JP2005285688A - Separator for battery and its manufacturing method as well as battery - Google Patents

Separator for battery and its manufacturing method as well as battery Download PDF

Info

Publication number
JP2005285688A
JP2005285688A JP2004101137A JP2004101137A JP2005285688A JP 2005285688 A JP2005285688 A JP 2005285688A JP 2004101137 A JP2004101137 A JP 2004101137A JP 2004101137 A JP2004101137 A JP 2004101137A JP 2005285688 A JP2005285688 A JP 2005285688A
Authority
JP
Japan
Prior art keywords
battery
plasticizer
separator
battery separator
microporous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004101137A
Other languages
Japanese (ja)
Inventor
Takaaki Matsunami
敬明 松波
Yoshiaki Oishi
嘉明 大石
Shuhei Nagakubo
周平 長久保
Takashi Shitomi
貴史 蔀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2004101137A priority Critical patent/JP2005285688A/en
Publication of JP2005285688A publication Critical patent/JP2005285688A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for battery which has a good electrolytic liquid permeability without using a surfactant or while making the added quantity of the surfactant to an extremely small quantity, and its manufacturing method. <P>SOLUTION: The separator for battery using aqueous solution type electrolyte is composed of a fine porous membrane obtained by forming a raw material composition mainly made of polyolefin group resin, an inorganic powder, and a plasticizer into a sheet shape while heating, fusing, and kneading it, and removing the plasticizer. Water vapor is adhered to the inside and outside surface of the fine porous membrane including the holes by a humidifying treatment applied after the removal of the plasticizer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水溶液系電解液を使用する電池用セパレータ、特に、鉛蓄電池用セパレータに関するもので、詳しくは、界面活性剤を用いることなく、若しくは、界面活性剤の添加量を極微量とする一方で、電解液の浸透性が良好であり、電池の電槽壁の汚染を少なくする電池用セパレータとその製造方法並びに前記電池用セパレータを用いた電池に関する。   The present invention relates to a battery separator using an aqueous electrolyte, and more particularly to a lead-acid battery separator, and more specifically, without using a surfactant or making the addition amount of a surfactant extremely small. Thus, the present invention relates to a battery separator having good electrolyte permeability and less contamination of battery cell walls, a method for producing the same, and a battery using the battery separator.

従来、ポリオレフィン系樹脂、無機粉体及び鉱物オイル等の可塑剤を主体とした原料組成物を加熱溶融・混練しながらシート状に押出成形し、前記可塑剤を除去して得られたポリオレフィン系樹脂を骨格材とした微多孔質膜が電池用セパレータとして用いられている。
前記可塑剤として用いる鉱物オイルは、成形後のシートから除去されることにより、前記シートを多孔質化する役目を持つものであるが、通常は、そのすべてを除去せず、一定量をセパレータ内に残存させている。セパレータに残存させられた鉱物オイルは、多孔質な前記セパレータの内外表面を被覆し前記セパレータの骨格材であるポリオレフィン系樹脂の電池内での酸化劣化を防止する耐酸化性付与剤としての役目を持つものとなる。
電池用セパレータは、電池の小型化、高性能化等の要求から、内部抵抗つまり電気抵抗をできるだけ低くすることが望ましいが、前記ポリオレフィン系樹脂を骨格材とした微多孔質膜にあっては、前記ポリオレフィン系樹脂が疎水性であるため、電解液浸透性(水濡れ性)が悪く、そのままでは電気抵抗が高くなって電池用セパレータとして使用できない。このため、通常は、前記微多孔質膜に、親水化剤として界面活性剤等の表面活性剤を予め配合あるいは後処理して親水性を向上させた微多孔質膜が電池用セパレータとして使用されている。
Conventionally, a polyolefin resin obtained by extruding a raw material composition mainly composed of a plasticizer such as polyolefin resin, inorganic powder and mineral oil into a sheet shape while heating, melting and kneading, and removing the plasticizer. As a battery separator, a microporous membrane having a skeleton material is used.
The mineral oil used as the plasticizer serves to make the sheet porous by being removed from the molded sheet. Usually, all of the mineral oil is not removed, and a certain amount is not contained in the separator. Are left behind. The mineral oil left in the separator serves as an oxidation resistance-imparting agent that covers the inner and outer surfaces of the porous separator and prevents oxidative deterioration in the battery of the polyolefin resin that is the skeleton of the separator. It will have.
For battery separators, it is desirable to reduce the internal resistance, that is, the electrical resistance as much as possible from the demands of battery miniaturization, high performance, etc., but in the microporous membrane using the polyolefin-based resin as a skeleton material, Since the polyolefin-based resin is hydrophobic, the electrolyte solution permeability (water wettability) is poor, and the electrical resistance is increased as it is and cannot be used as a battery separator. For this reason, a microporous membrane in which a surfactant such as a surfactant is previously blended or post-treated with the microporous membrane as a hydrophilizing agent to improve hydrophilicity is usually used as a battery separator. ing.

このように、前記従来の電池用セパレータにあっては、前記セパレータ内に、耐酸化性付与剤としての鉱物オイルと、親水化剤としての界面活性剤をそれぞれ含んでいる。
しかしながら、前記電池用セパレータにあっては、前記セパレータ内に保持された界面活性剤は、電池の充電末期に起こるガッシングの作用によって前記セパレータから容易に脱離(遊離)する。電池の初充電時(化成)においては、電池内部が高温かつ酸化雰囲気に曝されるため、前記セパレータから遊離した界面活性剤が、初充電時の正極及び負極の活性化(酸化−還元反応)を阻害するようになり、初充電後の所定の電池容量を得られにくくするという問題があった。
また、前記電池用セパレータにあっては、前記セパレータ内に保持された界面活性剤は、同じく前記セパレータ内に保持された前記鉱物オイルの脱離(遊離)を促し、セパレータから遊離した鉱物オイルが、電解液の液面に浮上して、強酸によって変質して暗色の粘着物となり、電槽壁に付着して電槽を汚染し、電解液の液面線を視認しづらくするという問題があった。
このように、前記電池用セパレータにあっては、前記セパレータに親水化剤としての界面活性剤を含ませていることが、上記2つの問題を発生させていると言える。ただし、後者の問題については、前記界面活性剤を含ませていることに加え、耐酸化性付与剤としての鉱物オイルを含ませていることも影響している。しかし、前述したように、このようなポリオレフィン系樹脂を骨格材としたセパレータにあっては、前記鉱物オイルの含有によるセパレータの耐酸化性向上効果は大きく、セパレータの寿命性能を大きく左右するため、前記鉱物オイルの含有は欠かせない条件の一つとなっている。したがって、前記従来の電池用セパレータにおける2つの問題を解決するには、前記セパレータに界面活性剤を極力含ませないようにすることが問題解決への道であると考えられた。
そこで、本発明は、ポリオレフィン系樹脂、無機粉体及び可塑剤を主体とした原料組成物を加熱溶融・混練しながらシート状に成形し、前記可塑剤を除去して得られた微多孔質膜からなる水溶液系電解液を使用する電池用セパレータにおいて、界面活性剤を用いることなく、若しくは、界面活性剤の添加量を極微量に留める一方で、良好な電解液浸透性がもたらされる電池用セパレータとその製造方法を提供し、また、前記電池用セパレータを用いることにより、初充電時の電池容量のバラツキを低減でき、低温高率放電性能に優れた電池を提供することを目的とする。
Thus, in the conventional battery separator, the separator includes mineral oil as an oxidation resistance imparting agent and a surfactant as a hydrophilizing agent.
However, in the battery separator, the surfactant retained in the separator is easily detached (released) from the separator by the action of gassing that occurs at the end of charging of the battery. When the battery is initially charged (chemical conversion), the inside of the battery is exposed to a high temperature and oxidizing atmosphere, so that the surfactant released from the separator activates the positive electrode and the negative electrode during the initial charge (oxidation-reduction reaction). There is a problem that it becomes difficult to obtain a predetermined battery capacity after initial charging.
In the battery separator, the surfactant held in the separator also promotes the detachment (release) of the mineral oil held in the separator, and the mineral oil released from the separator is The surface of the electrolyte solution floats and changes in quality due to strong acid, resulting in a dark colored sticky substance that adheres to the wall of the battery case, contaminates the battery case, and makes it difficult to see the electrolyte line. It was.
Thus, in the battery separator, it can be said that the inclusion of the surfactant as a hydrophilizing agent causes the above two problems. However, regarding the latter problem, in addition to the inclusion of the surfactant, the inclusion of mineral oil as an oxidation resistance imparting agent is also affected. However, as described above, in the separator having such a polyolefin-based resin as a skeleton, the effect of improving the oxidation resistance of the separator due to the inclusion of the mineral oil is large, and greatly affects the life performance of the separator. The inclusion of the mineral oil is one of the indispensable conditions. Therefore, in order to solve the two problems in the conventional battery separator, it has been considered that the way to solve the problem is to prevent the separator from containing a surfactant as much as possible.
Therefore, the present invention provides a microporous membrane obtained by forming a raw material composition mainly composed of a polyolefin resin, an inorganic powder and a plasticizer into a sheet shape while heating, melting and kneading, and removing the plasticizer. Battery separator using an aqueous electrolyte solution comprising a battery separator that provides good electrolyte permeability without using a surfactant or while keeping the amount of surfactant added to a very small amount Another object of the present invention is to provide a battery having excellent low-temperature and high-rate discharge performance that can reduce variations in battery capacity during initial charging by using the battery separator.

本発明の電池用セパレータは、前記目的を達成するべく、請求項1に記載の通り、ポリオレフィン系樹脂、無機粉体及び可塑剤を主体とした原料組成物を加熱溶融・混練しながらシート状に成形し、前記可塑剤を除去して得られた微多孔質膜からなる水溶液系電解液を使用する電池用セパレータにおいて、前記可塑剤の除去後に施した加湿処理により、孔内を含む前記微多孔質膜の内外表面に水蒸気を付着させたことを特徴とする。
また、請求項2記載の電池用セパレータは、請求項1記載の電池用セパレータにおいて、前記水蒸気は前記微多孔質膜に含まれた前記無機粉体に吸着・保持されていることを特徴とする。
また、請求項3記載の電池用セパレータは、請求項1又は2記載の電池用セパレータにおいて、前記可塑剤が鉱物オイルであり、前記可塑剤は所定量を前記微多孔質膜内に残して除去されることを特徴とする。
また、請求項4記載の電池用セパレータは、請求項1乃至3の何れかに記載の電池用セパレータにおいて、前記原料組成物中の界面活性剤の配合量が0.1質量部以下であることを特徴とする。
また、本発明の電池用セパレータの製造方法は、前記目的を達成するべく、請求項5に記載の通り、ポリオレフィン系樹脂と無機粉体を主体とした微多孔質膜からなる水溶液系電解液を使用した電池用セパレータの製造方法であって、ポリオレフィン系樹脂、無機粉体及び可塑剤を主体とした原料組成物を加熱溶融・混練しながらシート状に成形し、前記可塑剤を除去して微多孔質膜シートを得た後、該シートを水蒸気を満たした雰囲気中に所定時間曝して加湿処理を施すことを特徴とする。
また、請求項6記載の電池用セパレータの製造方法は、請求項5記載の電池用セパレータの製造方法において、前記加湿処理を80〜120℃、相対湿度100%の雰囲気中、30〜180秒間行うことを特徴とする。
また、本発明の電池は、前記目的を達成するべく、請求項7に記載の通り、請求項1乃至4の何れかに記載の電池用セパレータを用いたことを特徴とする。
In order to achieve the above object, the battery separator of the present invention is formed into a sheet shape while heating and melting and kneading a raw material composition mainly composed of a polyolefin resin, an inorganic powder, and a plasticizer as described in claim 1. In a battery separator that uses an aqueous electrolyte solution made of a microporous film obtained by molding and removing the plasticizer, the microporous structure including the inside of the pores is obtained by a humidification treatment performed after the plasticizer is removed. Water vapor is attached to the inner and outer surfaces of the membrane.
The battery separator according to claim 2 is the battery separator according to claim 1, wherein the water vapor is adsorbed and held by the inorganic powder contained in the microporous film. .
The battery separator according to claim 3 is the battery separator according to claim 1 or 2, wherein the plasticizer is mineral oil, and the plasticizer is removed while leaving a predetermined amount in the microporous membrane. It is characterized by being.
The battery separator according to claim 4 is the battery separator according to any one of claims 1 to 3, wherein the amount of the surfactant in the raw material composition is 0.1 parts by mass or less. It is characterized by.
Further, in order to achieve the above object, the method for producing a battery separator of the present invention comprises an aqueous electrolyte solution comprising a microporous film mainly composed of a polyolefin resin and an inorganic powder as described in claim 5. A method for manufacturing a battery separator used, comprising forming a raw material composition mainly composed of a polyolefin resin, an inorganic powder and a plasticizer into a sheet while heating and melting and kneading, and removing the plasticizer to obtain a fine After obtaining a porous membrane sheet, the sheet is exposed to an atmosphere filled with water vapor for a predetermined time to perform a humidification treatment.
The battery separator manufacturing method according to claim 6 is the battery separator manufacturing method according to claim 5, wherein the humidification treatment is performed in an atmosphere of 80 to 120 ° C. and a relative humidity of 100% for 30 to 180 seconds. It is characterized by that.
The battery of the present invention is characterized by using the battery separator according to any one of claims 1 to 4 as described in claim 7 in order to achieve the object.

本発明の電池用セパレータによれば、ポリオレフィン系樹脂、無機粉体及び可塑剤を主体とした原料組成物を加熱溶融・混練しながらシート状に成形し、前記可塑剤を除去して得られたポリオレフィン系樹脂と無機粉体を主体とした微多孔質膜からなる水溶液系電解液を使用する電池用セパレータにおいて、前記可塑剤の除去後に施す加湿処理により、孔内を含む前記微多孔質膜の内外表面、特に、一次粒子の凝集体であり比表面積が非常に大きく水蒸気を取り込んで放出しにくい性質を持つ無機粉体に水蒸気を吸着・保持させて親水化することにより、従来親水化のために一般的に行われていた界面活性剤の添加を実質的に行うことなしに、電解液濡れ性を向上することができる。このため、界面活性剤を必要とすることなく、若しくは、界面活性剤の添加量を極微量に減らして、親水性に優れたセパレータを得ることができるようになり、該セパレータを用いた電池においては、電池内での界面活性剤の遊離の発生を実質的にゼロにすることができ、電池内で遊離した界面活性剤を起因とする還元性物質による初充電時の正極及び負極の活性化(酸化−還元反応)の阻害が防止され、初充電時の電池容量のバラツキを低減できる。更に、前記セパレータ中に界面活性剤が実質的に含まれていないことから、前記セパレータ中に耐酸化性付与剤として鉱物オイル等の前記可塑剤を所定量残存させるようにした場合であっても、電池内での鉱物オイル等の前記可塑剤の遊離が促されることがなく、電槽の汚染を大幅に低減できる。
また、本発明の電池用セパレータの製造方法によれば、ポリオレフィン系樹脂と無機粉体を主体とした微多孔質膜からなる水溶液系電解液を使用した電池用セパレータの製造方法であって、ポリオレフィン系樹脂、無機粉体及び可塑剤を主体とした原料組成物を加熱溶融・混練しながらシート状に成形し、前記可塑剤を除去して微多孔質膜シートを得た後、該シートを水蒸気を満たした雰囲気中に所定時間曝して加湿処理を施すようにすることにより、孔内を含む前記微多孔質膜の内外表面、特に、一次粒子の凝集体であり比表面積が非常に大きく水蒸気を取り込んで放出しにくい性質を持つ無機粉体に、短時間で効率的に、均一かつ確実に、水蒸気を吸着・保持させることができ、良好に親水化された電池用セパレータを単純かつ簡便に得ることができる。
According to the battery separator of the present invention, the raw material composition mainly composed of polyolefin resin, inorganic powder and plasticizer was formed into a sheet shape while being heated and melted and kneaded, and obtained by removing the plasticizer. In a battery separator that uses an aqueous electrolyte solution composed of a microporous membrane mainly composed of a polyolefin resin and an inorganic powder, the microporous membrane including pores is removed by a humidification treatment performed after the plasticizer is removed. For hydrophilization by adsorbing and holding water vapor on the inner and outer surfaces, especially the inorganic particles that are aggregates of primary particles and have a very large specific surface area and are difficult to release and release water vapor. In addition, the wettability of the electrolytic solution can be improved without substantially adding a surfactant which is generally performed. For this reason, a separator having excellent hydrophilicity can be obtained without the need for a surfactant or by reducing the addition amount of the surfactant to a very small amount. In a battery using the separator, Can substantially eliminate the occurrence of surfactant release in the battery, and the positive and negative electrodes are activated during the initial charge by a reducing substance caused by the surfactant released in the battery. Inhibition of (oxidation-reduction reaction) is prevented, and variations in battery capacity during initial charge can be reduced. Furthermore, since the surfactant is not substantially contained in the separator, even when a predetermined amount of the plasticizer such as mineral oil remains as an oxidation resistance imparting agent in the separator. The release of the plasticizer such as mineral oil in the battery is not promoted, and the contamination of the battery case can be greatly reduced.
Further, according to the battery separator manufacturing method of the present invention, there is provided a battery separator manufacturing method using an aqueous electrolyte solution composed of a microporous membrane mainly composed of a polyolefin resin and an inorganic powder. A raw material composition mainly composed of a resin, an inorganic powder, and a plasticizer is formed into a sheet shape while being heated and melted and kneaded, and the plasticizer is removed to obtain a microporous membrane sheet. By applying a humidification treatment in an atmosphere filled with a predetermined time, the inner and outer surfaces of the microporous membrane including the inside of the pores, in particular, the aggregate of primary particles, the specific surface area is very large, and water vapor is generated. Water vapor can be adsorbed and retained uniformly and reliably in a short time in an inorganic powder with properties that are difficult to take in and release, and a well-hydrophilized battery separator can be obtained simply and easily. It is possible.

本発明の電池用セパレータは、ポリオレフィン系樹脂、無機粉体及び可塑剤を原料組成物の主成分とし、該原料組成物を加熱溶融・混練しながらシート状に押出成形し、前記可塑剤を除去することによって得た、前記ポリオレフィン系樹脂を骨格材とする微多孔質膜の孔内を含む内外表面に水蒸気を付着させてなるものである。このため、電解液の浸透性が向上し、電池用セパレータとして好適に用いることができる。
前記水蒸気は、前記微多孔質膜に含まれた前記無機粉体に吸着・保持されていることが好ましい。
The battery separator of the present invention has a polyolefin resin, inorganic powder and plasticizer as the main components of the raw material composition, and extrudes the raw material composition into a sheet while heating and melting and kneading it to remove the plasticizer. Water vapor is adhered to the inner and outer surfaces including the inside of the pores of the microporous membrane having the polyolefin-based resin as a skeleton material obtained by doing so. For this reason, the permeability of electrolyte solution improves and it can use suitably as a battery separator.
It is preferable that the water vapor is adsorbed and held on the inorganic powder contained in the microporous membrane.

前記ポリオレフィン系樹脂としては、重量平均分子量150万以上のポリエチレン樹脂、ポリプロピレン樹脂等を一種又は複数種類混合して使用することができる。
前記無機粉体としては、酸化珪素、酸化チタン、珪酸カルシウム、酸化アルミニウム、炭酸カルシウム、カオリンクレー、タルク、珪藻土、ガラス繊維粉体等を一種又は複数種類混合して使用することができる。
前記可塑剤としては、潤滑油、流動パラフィン等の鉱物オイル、亜麻仁油等の植物オイル、ジオクチルフタレート、ジブチルフタレート等のフタル酸エステル類等が使用できるが、鉱物オイル、特に、パラフィン系潤滑油の使用が好ましい。
前記電池用セパレータを構成する副材料としては、親水化剤としての界面活性剤を前記原料組成物中に0.1質量部以下加えることも可能である。前記界面活性剤としては、例えば、前記可塑剤の除去に使用する溶剤(抽出溶剤)に不溶であるアニオン系、非イオン系界面活性剤等を使用することができる。他の副材料としては、前記抽出溶剤に不溶であるノボラックタイプ又はレゾールタイプのフェノール系やエポキシ系等の酸化防止剤を使用してもよい。
As the polyolefin resin, a polyethylene resin having a weight average molecular weight of 1,500,000 or more, a polypropylene resin, or the like can be used singly or in combination.
As the inorganic powder, silicon oxide, titanium oxide, calcium silicate, aluminum oxide, calcium carbonate, kaolin clay, talc, diatomaceous earth, glass fiber powder or the like can be used singly or in combination.
As the plasticizer, lubricating oil, mineral oil such as liquid paraffin, vegetable oil such as linseed oil, phthalic acid esters such as dioctyl phthalate, dibutyl phthalate, etc. can be used, but mineral oil, particularly paraffinic lubricating oil Use is preferred.
As an auxiliary material constituting the battery separator, a surfactant as a hydrophilizing agent can be added in an amount of 0.1 part by mass or less to the raw material composition. As the surfactant, for example, an anionic or nonionic surfactant that is insoluble in a solvent (extraction solvent) used for removing the plasticizer can be used. As another auxiliary material, a novolak type or resol type phenolic or epoxy antioxidant which is insoluble in the extraction solvent may be used.

本発明の電池用セパレータの製造方法は、ポリオレフィン系樹脂、無機粉体及び可塑剤を原料組成物の主成分とし、該原料組成物を加熱溶融・混練しながらシート状に押出成形し、前記可塑剤を除去することによって微多孔質膜シートを得た後、該シートを水蒸気を満たした雰囲気中に所定時間曝して加湿処理を施すようにするものである。
前記加湿処理は、80〜120℃、相対湿度100%の雰囲気中、30〜180秒間行うようにすることが好ましい。
前記雰囲気の温度が80℃未満であると、加湿処理を施す処理槽内に結露を生じるので好ましくなく、120℃を超えると、微多孔質膜の表面に存在するポリオレフィン系樹脂が収縮を起こし、微多孔質膜の電解液濡れ性が低下するため好ましくない。
前記加湿雰囲気に暴露する時間(加湿処理時間)は、前記微多孔質膜の厚さによって異なるが、比較的厚さの薄いタイプである自動車用電池向けのセパレータの場合では、30〜180秒が好ましい。加湿処理の効果は、180秒以下の暴露で十分に効果が出るものであり、これ以上に長くしたからと言って効果が上がるものではない。また、比較的厚さの厚い産業用電池向けのセパレータの場合では、60〜180秒が好ましい。
The method for producing a battery separator of the present invention comprises a polyolefin resin, an inorganic powder, and a plasticizer as main components of a raw material composition, and the raw material composition is extruded and formed into a sheet while being melted and kneaded. After obtaining the microporous membrane sheet by removing the agent, the sheet is exposed to an atmosphere filled with water vapor for a predetermined time to perform a humidification treatment.
The humidification treatment is preferably performed for 30 to 180 seconds in an atmosphere of 80 to 120 ° C. and a relative humidity of 100%.
When the temperature of the atmosphere is less than 80 ° C., it is not preferable because dew condensation occurs in the treatment tank for performing the humidification treatment, and when it exceeds 120 ° C., the polyolefin resin present on the surface of the microporous membrane shrinks. This is not preferable because the wettability of the electrolyte of the microporous membrane is lowered.
The time of exposure to the humidified atmosphere (humidification treatment time) varies depending on the thickness of the microporous membrane, but in the case of a separator for an automotive battery that is a relatively thin type, 30 to 180 seconds is required. preferable. The effect of the humidification treatment is sufficiently effective by exposure for 180 seconds or less, and the effect is not improved just because it is longer than this. Moreover, in the case of the separator for industrial batteries with comparatively thick thickness, 60 to 180 seconds are preferable.

次に、本発明の実施例を比較例と共に詳細に説明する。
(実施例1)
重量平均分子量150万のポリエチレン樹脂40質量部と、比表面積200m/gを有するシリカ粉体60質量部と、可塑剤として鉱物オイル140質量部とをヘンシェルミキサにて攪拌・混合した。この混合物を、二軸押出機を用いて加熱溶融・混練しながらTダイから押し出し、一方のロール表面にリブ形成用の溝を刻んだ成形ロール間を通して成形し、所定厚さのシートを得た。次いで、このシートを抽出溶剤(n−ヘキサン)中に浸漬して前記可塑剤の所定量を抽出除去し、50℃の乾燥炉に通して前記抽出溶剤を蒸発させるとともに前記シートを乾燥させて、前記鉱物オイルを13質量%含んだ、ベース厚さ0.25mm、総厚さ0.90mmの微多孔質膜シートを得た。次いで、このシートを、温度100℃、蒸気発生量5L/hrの水蒸気を吹き込んだ加湿処理槽内を通し、前記加湿雰囲気中に60秒間暴露させて加湿処理を施して、鉛蓄電池用セパレータを得た。
Next, the Example of this invention is described in detail with a comparative example.
(Example 1)
40 parts by mass of a polyethylene resin having a weight average molecular weight of 1,500,000, 60 parts by mass of silica powder having a specific surface area of 200 m 2 / g, and 140 parts by mass of mineral oil as a plasticizer were stirred and mixed in a Henschel mixer. This mixture was extruded from a T-die while being heated and melted and kneaded using a twin-screw extruder, and was molded through a forming roll having grooves for forming ribs formed on one roll surface to obtain a sheet having a predetermined thickness. . Next, the sheet is immersed in an extraction solvent (n-hexane) to extract and remove a predetermined amount of the plasticizer, and the extraction solvent is evaporated through a drying furnace at 50 ° C. and the sheet is dried. A microporous membrane sheet containing 13% by mass of the mineral oil and having a base thickness of 0.25 mm and a total thickness of 0.90 mm was obtained. Next, the sheet is passed through a humidification treatment tank into which steam at a temperature of 100 ° C. and a steam generation amount of 5 L / hr is blown, and is exposed to the humidified atmosphere for 60 seconds to perform a humidification treatment, thereby obtaining a lead-acid battery separator. It was.

(実施例2)
重量平均分子量150万のポリエチレン樹脂40質量部と、比表面積200m/gを有するシリカ粉体60質量部と、可塑剤として鉱物オイル140質量部とをヘンシェルミキサにて攪拌・混合した。この混合物を用いて実施例1と同様にして、前記鉱物オイルを13質量%含んだ、ベース厚さ0.25mm、総厚さ0.90mmの微多孔質膜シートを得た。次いで、このシートを、温度100℃、蒸気発生量5L/hrの水蒸気を吹き込んだ加湿処理槽内を通し、前記加湿雰囲気中に90秒間暴露させて加湿処理を施して、鉛蓄電池用セパレータを得た。
(Example 2)
40 parts by mass of a polyethylene resin having a weight average molecular weight of 1,500,000, 60 parts by mass of silica powder having a specific surface area of 200 m 2 / g, and 140 parts by mass of mineral oil as a plasticizer were stirred and mixed in a Henschel mixer. Using this mixture, a microporous membrane sheet containing 13% by mass of the mineral oil and having a base thickness of 0.25 mm and a total thickness of 0.90 mm was obtained in the same manner as in Example 1. Next, the sheet is passed through a humidification treatment tank into which steam at a temperature of 100 ° C. and a steam generation amount of 5 L / hr is blown, and is exposed to the humidified atmosphere for 90 seconds to perform a humidification process, thereby obtaining a lead-acid battery separator. It was.

(実施例3)
重量平均分子量150万のポリエチレン樹脂40質量部と、比表面積200m/gを有するシリカ粉体60質量部と、可塑剤として鉱物オイル140質量部と、界面活性剤0.1質量部とをヘンシェルミキサにて攪拌・混合した。この混合物を用いて実施例1と同様にして、前記鉱物オイルを13質量%含んだ、ベース厚さ0.25mm、総厚さ0.90mmの微多孔質膜シートを得た。次いで、このシートを、温度100℃、蒸気発生量5L/hrの水蒸気を吹き込んだ加湿処理槽内を通し、前記加湿雰囲気中に90秒間暴露させて加湿処理を施して、鉛蓄電池用セパレータを得た。
(Example 3)
40 parts by mass of a polyethylene resin having a weight average molecular weight of 1,500,000, 60 parts by mass of silica powder having a specific surface area of 200 m 2 / g, 140 parts by mass of mineral oil as a plasticizer, and 0.1 parts by mass of a surfactant Stir and mix with a mixer. Using this mixture, a microporous membrane sheet containing 13% by mass of the mineral oil and having a base thickness of 0.25 mm and a total thickness of 0.90 mm was obtained in the same manner as in Example 1. Next, the sheet is passed through a humidification treatment tank into which steam at a temperature of 100 ° C. and a steam generation amount of 5 L / hr is blown, and is exposed to the humidified atmosphere for 90 seconds to perform a humidification process, thereby obtaining a lead-acid battery separator. It was.

(実施例4)
重量平均分子量150万のポリエチレン樹脂35質量部と、比表面積200m/gを有するシリカ粉体65質量部と、可塑剤として鉱物オイル155質量部と、界面活性剤0.1質量部とをヘンシェルミキサにて攪拌・混合した。この混合物を用いて実施例1と同様にして、前記鉱物オイルを13質量%含んだ、ベース厚さ0.25mm、総厚さ0.90mmの微多孔質膜シートを得た。次いで、このシートを、温度100℃、蒸気発生量5L/hrの水蒸気を吹き込んだ加湿処理槽内を通し、前記加湿雰囲気中に90秒間暴露させて加湿処理を施して、鉛蓄電池用セパレータを得た。
Example 4
35 parts by mass of a polyethylene resin having a weight average molecular weight of 1,500,000, 65 parts by mass of silica powder having a specific surface area of 200 m 2 / g, 155 parts by mass of mineral oil as a plasticizer, and 0.1 parts by mass of a surfactant Stir and mix with a mixer. Using this mixture, a microporous membrane sheet containing 13% by mass of the mineral oil and having a base thickness of 0.25 mm and a total thickness of 0.90 mm was obtained in the same manner as in Example 1. Next, the sheet is passed through a humidification treatment tank into which steam at a temperature of 100 ° C. and a steam generation amount of 5 L / hr is blown, and is exposed to the humidified atmosphere for 90 seconds to perform a humidification process, thereby obtaining a lead-acid battery separator. It was.

(比較例1)
重量平均分子量150万のポリエチレン樹脂40質量部と、比表面積200m/gを有するシリカ粉体60質量部と、可塑剤として鉱物オイル140質量部と、界面活性剤0.1質量部とをヘンシェルミキサにて攪拌・混合した。 この混合物を、二軸押出機を用いて加熱溶融・混練しながらTダイから押し出し、一方のロール表面にリブ形成用の溝を刻んだ成形ロール間を通して成形し、所定厚さのシートを得た。次いで、このシートを抽出溶剤(n−ヘキサン)中に浸漬して前記可塑剤の所定量を抽出除去し、50℃の乾燥炉に通して前記抽出溶剤を蒸発させるとともに前記シートを乾燥させて、前記鉱物オイルを13質量%含んだ、ベース厚さ0.25mm、総厚さ0.90mmの微多孔質膜シートを得た。このシートを鉛蓄電池用セパレータとした。
(Comparative Example 1)
40 parts by mass of a polyethylene resin having a weight average molecular weight of 1,500,000, 60 parts by mass of silica powder having a specific surface area of 200 m 2 / g, 140 parts by mass of mineral oil as a plasticizer, and 0.1 parts by mass of a surfactant Stir and mix with a mixer. This mixture was extruded from a T-die while being heated and melted and kneaded using a twin-screw extruder, and was molded through a forming roll having grooves for forming ribs formed on one roll surface to obtain a sheet having a predetermined thickness. . Next, the sheet is immersed in an extraction solvent (n-hexane) to extract and remove a predetermined amount of the plasticizer, and the extraction solvent is evaporated through a drying furnace at 50 ° C. and the sheet is dried. A microporous membrane sheet containing 13% by mass of the mineral oil and having a base thickness of 0.25 mm and a total thickness of 0.90 mm was obtained. This sheet was used as a lead-acid battery separator.

(比較例2)
重量平均分子量150万のポリエチレン樹脂40質量部と、比表面積200m/gを有するシリカ粉体60質量部と、可塑剤として鉱物オイル140質量部と、界面活性剤2.0質量部とをヘンシェルミキサにて攪拌・混合した。 この混合物を用いて比較例1と同様にして、前記鉱物オイルを13質量%含んだ、ベース厚さ0.25mm、総厚さ0.90mmの微多孔質膜シートを得た。このシートを鉛蓄電池用セパレータとした。
(Comparative Example 2)
40 parts by mass of polyethylene resin having a weight average molecular weight of 1,500,000, 60 parts by mass of silica powder having a specific surface area of 200 m 2 / g, 140 parts by mass of mineral oil as a plasticizer, and 2.0 parts by mass of a surfactant Stir and mix with a mixer. Using this mixture, a microporous membrane sheet containing 13% by mass of the mineral oil and having a base thickness of 0.25 mm and a total thickness of 0.90 mm was obtained in the same manner as in Comparative Example 1. This sheet was used as a lead-acid battery separator.

(比較例3)
重量平均分子量150万のポリエチレン樹脂40質量部と、比表面積200m/gを有するシリカ粉体60質量部と、可塑剤として鉱物オイル140質量部と、界面活性剤2.5質量部とをヘンシェルミキサにて攪拌・混合した。 この混合物を用いて比較例1と同様にして、前記鉱物オイルを13質量%含んだ、ベース厚さ0.25mm、総厚さ0.90mmの微多孔質膜シートを得た。このシートを鉛蓄電池用セパレータとした。
(Comparative Example 3)
40 parts by mass of polyethylene resin having a weight average molecular weight of 1,500,000, 60 parts by mass of silica powder having a specific surface area of 200 m 2 / g, 140 parts by mass of mineral oil as a plasticizer, and 2.5 parts by mass of a surfactant Stir and mix with a mixer. Using this mixture, a microporous membrane sheet containing 13% by mass of the mineral oil and having a base thickness of 0.25 mm and a total thickness of 0.90 mm was obtained in the same manner as in Comparative Example 1. This sheet was used as a lead-acid battery separator.

次に、上記にて得られた実施例1〜4及び比較例1〜3の各鉛蓄電池用セパレータについて、浸透性、電気抵抗を以下の方法により測定した。結果を表1に示す。
<浸透性>
70mm角にカットしたセパレータを試料とし、比重1.30(20℃)の希硫酸に静かに浮かべ、上面まで希硫酸が染み渡る時間(秒)を測定した。
<電気抵抗>
SBA S0402 8.4.2項に準拠した試験設備を用いて、希硫酸浸漬24時間後の電気抵抗を測定した。
Next, the permeability and electric resistance of each of the lead storage battery separators of Examples 1 to 4 and Comparative Examples 1 to 3 obtained above were measured by the following methods. The results are shown in Table 1.
<Penetration>
A separator cut to a 70 mm square was used as a sample, and it was gently floated on dilute sulfuric acid having a specific gravity of 1.30 (20 ° C.), and the time (seconds) for dilute sulfuric acid to penetrate to the upper surface was measured.
<Electrical resistance>
The electrical resistance after 24 hours of immersion in dilute sulfuric acid was measured using a test facility based on SBA S0402 8.4.2.

次に、前記実施例1〜4及び比較例1〜3の各鉛蓄電池用セパレータを用いて、以下の方法により試験用鉛蓄電池を作製し、初充電後の電槽汚れ、初充電後の電池容量、高率放電特性を以下の方法により測定した。結果を表1に示す。
<電槽汚れ>
極板は、定法により得たペースト式の正極板及び負極板を用いた(JIS D5301に規定の38B20相当)。
前記実施例1〜4及び比較例1〜3の各鉛蓄電池用セパレータの端部をギヤシールしながら正極板を包み込み、正極板6枚と負極板7枚を交互に積層した後、極群の溶接を行った。
試験電槽は、Bサイズ電槽に、試験セルの温度が一定となるように、1セルおきに電槽側壁に直径15mmの開口部2ケ(両面で4ケ)を設けた電槽を用いて試験極群を組み込んだ。これに比重1.20の希硫酸500mLを注液した後、10.5Aの定電流で18時間通電した後、電槽壁に付着するオイル状物質の汚れ度合いを目視にて判定した。
判定は、オイル状物質の発生のないものを1、多いものを5として、5段階にて判定した。また、判定は、5人の観察者によって行い、5人の判定の平均値を表1に示した。
<試験用電池の作製>
極板は、定法により得たペースト式の正極板及び負極板を用いた(JIS D5301に規定の36B20相当)。
前記実施例1〜4及び比較例1〜3の各鉛蓄電池用セパレータの端部をギヤシールしながら正極板を包み込み、正極板6枚と負極板7枚を交互に積層した後、極群の溶接を行った。
得られた極群をポリプロピレン製の電槽へ挿入して、極群間と極柱を溶接した後、電槽フタを熱圧着した。これに希硫酸電解液を注液した後、40℃の恒温水槽中で、正極既化活物質理論容量の350%の電気量で18時間の電槽化成を行い、初充電して、試験用鉛蓄電池を完成させた。
<電池容量及び高率放電特性>
前記実施例1〜4及び比較例1〜3の各鉛蓄電池用セパレータに対して、前記試験用鉛蓄電池を5個ずつ作製し、JIS D5301に準拠して、電池容量及び高率放電特性を順次測定した。
Next, using each of the lead-acid battery separators of Examples 1 to 4 and Comparative Examples 1 to 3, a test lead-acid battery was prepared by the following method, and the battery case after the initial charge, the battery after the initial charge. The capacity and high rate discharge characteristics were measured by the following methods. The results are shown in Table 1.
<Battery stain>
As the electrode plate, a paste type positive electrode plate and negative electrode plate obtained by a conventional method were used (equivalent to 38B20 defined in JIS D5301).
While enveloping the positive electrode plate while gear-sealing the end portions of the lead-acid battery separators of Examples 1 to 4 and Comparative Examples 1 to 3, and alternately laminating 6 positive electrode plates and 7 negative electrode plates, welding the pole group Went.
The test battery case is a B size battery case in which 2 cell openings (4 on both sides) with a diameter of 15 mm are provided on the side wall of the battery case so that the temperature of the test cell is constant. The test electrode group was incorporated. After pouring 500 mL of dilute sulfuric acid having a specific gravity of 1.20, the mixture was energized for 18 hours at a constant current of 10.5 A, and then the degree of contamination of the oily substance adhering to the cell wall was visually determined.
Judgment was made in 5 stages, with 1 being no oily substance and 5 being more. Further, the determination was performed by five observers, and the average value of the five determinations is shown in Table 1.
<Production of test battery>
As the electrode plate, a paste-type positive electrode plate and negative electrode plate obtained by a conventional method were used (corresponding to 36B20 defined in JIS D5301).
While enveloping the positive electrode plate while gear-sealing the end portions of the lead-acid battery separators of Examples 1 to 4 and Comparative Examples 1 to 3, and alternately laminating 6 positive electrode plates and 7 negative electrode plates, welding the pole group Went.
The obtained electrode group was inserted into a battery case made of polypropylene and the electrode group and the pole column were welded, and then the battery case cover was thermocompression bonded. After injecting a dilute sulfuric acid electrolyte solution into this, the battery was formed in a constant-temperature water bath at 40 ° C. for 18 hours with an electric quantity of 350% of the positive electrode active material theoretical capacity, charged for the first time, and used for testing. A lead-acid battery was completed.
<Battery capacity and high rate discharge characteristics>
For each of the lead-acid battery separators of Examples 1 to 4 and Comparative Examples 1 to 3, five test lead-acid batteries were produced, and the battery capacity and the high-rate discharge characteristics were sequentially determined in accordance with JIS D5301. It was measured.

Figure 2005285688
Figure 2005285688

表1に示す結果から、以下のようなことが分かった。
(1)実施例1〜4の鉛蓄電池用セパレータは、可塑剤の除去後に施した加湿処理により、孔内を含む微多孔質膜の内外表面に水蒸気を付着させたことにより、電解液濡れ性を付与するための界面活性剤を0.1質量部以下の極微量しか配合していないにも拘わらず、前記界面活性剤を2.0質量部配合した比較例2の鉛蓄電池用セパレータとほぼ同等の浸透性(電解液濡れ性)が得られ、これにより比較例2の鉛蓄電池用セパレータとほぼ同等の低電気抵抗が得られた。
(2)実施例1〜4の鉛蓄電池用セパレータを用いた鉛蓄電池では、前記微多孔質膜を得る際の原料組成物中の界面活性剤の配合量を0.1質量部以下と極微量に留めたことにより、比較例1〜3の鉛蓄電池用セパレータ同様に前記セパレータ中に耐酸化性付与剤として13.0質量%の鉱物オイルを含有させたにも拘わらず、初充電時の前記セパレータ中の鉱物オイルの遊離を抑え、初充電後の電槽汚れの発生を大幅に低減できた。また、初充電後の電池容量及び高率放電特性についても、比較例1〜3の鉛蓄電池用セパレータを用いた鉛蓄電池に比較して何ら遜色のない良好な結果が得られた。
(3)このように、本発明の鉛蓄電池用セパレータでは、微多孔質膜を得る際の可塑剤の除去後の工程において単に加湿処理を施すというごく簡易かつ単純な工程を付加するだけで、従来の界面活性剤を多量に添加して製造した鉛蓄電池用セパレータと同等の電解液濡れ性及び低電気抵抗が得られるようになるとともに、前記セパレータ中に耐酸化性付与剤としての鉱物オイルを適正量含有した場合であっても、鉛蓄電池使用時における前記セパレータ中の鉱物オイルの遊離を極力抑え該鉱物オイルによる電槽壁の汚染を極力抑えることができるようになる。
尚、実施例3の結果について考察するに、実施例3のセパレータの電気抵抗は実施例2よりも約7%低減されていることから、セパレータの親水化のためには、前記加湿処理とともに、初充電後の電槽汚れの発生に影響を与えない程度の極微量(0.1質量部以下)での界面活性剤の添加も併用した方が効果が高いと言える。
尚、実施例4の結果について考察するに、実施例4のセパレータの電気抵抗は実施例3よりも約9%低減されていることから、前記加湿処理によってセパレータに親水性を付与するには、水蒸気を吸着・保持する無機粉体をセパレータ中に多く含ませた方が効果が高いと言える。
(4)これに対し、比較例2〜3の鉛蓄電池用セパレータでは、微多孔質膜を得るための原料組成物中に界面活性剤を2.0〜2.5質量部と多量に配合したため、浸透性(電解液濡れ性)が良好で低電気抵抗が得られたものの、鉛蓄電池に適用した際の初充電時の前記セパレータ中からの鉱物オイルの遊離を多く発生させ、初充電後の電槽汚れを多く発生させてしまうとともに、初充電時の前記セパレータ中からの界面活性剤自体の遊離も多く発生し、初充電時の正極及び負極の活性化(酸化−還元反応)を阻害して電池容量を低下させてしまう結果となった。
また、比較例1の鉛蓄電池用セパレータでは、微多孔質膜を得るための原料組成物中に親水性付与のための界面活性剤を0.1質量部の極微量のみ配合するようにしたため、比較例2〜3の鉛蓄電池用セパレータを用いた場合に問題となった初充電後の鉛蓄電池における電槽汚れの発生については大幅な低減が図れたものの、前記セパレータの浸透性(電解液濡れ性)が大幅に悪化し前記セパレータの電気抵抗が大幅に悪化して、鉛蓄電池における高率放電特性を大幅に悪化(基準値を下回る)させてしまう結果となった。
From the results shown in Table 1, the following were found.
(1) The lead-acid battery separators of Examples 1 to 4 were made to have electrolyte wettability by attaching water vapor to the inner and outer surfaces of the microporous membrane including the inside of the pores by the humidification treatment performed after removing the plasticizer. The lead-acid battery separator of Comparative Example 2 containing 2.0 parts by mass of the surfactant is almost the same as the surfactant for imparting the amount of surfactants. Equivalent penetrability (electrolytic solution wettability) was obtained, and as a result, low electrical resistance almost equivalent to that of the lead-acid battery separator of Comparative Example 2 was obtained.
(2) In the lead acid battery using the lead acid battery separator of Examples 1 to 4, the blending amount of the surfactant in the raw material composition when obtaining the microporous membrane is 0.1 parts by mass or less and a trace amount. In the same manner as in the lead-acid battery separators of Comparative Examples 1 to 3, the separator at the time of initial charge was charged with 13.0% by mass of mineral oil as an oxidation resistance-imparting agent. The release of mineral oil in the separator was suppressed, and the occurrence of battery case contamination after the initial charge could be greatly reduced. In addition, the battery capacity after the first charge and the high rate discharge characteristics were also inferior to those of the lead storage battery using the lead storage battery separators of Comparative Examples 1 to 3.
(3) Thus, in the lead-acid battery separator of the present invention, a simple and simple process of simply performing a humidification process in the process after the removal of the plasticizer when obtaining the microporous film is added. Electrolyte wettability and low electrical resistance equivalent to those of lead-acid battery separators manufactured by adding a large amount of conventional surfactants can be obtained, and mineral oil as an oxidation resistance imparting agent is added to the separator. Even when it is contained in an appropriate amount, the mineral oil in the separator is prevented from being liberated as much as possible when the lead-acid battery is used, and contamination of the battery case wall by the mineral oil can be minimized.
In addition, considering the result of Example 3, since the electrical resistance of the separator of Example 3 is reduced by about 7% compared to Example 2, in order to make the separator hydrophilic, along with the humidification treatment, It can be said that it is more effective to use the addition of a surfactant in a trace amount (0.1 parts by mass or less) that does not affect the occurrence of battery case contamination after the initial charge.
In addition, considering the result of Example 4, since the electrical resistance of the separator of Example 4 is reduced by about 9% compared to Example 3, to impart hydrophilicity to the separator by the humidification treatment, It can be said that the effect is higher when the separator contains more inorganic powder that adsorbs and retains water vapor.
(4) On the other hand, in the lead-acid battery separators of Comparative Examples 2-3, a surfactant was blended in a large amount of 2.0-2.5 parts by mass in the raw material composition for obtaining a microporous membrane. Although it has good permeability (electrolyte wettability) and low electrical resistance, it generates a lot of mineral oil liberation from the separator during the initial charge when applied to a lead-acid battery. In addition to causing a lot of battery case contamination, a lot of surfactant itself is liberated from the separator during the initial charge, which inhibits activation (oxidation-reduction reaction) of the positive electrode and the negative electrode during the initial charge. As a result, the battery capacity was reduced.
In the lead-acid battery separator of Comparative Example 1, only a very small amount of 0.1 part by mass of a surfactant for imparting hydrophilicity was blended in the raw material composition for obtaining a microporous membrane. Although the battery case contamination in the lead storage battery after the initial charge, which was a problem when using the lead storage battery separators of Comparative Examples 2-3, was greatly reduced, the permeability of the separator (wetting the electrolyte) The electrical resistance of the separator is greatly deteriorated, and the high rate discharge characteristics of the lead storage battery are greatly deteriorated (below the reference value).

Claims (7)

ポリオレフィン系樹脂、無機粉体及び可塑剤を主体とした原料組成物を加熱溶融・混練しながらシート状に成形し、前記可塑剤を除去して得られた微多孔質膜からなる水溶液系電解液を使用する電池用セパレータにおいて、前記可塑剤の除去後に施した加湿処理により、孔内を含む前記微多孔質膜の内外表面に水蒸気を付着させたことを特徴とする電池用セパレータ。   An aqueous electrolyte solution comprising a microporous membrane obtained by forming a raw material composition mainly composed of a polyolefin resin, inorganic powder and a plasticizer into a sheet while heating and kneading and kneading, and removing the plasticizer A battery separator using a battery, wherein water vapor is attached to the inner and outer surfaces of the microporous membrane including the inside of the pores by a humidification treatment performed after removing the plasticizer. 前記水蒸気は前記微多孔質膜に含まれた前記無機粉体に吸着・保持されていることを特徴とする請求項1記載の電池用セパレータ。   2. The battery separator according to claim 1, wherein the water vapor is adsorbed and held by the inorganic powder contained in the microporous membrane. 前記可塑剤が鉱物オイルであり、前記可塑剤は所定量を前記微多孔質膜内に残して除去されることを特徴とする請求項1又は2記載の電池用セパレータ。   The battery separator according to claim 1 or 2, wherein the plasticizer is mineral oil, and the plasticizer is removed leaving a predetermined amount in the microporous membrane. 前記原料組成物中の界面活性剤の配合量が0.1質量部以下であることを特徴とする請求項1乃至3の何れかに記載の電池用セパレータ。   The battery separator according to any one of claims 1 to 3, wherein the amount of the surfactant in the raw material composition is 0.1 parts by mass or less. ポリオレフィン系樹脂と無機粉体を主体とした微多孔質膜からなる水溶液系電解液を使用した電池用セパレータの製造方法であって、ポリオレフィン系樹脂、無機粉体及び可塑剤を主体とした原料組成物を加熱溶融・混練しながらシート状に成形し、前記可塑剤を除去して微多孔質膜シートを得た後、該シートを水蒸気を満たした雰囲気中に所定時間曝して加湿処理を施すことを特徴とする電池用セパレータの製造方法。   A method for producing a battery separator using an aqueous electrolyte comprising a microporous membrane mainly composed of a polyolefin resin and an inorganic powder, the raw material composition mainly comprising a polyolefin resin, an inorganic powder and a plasticizer The material is molded into a sheet while being heated and melted and kneaded, the plasticizer is removed to obtain a microporous membrane sheet, and then the sheet is exposed to an atmosphere filled with water vapor for a predetermined time to be humidified. A method for producing a battery separator, comprising: 前記加湿処理を80〜120℃、相対湿度100%の雰囲気中、30〜180秒間行うことを特徴とする請求項5記載の電池用セパレータの製造方法。   The method for producing a battery separator according to claim 5, wherein the humidification treatment is performed in an atmosphere of 80 to 120 ° C and a relative humidity of 100% for 30 to 180 seconds. 請求項1乃至4の何れかに記載の電池用セパレータを用いたことを特徴とする電池。   A battery comprising the battery separator according to claim 1.
JP2004101137A 2004-03-30 2004-03-30 Separator for battery and its manufacturing method as well as battery Withdrawn JP2005285688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101137A JP2005285688A (en) 2004-03-30 2004-03-30 Separator for battery and its manufacturing method as well as battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101137A JP2005285688A (en) 2004-03-30 2004-03-30 Separator for battery and its manufacturing method as well as battery

Publications (1)

Publication Number Publication Date
JP2005285688A true JP2005285688A (en) 2005-10-13

Family

ID=35183825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101137A Withdrawn JP2005285688A (en) 2004-03-30 2004-03-30 Separator for battery and its manufacturing method as well as battery

Country Status (1)

Country Link
JP (1) JP2005285688A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073737A (en) * 2011-09-27 2013-04-22 Nippon Sheet Glass Co Ltd Separator for electric power storage device
JP2016519389A (en) * 2013-03-15 2016-06-30 アムテック リサーチ インターナショナル エルエルシー Small resistivity lead acid battery separator
CN111589334A (en) * 2020-05-29 2020-08-28 苏州捷力新能源材料有限公司 Antioxidant adding device and method for wet lithium battery diaphragm
US11811088B2 (en) 2019-09-19 2023-11-07 Kabushiki Kaisha Toshiba Separator, electrode group, secondary battery, battery pack, vehicle, and stationary power supply

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073737A (en) * 2011-09-27 2013-04-22 Nippon Sheet Glass Co Ltd Separator for electric power storage device
JP2016519389A (en) * 2013-03-15 2016-06-30 アムテック リサーチ インターナショナル エルエルシー Small resistivity lead acid battery separator
US9997756B2 (en) 2013-03-15 2018-06-12 Amtek Research International Llc Lead-acid battery separators with ultra low resistivity and sustained wettability
JP2019075381A (en) * 2013-03-15 2019-05-16 アムテック リサーチ インターナショナル エルエルシー Micro-resistivity lead acid battery separator
US11811088B2 (en) 2019-09-19 2023-11-07 Kabushiki Kaisha Toshiba Separator, electrode group, secondary battery, battery pack, vehicle, and stationary power supply
CN111589334A (en) * 2020-05-29 2020-08-28 苏州捷力新能源材料有限公司 Antioxidant adding device and method for wet lithium battery diaphragm

Similar Documents

Publication Publication Date Title
EP1720209B1 (en) Separator for lead acid storage battery
KR102248232B1 (en) Separator, lithium secondary battery comprising the seperator and manufacturing method thereof
US9093694B2 (en) Composite battery separator
JP2011165637A (en) Positive electrode collector, method of manufacturing the same, and positive electrode body for lithium ion battery
JP4892236B2 (en) Active material separation method for electrode plates for storage batteries
CN115863753A (en) Gel electrolyte diaphragm and preparation method and application thereof
JP2005285688A (en) Separator for battery and its manufacturing method as well as battery
JP2018060615A (en) Lead-acid battery and method of manufacturing the same
JP4640919B2 (en) Battery separator
JP5578123B2 (en) Liquid lead-acid battery
WO2021084879A1 (en) Lead acid storage battery
JP7314950B2 (en) Lead-acid battery separator and lead-acid battery
JP6066109B2 (en) Control valve type lead-acid battery and motorcycle
JP2014179519A (en) Separator for electricity storage device, and electricity storage device
JP7444920B2 (en) Separator for liquid lead-acid batteries
JP6436092B2 (en) Lead-acid battery separator and lead-acid battery
JP6769306B2 (en) Separator for lead-acid battery and lead-acid battery
JP4842445B2 (en) Electric double layer capacitor separator
JP6582636B2 (en) Lead acid battery
WO2021084877A1 (en) Lead-acid battery
JP4789419B2 (en) Lead-acid battery separator
JP2010080413A (en) Control valve type lead acid storage battery
JP7314949B2 (en) lead acid battery
JP2007095497A (en) Separator for storage battery, and storage battery
CN114683507A (en) Preparation method of high-wettability diaphragm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090212