレータとした。
(Comparative example 2)
As the silica fine powder, silica fine powder having a specific surface area of 200 m 2 /g by the BET method, which is synthetic amorphous silica produced by a sedimentation method (however, it contains salts such as sodium sulfate produced as a by-product in the production process The amount is the same as before, but by using washing water with less Cl content than before, the contamination of Cl content is reduced, and the finally obtained microporous membrane (10 cm × 10 cm × 2 sheets) is heated. When immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at 50° C. for 24 hours and allowed to stand, the alkali metal concentration (ICP emission spectroscopic analysis) exceeds 5 mg/100 cm 2 /sheet and the halogen concentration (ICP emission spectroscopic analysis). is 0.4 mg/100 cm 2 /sheet or less) in the same manner as in Comparative Example 1, 22.9% by weight of polyethylene resin, 59.3% by weight of silica fine powder, Composed of 16.0% by weight of paraffinic mineral oil and 1.8% by weight of surfactant (solid content), base thickness is 0.20 mm, porosity by mercury porosimetry is 62% by volume, mercury porosimetry A microporous film with ribs having an average pore size of 0.09 μm and a maximum pore size of 0.65 μm by mercury porosimetry was obtained. This was used as a liquid lead-acid battery separator of Comparative Example 2.

(比較例3)
シリカ微粉体として、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量を、水洗処理水の流量を従来よりも多くして低減したが、Cl分が従来通りの水洗処理水を使った場合、Cl分の混入を低減せず、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm/枚以下、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm/枚超えとなるようにしたもの)を使用するようにした以外は比較例1と同様にして、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを比較例3の液式鉛蓄電池用セパレータとした。
(Comparative Example 3)
As the silica fine powder, silica fine powder having a specific surface area of 200 m 2 /g by the BET method, which is synthetic amorphous silica produced by a sedimentation method (however, it contains salts such as sodium sulfate produced as a by-product in the production process Although the amount was reduced by increasing the flow rate of the washing water compared to the conventional one, when using the washing water with the same Cl content as before, the contamination of the Cl content was not reduced, and the finally obtained microporous The alkali metal concentration (ICP emission spectroscopic analysis) of the film (10 cm x 10 cm x 2 sheets) is 5 mg/100 cm 2 /sheet or less when immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50°C for 24 hours and left to stand. , in the same manner as in Comparative Example 1, except that the concentration of halogen content (ICP emission spectroscopic analysis) exceeded 0.4 mg/100 cm 2 /sheet), 22.9 weight of polyethylene resin %, silica fine powder 59.3% by weight, paraffinic mineral oil 16.0% by weight, surfactant (solid content) 1.8% by weight, base thickness 0.20 mm, mercury porosimetry A microporous film with ribs having a porosity of 62% by volume, an average pore size of 0.09 µm by mercury porosimetry, and a maximum pore size of 0.65 µm by mercury porosimetry was obtained. This was used as a liquid lead-acid battery separator of Comparative Example 3.

次に、上記にて得られた実施例1~3、比較例1~3の各セパレータについて、以下の方法により、各種特性評価を行った。結果を表1に示す。なお、MD(MD方向)とは、製造されるシートの製造方向、CD(CD方向)とは、MD方向と直交する方向を言う。〈ベース厚さ〉
ダイヤルゲージ(尾崎製作所社製 ピーコックG-6)を用いて、微多孔質フィルム(リブ状突起を有する場合はリブ状突起を含まない箇所)の任意の点、数箇所を測定した。〈引張強度、伸び〉
微多孔質フィルムから、MDおよびCD方向に、10mm×70mmの長方形サイズに裁断し試験片とする。容量294N以下のショッパー式またはこれに準ずる引張試験機を用い、試験機のつかみの間隔(a)を約50mmとし、試験片を取り付け、毎分200mmの引張速さで引張試験を行い、試験片が切断した時の引張荷重(b)、距離(c)を読む。引張強度は、引張荷重(b)を試験片の断面積で除して算出する。伸びは、距離(c)を試験機のつかみの間隔(a)で除して算出する。
〈空隙率〉
微多孔質フィルムの細孔容積(水銀圧入法)と真密度(浸漬法)から、次式により算出した。
空隙率=Vp/((1/ρ)+Vp)
但し、Vp:細孔容積(cm/g)、ρ:真密度(g/cm
〈平均細孔径〉
水銀圧入時の、圧力と水銀の容量から細孔径分布を算出した。全細孔容積の50%の容積の水銀が圧入された時点の細孔径を平均細孔径(メディアン径)とした。
〈最大孔径〉
平均細孔径試験における細孔径分布曲線から、水銀の圧入が開始された孔径を最大孔径とした。
〈浸透性〉
微多孔質フィルムを70mm×70mmの正方形サイズに裁断した試験片を、温度20℃の比重1.20の硫酸の液面に浮かべたのち、試験片の表面に硫酸が浸透し、試験片の一部が変色するまでの時間を測定し、浸透性(秒)とした。
〈電気抵抗〉
微多孔質フィルムを70mm×70mmの正方形サイズに裁断して試験片とし、SBA
S 0402に準拠した試験装置で測定した。
〈耐酸化寿命〉
50mm×50mmの正方形状の鉛板製の正極および負極を、70mm×70mmの正方形状に裁断した微多孔質フィルム製セパレータを挟んで、同心状にかつ正方形状の向きを合わせて積層し、積層した正極(1枚)、セパレータ(1枚)、負極(1枚)からなる極群に19.6kPaの加圧をかけて電槽内に組み込んだ後、比重1.300(20℃)の希硫酸電解液を1000ml注入し、液温度50±2℃で5.0Aの直流定電流を流し、端子電圧が2.6V以下または電圧差が0.2V以上となった時点の通電時間を測定し、耐酸化時間(h)とした。なお、表1には、比較例1の値を100とした場合の相対値を表示した。
〈デンドライトショート特性〉
70mm×70mmの正方形状にカットした微多孔質フィルムを50mm×50mmの正方形状の鉛極板(純鉛製、厚さ3mm)2枚で挟んで、微多孔質フィルムと2枚の鉛極板の3つの正方形の中心が一致しかつ3つの正方形の各辺が互いに平行であるようにして、電槽内に水平状態に設置し、その上に(正方形の中心位置に)5kgの重りを載せた後、飽和硫酸鉛水溶液を注入する。その後、鉛極板に3.2mAの電流を通電し、電圧の変化を連続的に記録する。電圧は、通電開始後にやや上昇し、その後緩やかに低下する。この時の最大電圧の70%に電圧が低下するまで時間を計測する。なお、表1には、比較例1の値を100とした場合の相対値を表示した。
〈ICP発光分光分析〉
100mm×100mmの正方形状にカットした微多孔質フィルム2枚を、比重1.26の硫酸126gの入ったビーカーに入れる。これを50℃に保持した恒温水槽に入れて、24時間静置する。24時間静置後に、硫酸(抽出液)中から、微多孔質フィルムを取り出す。硫酸(抽出液)を1/10に希釈し、希釈液中のアルカリ金属分(Li、Na、K、Rb、Cs)、および、ハロゲン分(F、Cl、Br、I)を、ICP発光分光分析装置にて定量分析する。得られた値は、ppmからmg/100cm/枚(面積が100cmの微多孔質フィルム1枚当たりの重量)に換算する(但し、微多孔質フィルム1枚当たりとはベース厚さ0.2mm当たりであることとし、ベース厚さがこれと異なる場合は値を換算してベース厚さ0.2mm当たりとなるよう補正する)。
〈電池試験(充電受入性、電池寿命)〉
充電受入性は、JIS D 5301(2006)に基づき、5時間率電流で2.5時間放電した時の、充電開始後の充電電流を測定する。電池寿命は、JIS D 5301(2006)に基づく軽負荷寿命試験の方法で、充放電サイクル試験を行い、30秒目電圧が7.2V以下となった時のサイクル数を測定する。なお、表1の充電受入性、電池寿命は、比較例1の値を100とした場合の相対値(相対結果)を表示した。
Next, the separators of Examples 1 to 3 and Comparative Examples 1 to 3 obtained above were subjected to various property evaluations by the following methods. Table 1 shows the results. It should be noted that MD (MD direction) refers to the manufacturing direction of a sheet to be manufactured, and CD (CD direction) refers to a direction perpendicular to the MD direction. <Base thickness>
Using a dial gauge (Peacock G-6 manufactured by Ozaki Seisakusho Co., Ltd.), arbitrary points and several points of the microporous film (where rib-like projections are not included when having rib-like projections) were measured. <Tensile strength, elongation>
A test piece is obtained by cutting a microporous film into a rectangular size of 10 mm×70 mm in the MD and CD directions. Using a Shopper type or similar tensile tester with a capacity of 294 N or less, the interval (a) between the grips of the tester is about 50 mm, the test piece is attached, and the tensile test is performed at a tensile speed of 200 mm per minute. Read the tensile load (b) and distance (c) when the is cut. Tensile strength is calculated by dividing the tensile load (b) by the cross-sectional area of the test piece. Elongation is calculated by dividing the distance (c) by the grip spacing (a) of the tester.
<Porosity>
It was calculated by the following formula from the pore volume (mercury intrusion method) and the true density (immersion method) of the microporous film.
Porosity = Vp / ((1/ρ) + Vp)
where Vp: pore volume (cm 3 /g), ρ: true density (g/cm 3 )
<Average pore size>
The pore size distribution was calculated from the pressure and the volume of mercury at the time of mercury intrusion. The average pore diameter (median diameter) was defined as the pore diameter when 50% of the total pore volume of mercury was injected.
<Maximum hole diameter>
From the pore size distribution curve in the average pore size test, the pore size at which mercury injection started was taken as the maximum pore size.
<Permeability>
A test piece obtained by cutting a microporous film into a square size of 70 mm × 70 mm is floated on the surface of sulfuric acid having a specific gravity of 1.20 at a temperature of 20 ° C., and then sulfuric acid permeates the surface of the test piece. The time until the part changed color was measured and defined as permeability (seconds).
<Electrical resistance>
Cut the microporous film into a square size of 70 mm × 70 mm to make a test piece, SBA
Measured with a testing apparatus conforming to S 0402.
<Oxidation resistance life>
A 50 mm × 50 mm square positive electrode and negative electrode made of a lead plate are sandwiched between a microporous film separator cut into a 70 mm × 70 mm square, and laminated concentrically and in the square direction. After applying a pressure of 19.6 kPa to an electrode group consisting of a positive electrode (one sheet), a separator (one sheet), and a negative electrode (one sheet) and incorporating it into a battery case, a diluted 1,000 ml of sulfuric acid electrolyte was injected, a DC constant current of 5.0 A was applied at a liquid temperature of 50 ± 2 ° C, and the energization time was measured when the terminal voltage became 2.6 V or less or the voltage difference became 0.2 V or more. , oxidation resistance time (h). Table 1 shows relative values when the value of Comparative Example 1 is set to 100.
<Dendrite short characteristic>
A microporous film cut into a 70 mm × 70 mm square is sandwiched between two 50 mm × 50 mm square lead electrode plates (made of pure lead, thickness 3 mm), and the microporous film and the two lead electrode plates are sandwiched. The center of the three squares is aligned and the sides of the three squares are parallel to each other, and placed horizontally in the battery case, and a 5 kg weight is placed on it (at the center of the square) After that, a saturated lead sulfate aqueous solution is injected. Thereafter, a current of 3.2 mA is applied to the lead electrode plate, and changes in voltage are continuously recorded. The voltage rises slightly after the start of energization, and then gently drops. Time is measured until the voltage drops to 70% of the maximum voltage at this time. Table 1 shows relative values when the value of Comparative Example 1 is set to 100.
<ICP emission spectroscopic analysis>
Two microporous films cut into squares of 100 mm×100 mm are placed in a beaker containing 126 g of sulfuric acid having a specific gravity of 1.26. This is placed in a constant temperature water bath maintained at 50° C. and allowed to stand for 24 hours. After standing still for 24 hours, the microporous film is taken out from the sulfuric acid (extract). Sulfuric acid (extract) is diluted to 1/10, and the alkali metal content (Li, Na, K, Rb, Cs) and halogen content (F, Cl, Br, I) in the diluted solution are measured by ICP emission spectroscopy. Quantitatively analyze with an analyzer. The obtained value is converted from ppm to mg/100 cm 2 /sheet (weight per sheet of microporous film having an area of 100 cm 2 ) (however, the term "per sheet of microporous film" refers to the base thickness of 0.5 cm). 2 mm, and if the base thickness differs from this, the value is converted and corrected so that it corresponds to a base thickness of 0.2 mm).
<Battery test (charge acceptance, battery life)>
Charge acceptability is determined by measuring the charge current after the start of charging when the battery is discharged for 2.5 hours at a 5-hour rate current based on JIS D 5301 (2006). The battery life is determined by performing a charge/discharge cycle test by a light load life test method based on JIS D 5301 (2006), and measuring the number of cycles when the voltage becomes 7.2 V or less at 30 seconds. The charge acceptance and battery life in Table 1 are relative values (relative results) when the value of Comparative Example 1 is set to 100.

Figure 0007248425000001
Figure 0007248425000001

表1の結果から以下のことが分かった。
(1)本発明の実施例1のセパレータは、アルカリ金属分の濃度(ICP発光分光分析)を5mg/100cm/枚以下としたことで、充電受入性が良化するとともに、ハロゲン分の濃度(ICP発光分光分析)を0.4mg/100cm/枚以下としたことで、極板格子や極柱の腐食が妨げられ、電池寿命が良化した。
(2)本発明の実施例2のセパレータは、実施例1のセパレータに対し、更に、アルカリ金属分の濃度(ICP発光分光分析)を4mg/100cm/枚以下としたことで、充電受入性が更に良化した。
(3)本発明の実施例3のセパレータは、実施例1のセパレータに対し、更に、ハロゲン分の濃度(ICP発光分光分析)を0.1mg/100cm/枚以下としたことで、電池寿命が更に良化した。
(4)よって、本発明の実施例1~3のセパレータを自動車用鉛蓄電池に適用すれば、アイドリングストップ車で求められる充電受入性および電池寿命の向上に寄与すると考えられる。
(5)比較例1のセパレータは、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm/枚超えであることから、充電受入性は100%と改善が見られず、また、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm/枚超えであることから、極板格子や極柱の腐食が促進され、電池寿命は100%と改善が見られなかった。
(6)比較例2のセパレータは、ハロゲン分の濃度(ICP発光分光分析)を0.4mg/100cm/枚以下としたことで、極板格子や極柱の腐食が妨げられ、電池寿命が良化したものの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm/枚超えであることから、充電受入性は100%と改善が見られなかった。
(7)比較例3のセパレータは、アルカリ金属分の濃度(ICP発光分光分析)を5mg/100cm/枚以下としたことで、充電受入性が良化したものの、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm/枚超えであることから、極板格子や極柱の腐食が促進され、電池寿命は100%と改善が見られなかった。
The results in Table 1 reveal the following.
(1) The separator of Example 1 of the present invention has an alkali metal concentration (ICP emission spectroscopic analysis) of 5 mg/100 cm 2 /sheet or less, so that the charge acceptance is improved and the halogen concentration is By setting (ICP emission spectroscopic analysis) to 0.4 mg/100 cm 2 /sheet or less, corrosion of the electrode plate lattice and electrode columns was prevented, and the battery life was improved.
(2) Compared to the separator of Example 1, the separator of Example 2 of the present invention has a concentration of alkali metals (ICP emission spectroscopic analysis) of 4 mg/100 cm 2 /sheet or less. has improved further.
(3) Compared to the separator of Example 1, the separator of Example 3 of the present invention has a halogen content concentration (ICP emission spectroscopic analysis) of 0.1 mg/100 cm 2 /sheet or less, thereby improving the battery life. has improved further.
(4) Therefore, if the separators of Examples 1 to 3 of the present invention are applied to lead-acid batteries for automobiles, it is considered that they contribute to improvement of charge acceptance and battery life required for idling stop vehicles.
(5) The separator of Comparative Example 1 has an alkali metal concentration (ICP emission spectroscopic analysis) of more than 5 mg/100 cm 2 /sheet, so the charge acceptance is 100%, which shows no improvement. The minute concentration (ICP emission spectroscopic analysis) exceeded 0.4 mg/100 cm 2 /sheet, which accelerated the corrosion of the electrode grid and the electrode columns, and the battery life was 100%, showing no improvement.
(6) The separator of Comparative Example 2 has a halogen concentration (ICP emission spectroscopic analysis) of 0.4 mg/100 cm 2 /sheet or less, which prevents corrosion of the electrode grid and electrode columns and extends the battery life. Although it was improved, the concentration of alkali metal (ICP emission spectroscopic analysis) exceeded 5 mg/100 cm 2 /sheet, so the charge acceptability was 100% and no improvement was observed.
(7) The separator of Comparative Example 3 had an alkali metal concentration (ICP emission spectroscopic analysis) of 5 mg/100 cm 2 /sheet or less, thereby improving charge acceptance, but the halogen concentration (ICP emission spectroscopic analysis) exceeded 0.4 mg/100 cm 2 /sheet, corrosion of the electrode grid and electrode columns was accelerated, and the battery life was 100% with no improvement.

Claims (4)

アルカリ珪酸塩水溶液と鉱酸を反応させ沈殿析出により非晶質シリカを合成後、濾過・水洗により純度の調整を行う沈降法で製造された合成非晶質シリカであるシリカ微粉を40重量%以上含む微多孔質膜からなる液式鉛蓄電池用セパレータを生産する方法であって、前記微多孔質膜は、ベース厚さが0.2~0.3mmの微多孔質フィルムであり、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)であることを特徴とする液式鉛蓄電池用セパレータを生産する方法40% by weight or more of fine silica powder, which is synthetic amorphous silica produced by a sedimentation method in which amorphous silica is synthesized by reacting an aqueous alkali silicate solution with a mineral acid to precipitate, and then the purity is adjusted by filtering and washing with water. A method for producing a separator for a flooded lead-acid battery comprising a microporous film comprising a microporous film having a base thickness of 0.2 to 0.3 mm, Alkaline metal content (Li, Na, K, Rb, Cs) concentration (ICP Emission spectroscopic analysis) is 5 mg / 100 cm 2 /sheet or less (however, the base thickness of the microporous membrane is converted to 0.2 mm), and the concentration of halogen content (F, Cl, Br, I) (ICP emission spectroscopic analysis ) is 0.4 mg/100 cm 2 /sheet or less (however, the base thickness of the microporous membrane is equivalent to 0.2 mm). 前記濾過・水洗は、イオン交換水、または、塩分(塩化ナトリウム)を含まない地下水を使用して行われることを特徴とする請求項1記載の液式鉛蓄電池用セパレータを生産する方法 2. The method of producing a separator for a flooded lead-acid battery according to claim 1, wherein said filtration and washing are performed using ion-exchanged water or groundwater containing no salt (sodium chloride). 前記微多孔質膜は、前記シリカ微粉とポリオレフィン系樹脂を主体としてなる微多孔質フィルムであることを特徴とする請求項1または2記載の液式鉛蓄電池用セパレータを生産する方法 3. The method of producing a separator for a liquid lead-acid battery according to claim 1, wherein said microporous film is a microporous film mainly composed of said fine silica powder and polyolefin resin. 前記微多孔質フィルムは、平均細孔径(水銀圧入法)が0.01~0.5μm、空隙率(水銀圧入法)が50~90体積%の微多孔質フィルムであることを特徴とする請求項3記載の液式鉛蓄電池用セパレータを生産する方法The microporous film is a microporous film having an average pore diameter (mercury porosimetry) of 0.01 to 0.5 μm and a porosity (mercury porosimetry) of 50 to 90% by volume. 4. A method of producing a separator for a flooded lead-acid battery according to claim 3.
JP2018509493A 2016-03-31 2017-03-31 Separator for flooded lead-acid battery Active JP7248425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022072931A JP7444920B2 (en) 2016-03-31 2022-04-27 Separator for liquid lead-acid batteries

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016072387 2016-03-31
JP2016072387 2016-03-31
PCT/JP2017/013500 WO2017170977A1 (en) 2016-03-31 2017-03-31 Separator for liquid-type lead storage battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022072931A Division JP7444920B2 (en) 2016-03-31 2022-04-27 Separator for liquid lead-acid batteries

Publications (2)

Publication Number Publication Date
JPWO2017170977A1 JPWO2017170977A1 (en) 2019-02-07
JP7248425B2 true JP7248425B2 (en) 2023-03-29

Family

ID=59965965

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018509493A Active JP7248425B2 (en) 2016-03-31 2017-03-31 Separator for flooded lead-acid battery
JP2022072931A Active JP7444920B2 (en) 2016-03-31 2022-04-27 Separator for liquid lead-acid batteries

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022072931A Active JP7444920B2 (en) 2016-03-31 2022-04-27 Separator for liquid lead-acid batteries

Country Status (3)

Country Link
JP (2) JP7248425B2 (en)
CN (1) CN108886124B (en)
WO (1) WO2017170977A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036831A (en) 2001-07-23 2003-02-07 Furukawa Battery Co Ltd:The Sealed lead storage battery having gel electrolyte
JP2003109567A (en) 2001-09-28 2003-04-11 Nippon Muki Co Ltd Separator for closed lead storage battery
JP2005053728A (en) 2003-08-01 2005-03-03 Dsl Japan Co Ltd Amorphous silica particle having high oil absorption and high structural performance
JP2005251394A (en) 2004-03-01 2005-09-15 Japan Storage Battery Co Ltd Lead storage battery
WO2008062727A1 (en) 2006-11-20 2008-05-29 Teijin Limited Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery
JP2008523211A (en) 2004-12-07 2008-07-03 ダラミック エルエルシー Microporous material and method for producing the same
JP2013234103A (en) 2012-05-11 2013-11-21 Taiheiyo Cement Corp Method for washing amorphous silica
WO2014046094A1 (en) 2012-09-19 2014-03-27 旭化成株式会社 Separator, manufacturing method thereof, and lithium ion secondary cell
WO2014128803A1 (en) 2013-02-22 2014-08-28 株式会社Gsユアサ Flooded lead-acid battery

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19527278A1 (en) * 1995-07-26 1997-01-30 Degussa Precipitated silica
JPH10172532A (en) * 1996-12-10 1998-06-26 Mitsubishi Paper Mills Ltd Non-woven fabric for alkaline battery separator and its manufacture
JPH1143890A (en) * 1996-12-26 1999-02-16 Mitsubishi Paper Mills Ltd Nonwoven fabric, separator for battery and battery
US6818355B1 (en) 1998-03-20 2004-11-16 Ensci Inc. Silica filled polymeric separator containing efficiency improving additives
JP3862925B2 (en) * 2000-03-29 2006-12-27 株式会社トクヤマ Electrolyte retention agent for lead acid battery
EP1577263A4 (en) * 2002-07-10 2010-04-14 Tokuyama Corp Cake of easily dispersible precipitated silica and process for producing the same
JP4846193B2 (en) * 2002-07-10 2011-12-28 株式会社トクヤマ Easily dispersible precipitated silica cake and method for producing the same
JP4628764B2 (en) * 2004-07-06 2011-02-09 旭化成株式会社 Storage device separator
CN2911976Y (en) 2006-04-17 2007-06-13 周文军 High efficiency environment protection accumulator
CN101060180A (en) 2006-04-17 2007-10-24 周文军 A low sodium silicon colloidal environment-friendly storage battery
JP2009032677A (en) * 2007-07-04 2009-02-12 Hitachi Maxell Ltd Porous membrane for separator and its manufacturing method; separator for battery and its manufacturing method; electrode for battery and its manufacturing method, and lithium secondary cell
JP5961421B2 (en) * 2012-03-29 2016-08-02 株式会社アドマテックス Thermoplastic resin composition and method for producing the same
KR101907555B1 (en) * 2013-03-15 2018-12-05 암테크 리서치 인터내셔널 엘엘씨 Low resistivity and sustained wettability battery separators
JP6317639B2 (en) 2014-07-18 2018-04-25 三菱製紙株式会社 Method for producing separator for electrochemical device
CN105428570A (en) * 2014-08-20 2016-03-23 招远市海思微孔隔膜有限公司 PVC battery separation plate production method and PVC battery separation plate
JP6030194B2 (en) * 2015-07-27 2016-11-24 日本板硝子株式会社 Liquid lead-acid battery separator and liquid lead-acid battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036831A (en) 2001-07-23 2003-02-07 Furukawa Battery Co Ltd:The Sealed lead storage battery having gel electrolyte
JP2003109567A (en) 2001-09-28 2003-04-11 Nippon Muki Co Ltd Separator for closed lead storage battery
JP2005053728A (en) 2003-08-01 2005-03-03 Dsl Japan Co Ltd Amorphous silica particle having high oil absorption and high structural performance
JP2005251394A (en) 2004-03-01 2005-09-15 Japan Storage Battery Co Ltd Lead storage battery
JP2008523211A (en) 2004-12-07 2008-07-03 ダラミック エルエルシー Microporous material and method for producing the same
WO2008062727A1 (en) 2006-11-20 2008-05-29 Teijin Limited Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery
JP2013234103A (en) 2012-05-11 2013-11-21 Taiheiyo Cement Corp Method for washing amorphous silica
WO2014046094A1 (en) 2012-09-19 2014-03-27 旭化成株式会社 Separator, manufacturing method thereof, and lithium ion secondary cell
WO2014128803A1 (en) 2013-02-22 2014-08-28 株式会社Gsユアサ Flooded lead-acid battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田川 博,電池に使うプラスチック材料,高分子,1956年,5(2),62-66

Also Published As

Publication number Publication date
CN108886124A (en) 2018-11-23
WO2017170977A1 (en) 2017-10-05
JP2022100369A (en) 2022-07-05
JPWO2017170977A1 (en) 2019-02-07
CN108886124B (en) 2021-06-04
JP7444920B2 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
EP1698656B1 (en) Microporous membrane made from polyolefin
JP5856788B2 (en) Power storage device separator and method for manufacturing the same
US10270136B2 (en) Separator for lead-acid battery, and lead-acid battery
US20230420804A1 (en) Lead acid battery separators, batteries, and related methods
JP6030194B2 (en) Liquid lead-acid battery separator and liquid lead-acid battery
JP3497569B2 (en) Polyethylene microporous membrane for non-aqueous battery separator
DE2627229B2 (en) Microporous film and process for its manufacture
JP7380580B2 (en) lead acid battery
JP2016519389A (en) Small resistivity lead acid battery separator
JP2016507877A (en) Separation membrane manufacturing method, separation membrane and battery using the same
WO2017143212A1 (en) Improved separators, lead acid batteries, and methods and systems associated therewith
JP2020035762A (en) Power storage device separator and manufacturing method thereof, and power storage device and manufacturing method thereof
JP2794179B2 (en) Polyethylene microporous membrane and lithium battery separator
JP7248425B2 (en) Separator for flooded lead-acid battery
JP2007095440A (en) Separator for electric storage device, and electric storage device
JP2014179519A (en) Separator for electricity storage device, and electricity storage device
JP5020449B2 (en) Sealed separator for sealed lead-acid battery
JP6988880B2 (en) Polyolefin microporous membrane
JP2013070006A (en) Heat resistance separator for power storage device, and method of manufacturing the same
JPH01318049A (en) Microporous polyolefin film
AT403860B (en) METHOD FOR PRODUCING A MICROPOROUS BATTERY DIVIDER AND ELECTRICAL CELLS AND ACCUMULATORS PRODUCED THEREFOR
JPH10279717A (en) Porous membrane and separator for battery
JP4842445B2 (en) Electric double layer capacitor separator
JP6769306B2 (en) Separator for lead-acid battery and lead-acid battery
JP2005285688A (en) Separator for battery and its manufacturing method as well as battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220405

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220427

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221227

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230207

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230307

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230316

R150 Certificate of patent or registration of utility model

Ref document number: 7248425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150