JP7444920B2 - Separator for liquid lead-acid batteries - Google Patents

Separator for liquid lead-acid batteries Download PDF

Info

Publication number
JP7444920B2
JP7444920B2 JP2022072931A JP2022072931A JP7444920B2 JP 7444920 B2 JP7444920 B2 JP 7444920B2 JP 2022072931 A JP2022072931 A JP 2022072931A JP 2022072931 A JP2022072931 A JP 2022072931A JP 7444920 B2 JP7444920 B2 JP 7444920B2
Authority
JP
Japan
Prior art keywords
separator
microporous film
weight
sheet
microporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022072931A
Other languages
Japanese (ja)
Other versions
JP2022100369A (en
Inventor
貴史 蔀
忠正 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entek Asia Inc
Original Assignee
Entek Asia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entek Asia Inc filed Critical Entek Asia Inc
Publication of JP2022100369A publication Critical patent/JP2022100369A/en
Application granted granted Critical
Publication of JP7444920B2 publication Critical patent/JP7444920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電解液を非流動化させてメンテナンスフリー化したいわゆる密閉型鉛蓄電池(制御弁式鉛蓄電池とも言う)ではなく、旧来の方式である流動性をもった電解液を有したいわゆる液式鉛蓄電池(ベント式鉛蓄電池、開放型鉛蓄電池とも言う)に用いる、液式鉛蓄電池用セパレータに関する。 The present invention is not a so-called sealed lead-acid battery (also referred to as a valve-controlled lead-acid battery) that is maintenance-free by making the electrolyte non-fluid, but a so-called liquid battery that has a fluid electrolyte, which is the conventional method. The present invention relates to a separator for liquid lead-acid batteries used in lead-acid batteries (also referred to as vented lead-acid batteries and open-type lead-acid batteries).

従来、液式鉛蓄電池用セパレータとして、ポリエチレンセパレータと呼ばれる、通常、重量平均分子量が50万以上のポリオレフィン系樹脂(通常超高分子量ポリエチレン)20~60重量%と、比表面積が50m/g以上の無機粉体(通常シリカ微粉)40~80重量%と、開孔剤を兼ねる可塑剤(通常鉱物オイル)0~30重量%と、界面活性剤(固形分)0~10重量%と、添加剤(酸化防止剤、耐候剤等)0~5重量%とからなる微多孔質フィルム製セパレータがある。 Conventionally, as a separator for liquid lead-acid batteries, a separator called a polyethylene separator is usually made of 20 to 60% by weight of a polyolefin resin (usually ultra-high molecular weight polyethylene) with a weight average molecular weight of 500,000 or more and a specific surface area of 50 m 2 /g or more. 40 to 80% by weight of inorganic powder (usually fine silica powder), 0 to 30% by weight of a plasticizer that also serves as a pore opening agent (usually mineral oil), and 0 to 10% by weight of a surfactant (solid content). There is a microporous film separator comprising 0 to 5% by weight of agents (antioxidants, weathering agents, etc.).

前記微多孔質フィルム製セパレータは、通常、前記ポリオレフィン系樹脂と前記無機粉体と前記可塑剤(上記セパレータ組成よりも多めに配合)と前記界面活性剤と前記添加剤を混合した原料組成物を加熱溶融混練しながらシート状に押し出し、所定の厚さにロール圧延成形した後、前記可塑剤の全部または一部を抽出除去することによって得られる、ベース厚さが0.1~0.3mm程度、平均細孔径(水銀圧入法)が0.01~0.5μm程度、空隙率(水銀圧入法)が50~90体積%程度のシートである。 The microporous film separator is usually made of a raw material composition that is a mixture of the polyolefin resin, the inorganic powder, the plasticizer (blended in a larger amount than the separator composition), the surfactant, and the additives. A base thickness of about 0.1 to 0.3 mm obtained by extruding into a sheet while heating, melting and kneading, roll-rolling to a predetermined thickness, and then extracting and removing all or part of the plasticizer. The sheet has an average pore diameter (mercury intrusion method) of about 0.01 to 0.5 μm and a porosity (mercury intrusion method) of about 50 to 90% by volume.

前記無機粉体の役割は、原料組成物を加熱溶融混練する際に可塑剤を吸着担持しておくこと、微多孔質フィルムの微多孔構造(緻密で複雑な孔構造と高空隙率)を作り出すこと、微多孔質フィルムの製造過程で可塑剤を除去した際に生じるシート収縮に耐え寸法安定性を保つこと、微多孔質フィルムの電池組み込み時の使用前に行われる乾燥工程(水分除去工程)のような加熱処理時にもシート収縮に耐え寸法安定性を保つこと、微多孔質フィルムの電解液吸液性を良くすること、微多孔質フィルムの電解液濡れ性を良くすること、微多孔質フィルムの電解液保持性を良くすること、などである。 The role of the inorganic powder is to adsorb and support the plasticizer when the raw material composition is heated, melted and kneaded, and to create the microporous structure (dense and complex pore structure and high porosity) of the microporous film. The microporous film must withstand sheet shrinkage that occurs when the plasticizer is removed during the manufacturing process and maintain dimensional stability.The drying process (moisture removal process) that is performed before the microporous film is used when it is incorporated into a battery. To withstand sheet shrinkage and maintain dimensional stability even during heat treatments such as This includes improving the electrolyte retention of the film.

よって、通常、前記無機粉体としては、シリカ微粉が用いられ、特に、比表面積が大きいこと、吸油量が大きいこと、親水基(シラノール基)が多いこと、などの観点から、乾式法または湿式法の製造方法のうち、湿式法の沈降法で製造された合成非晶質シリカが、用いられている。 Therefore, silica fine powder is usually used as the inorganic powder, and is processed by dry method or wet method from the viewpoint of having a large specific surface area, a large oil absorption amount, and having many hydrophilic groups (silanol groups). Synthetic amorphous silica produced by a wet precipitation method is used.

一方、鉛蓄電池の車載用途においては、アイドリングストップ車に搭載される鉛蓄電池では、放電量が多くなるため、充電受入性の高いことが求められるようになってきている。鉛蓄電池の充電受入性を高めようとする場合、電解液中にアルカリ金属(Li、Na、K、Rb、Cs)イオンが多く存在すると、充電受入性の向上の妨げになることが知られている(特許文献1)。 On the other hand, in automotive applications for lead-acid batteries, lead-acid batteries installed in idling-stop vehicles are required to have high charge acceptability because the amount of discharge increases. When trying to improve charge acceptability of lead-acid batteries, it is known that the presence of a large amount of alkali metal (Li, Na, K, Rb, Cs) ions in the electrolyte will hinder the improvement of charge acceptability. (Patent Document 1).

また、鉛蓄電池においては、ハロゲン(F、Cl、Br、I)の不純物が多く混入すると、鉛または鉛合金製の極板格子や極柱を腐食させ、電池寿命性能を低下させる要因になり得ることも知られている(特許文献2)。 In addition, in lead-acid batteries, if large amounts of halogen (F, Cl, Br, I) impurities are mixed in, it can corrode the lead or lead alloy electrode grids and poles, leading to a decrease in battery life performance. It is also known (Patent Document 2).

前記沈降法で製造される合成非晶質シリカとは、中性またはアルカリ性下でアルカリ珪酸塩(珪酸ナトリウム)水溶液と鉱酸(硫酸)を反応させて非晶質シリカを沈殿析出させるという方法によるものであり、生成された非晶質シリカには、副生物として硫酸ナトリウム等の塩類が含まれており、後工程で濾過・水洗の処理により塩類を除去する処理(純度を高める処理)が行われている。 Synthetic amorphous silica produced by the precipitation method is a method in which amorphous silica is precipitated by reacting an aqueous alkali silicate (sodium silicate) solution with a mineral acid (sulfuric acid) under neutral or alkaline conditions. The amorphous silica produced contains salts such as sodium sulfate as a by-product, and in the post-process, the salts are removed through filtration and water washing (processing to increase purity). It is being said.

国際公開第2014/128803号International Publication No. 2014/128803 特開2005-251394号公報Japanese Patent Application Publication No. 2005-251394

しかし、前記非晶質シリカの製造工程における塩類の除去処理は完全ではないため、通常、製造された前記非晶質シリカは、副生物の硫酸ナトリウムを微量含んでいる。よって、このようなシリカ微粉を用いて製造した前記微多孔質フィルムにも、微量の硫酸ナトリウムが含まれており、鉛蓄電池用セパレータとして使用された場合には、電池使用が進むにつれて、電解液中にNaイオンを溶出させてしまい、溶出量が多い場合には、充電受入性の向上を妨げる要因になり得る。 However, since the salt removal process in the amorphous silica manufacturing process is not complete, the manufactured amorphous silica usually contains a small amount of by-product sodium sulfate. Therefore, the microporous film produced using such fine silica powder also contains a trace amount of sodium sulfate, and when used as a separator for lead-acid batteries, the electrolyte will gradually dissolve as the battery is used. If the elution amount is large, it may become a factor that hinders the improvement of charge acceptability.

また、前記非晶質シリカの製造工程における塩類の除去処理を水洗にて行うに際し、水洗に使用する水が、ハロゲンであるCl分を混入させてしまうことも起こり得る。つまり、水道水(残留塩素が含まれる)を使う場合や、塩分(塩化ナトリウム)を含んだ地下水を使う場合などである。よって、このような水を用いて水洗処理が行われたシリカ微粉を用いて製造した前記微多孔質フィルムにも、微量のCl分が含まれており、鉛蓄電池用セパレータとして使用された場合には、電池使用が進むにつれて、電解液中にClイオンを溶出させてしまい、溶出量が多い場合には、極板格子や極柱の腐食を促し、電池寿命性能を低下させる要因になり得る。 Further, when the salt removal treatment in the amorphous silica production process is performed by washing with water, the water used for washing may contain Cl, which is a halogen. In other words, when using tap water (which contains residual chlorine) or when using groundwater containing salt (sodium chloride). Therefore, the above-mentioned microporous film produced using fine silica powder that has been washed with water also contains a trace amount of Cl, and when used as a separator for lead-acid batteries. As the battery continues to be used, Cl ions are eluted into the electrolyte, and if the amount eluted is large, corrosion of the electrode plate lattice and pole pillars may be promoted, which may be a factor in reducing the battery life performance.

よって、本発明は、前記従来の問題点に鑑み、主原料として沈降法で製造された合成非晶質シリカであるシリカ微粉を用いて製造した微多孔質膜からなる液式鉛蓄電池用セパレータにあって、これを使用した電池で電池使用が進んだ場合にも、セパレータから電解液中に溶出するアルカリ金属イオン量やハロゲンイオン量を少なくすることができ、充電受入性の向上を妨げにくくでき、電池寿命性能の低下を招きにくくできるセパレータを提供することを目的とする。 Therefore, in view of the above-mentioned conventional problems, the present invention provides a separator for liquid lead-acid batteries comprising a microporous membrane manufactured using fine silica powder, which is synthetic amorphous silica manufactured by a precipitation method, as the main raw material. Therefore, even when a battery using this battery is used for a long time, the amount of alkali metal ions and halogen ions eluted from the separator into the electrolyte can be reduced, making it difficult to impede the improvement of charge acceptance. An object of the present invention is to provide a separator that is less likely to cause deterioration in battery life performance.

本発明の液式鉛蓄電池用セパレータは、前記目的を達成するべく、アルカリ珪酸塩水溶液と鉱酸を反応させ沈殿析出により非晶質シリカを合成後、濾過・水洗により純度の調整を行う沈降法で製造された合成非晶質シリカであるシリカ微粉を40重量%以上含む微多孔質膜からなる液式鉛蓄電池用セパレータであって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)であることを特徴とする。 In order to achieve the above object, the separator for liquid lead-acid batteries of the present invention is produced using a precipitation method in which amorphous silica is synthesized by precipitation by reacting an aqueous alkali silicate solution with mineral acid, and then the purity is adjusted by filtration and water washing. A separator for a liquid lead-acid battery comprising a microporous membrane containing 40% by weight or more of silica fine powder, which is a synthetic amorphous silica manufactured by The concentration of alkali metals (Li, Na, K, Rb, Cs) (ICP emission spectrometry) is 5 mg/100 cm 2 /sheet or less when immersed in 126 g of sulfuric acid with a specific gravity of 1.26 at 50°C for 24 hours and left to stand. (However, the base thickness of the microporous membrane is 0.2 mm) and the concentration of halogen (F, Cl, Br, I) (ICP emission spectrometry) is 0.4 mg/100 cm 2 /sheet or less ( However, it is characterized in that the base thickness of the microporous membrane is 0.2 mm (equivalent value).

また、前記濾過・水洗は、イオン交換水、または、塩分(塩化ナトリウム)を含まない地下水を使用して行われることを特徴とする。 Further, the filtration and washing are performed using ion-exchanged water or groundwater that does not contain salt (sodium chloride).

また、前記微多孔質膜は、前記シリカ微粉とポリオレフィン系樹脂を主体としてなる微多孔質フィルムであることを特徴とする。 Further, the microporous membrane is characterized in that it is a microporous film mainly composed of the silica fine powder and a polyolefin resin.

また、前記微多孔質フィルムは、ベース厚さが0.1~0.3mm、平均細孔径(水銀圧入法)が0.01~0.5μm、空隙率(水銀圧入法)が50~90体積%の微多孔質フィルムであることを特徴とする。 In addition, the microporous film has a base thickness of 0.1 to 0.3 mm, an average pore diameter (mercury intrusion method) of 0.01 to 0.5 μm, and a porosity (mercury intrusion method) of 50 to 90 vol. % microporous film.

本発明によれば、主原料として沈降法で製造された合成非晶質シリカであるシリカ微粉を用いて製造した微多孔質膜からなる鉛蓄電池用セパレータにあって、これを使用した電池で電池使用が進んだ場合にも、セパレータから電解液中に溶出するアルカリ金属イオン量やハロゲンイオン量を少なくすることができ、充電受入性の向上を妨げにくくでき、電池寿命性能の低下を招きにくくできるセパレータを提供することができる。 According to the present invention, there is provided a lead-acid battery separator comprising a microporous membrane manufactured using silica fine powder, which is synthetic amorphous silica manufactured by a precipitation method, as the main raw material, and a battery using the separator is provided. Even with advanced use, the amount of alkali metal ions and halogen ions eluted from the separator into the electrolyte can be reduced, making it less likely to impede improvements in charge acceptance and reducing battery life performance. A separator can be provided.

本発明の液式鉛蓄電池用セパレータは、アルカリ珪酸塩水溶液と鉱酸を反応させ沈殿析出により非晶質シリカを合成後、濾過・水洗により純度の調整(副生物である塩類を除去し非晶質シリカの純度を高める)を行う沈降法で製造された合成非晶質シリカであるシリカ微粉(以下、単に「前記シリカ微粉」と言う場合がある)を40重量%以上含む微多孔質膜であって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)であることを条件とする。 The separator for liquid lead-acid batteries of the present invention synthesizes amorphous silica by precipitation by reacting an aqueous alkali silicate solution with a mineral acid, and then adjusts the purity by filtering and washing with water (removing salts as by-products and amorphous silica). A microporous membrane containing 40% by weight or more of silica fine powder (hereinafter sometimes simply referred to as "the silica fine powder"), which is synthetic amorphous silica produced by a precipitation method that increases the purity of silica. When the microporous membrane (10 cm x 10 cm x 2 sheets) was immersed for 24 hours in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50°C, the alkali metal content (Li, Na, K, Rb, Cs) concentration (ICP emission spectrometry) is 5 mg/100 cm 2 / sheet or less (however, the base thickness of the microporous membrane is 0.2 mm), and the halogen content (F, Cl, Br, I) is The condition is that the concentration (ICP emission spectrometry) is 0.4 mg/100 cm 2 /sheet or less (value calculated based on the base thickness of the microporous membrane of 0.2 mm).

前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm/枚以下であるようにすることで、本発明の液式鉛蓄電池用セパレータを用いた液式鉛蓄電池において、セパレータから電解液中に溶出するアルカリ金属イオン量を抑えることができるようになるので、充電受入性の向上を妨げにくくなる。よって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)は4mg/100cm/枚以下がより好ましい。 The alkali metal content (Li, Na, K, Rb, Cs) when the microporous membrane (10 cm x 10 cm x 2 sheets) was immersed for 24 hours in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50°C. By adjusting the concentration (ICP emission spectrometry) to be 5 mg/100 cm 2 /sheet or less, in a liquid lead-acid battery using the separator for liquid lead-acid batteries of the present invention, alkali eluted from the separator into the electrolyte can be prevented. Since the amount of metal ions can be suppressed, it becomes difficult to impede the improvement of charge acceptability. Therefore, when the microporous membrane (10 cm x 10 cm x 2 sheets) was immersed in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50°C for 24 hours, the concentration of alkali metal (ICP emission spectrometry) was 4 mg. /100cm 2 /sheet or less is more preferable.

前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下であるようにすることで、本発明の液式鉛蓄電池用セパレータを用いた液式鉛蓄電池において、セパレータから電解液中に溶出するハロゲンイオン量を抑えることができるようになるので、極板格子や極柱の腐食を促すことによる電池寿命性能の低下を招きにくくなる。よって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、ハロゲン分の濃度(ICP発光分光分析)は0.2mg/100cm/枚以下がより好ましく、0.1mg/100cm/枚以下が更に好ましい。 The concentration of halogen components (F, Cl, Br, I) (ICP In a liquid lead-acid battery using the liquid lead-acid battery separator of the present invention, the halogen ions eluted from the separator into the electrolytic solution are Since the amount can be suppressed, deterioration in battery life performance due to accelerated corrosion of the electrode grid and poles is less likely to occur. Therefore, when the microporous membrane (10 cm x 10 cm x 2 sheets) was immersed in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50°C for 24 hours and left to stand, the concentration of halogen components (ICP emission spectrometry) was 0. It is more preferably 2 mg/100 cm 2 /sheet or less, and even more preferably 0.1 mg/100cm 2 /sheet or less.

前記微多孔質膜は、前記シリカ微粉とポリオレフィン系樹脂を主体としてなる微多孔質フィルムであることが好ましく、また、その微多孔質フィルムは、ベース厚さが0.1~0.3mm、平均細孔径(水銀圧入法)が0.01~0.5μm、空隙率(水銀圧入法)が50~90体積%の微多孔質フィルムであることが好ましい。なお、ベース厚さとは、例えば、微多孔質フィルムがリブ状突起を有する場合に、リブ状突起を含めた総厚さと区別するために用いる用語で、リブ状突起の高さを除外した(リブ状突起を設けない場合の)膜厚さを言う。 The microporous membrane is preferably a microporous film mainly composed of the silica fine powder and a polyolefin resin, and the microporous film has a base thickness of 0.1 to 0.3 mm and an average thickness of 0.1 to 0.3 mm. It is preferably a microporous film with a pore diameter (mercury intrusion method) of 0.01 to 0.5 μm and a porosity (mercury intrusion method) of 50 to 90% by volume. Note that the base thickness is a term used, for example, when a microporous film has rib-like protrusions, to distinguish it from the total thickness including the rib-like protrusions, excluding the height of the rib-like protrusions (the height of the rib-like protrusions is excluded). Refers to the film thickness (when no projections are provided).

前記シリカ微粉は、前述したように、原料組成物を加熱溶融混練する際に可塑剤を吸着担持しておくこと、微多孔質フィルムの微多孔構造(緻密で複雑な孔構造と高空隙率)を作り出すこと、微多孔質フィルムの製造過程で可塑剤を除去した際に生じるシート収縮に耐え寸法安定性を保つこと、微多孔質フィルムの電池組み込み時の使用前に行われる乾燥工程(水分除去工程)のような加熱処理時にもシート収縮に耐え寸法安定性を保つこと、微多孔質フィルムの電解液吸液性を良くすること、微多孔質フィルムの電解液濡れ性を良くすること、微多孔質フィルムの電解液保持性を良くすること、等の役割があり、よって、比表面積が大きいこと、吸油量が大きいこと、親水基(シラノール基)が多いこと、等の観点から、乾式法または湿式法の製造方法のうち、湿式法の沈降法で製造された合成非晶質シリカであることが必要であるが、湿式法の沈降法で製造された合成非晶質シリカには、副生物として硫酸ナトリウム等の塩類が含まれており、後工程で濾過・水洗の処理により塩類を除去する処理が行われているものの、塩類の除去処理は完全ではなく、また、水洗処理に水道水(残留塩素が含まれる)や塩分(塩化ナトリウム)を含んだ地下水が使われ得るため、電池性能に悪影響を与え得るNa分やCl分を微量含んでいる。よって、本発明では、シリカ微粉として、湿式法の沈降法で製造された合成非晶質シリカであって、アルカリ金属分(Li、Na、K、Rb、Cs)やハロゲン分(F、Cl、Br、I)の含有量を、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm/枚以下、かつ、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下となるようなレベルにまで低減したシリカ微粉を用いる。また、本発明の前記非晶質シリカの製造工程における水洗処理(副生物の塩類を除去する処理)は、イオン交換水、または、塩分(塩化ナトリウム)を含まない地下水を使用して行われることが好ましい。なお、本願において、塩分(塩化ナトリウム)を含まない地下水とは、塩分(塩化ナトリウム)濃度が300ppm以下である地下水を指す。 As mentioned above, the silica fine powder adsorbs and supports a plasticizer when the raw material composition is heated and melted and kneaded, and the microporous structure of the microporous film (dense and complex pore structure and high porosity). The process of drying the microporous film (moisture removal) before use when incorporating the microporous film into a battery requires the following: To withstand sheet shrinkage and maintain dimensional stability even during heat treatment such as process), to improve the electrolyte absorption property of the microporous film, to improve the electrolyte wettability of the microporous film, to improve the electrolyte wettability of the microporous film, The role of the porous film is to improve the electrolyte retention ability, and therefore, from the viewpoints of having a large specific surface area, large oil absorption, and having many hydrophilic groups (silanol groups), the dry method Alternatively, synthetic amorphous silica manufactured by the wet precipitation method is required, but synthetic amorphous silica produced by the wet precipitation method requires Living organisms contain salts such as sodium sulfate, and although salts are removed through filtration and washing in the post-process, the removal of salts is not complete, and tap water is not used for washing. Because underground water containing residual chlorine (contains residual chlorine) and salt (sodium chloride) can be used, it contains trace amounts of Na and Cl that can adversely affect battery performance. Therefore, in the present invention, synthetic amorphous silica produced by a wet precipitation method is used as fine silica powder, and contains alkali metal components (Li, Na, K, Rb, Cs) and halogen components (F, Cl, The content of Br, I) was determined by the alkali metal content when the final microporous membrane (10 cm x 10 cm x 2 sheets) was immersed in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50°C for 24 hours. Silica that has been reduced to a level where the concentration of halogen components (ICP emission spectrometry) is 5 mg/100 cm 2 /sheet or less, and the halogen concentration (ICP emission spectrometry) is 0.4 mg/100 cm 2 /sheet or less. Use fine powder. Further, the water washing treatment (treatment for removing by-product salts) in the manufacturing process of the amorphous silica of the present invention is performed using ion-exchanged water or groundwater that does not contain salt (sodium chloride). is preferred. Note that in this application, groundwater that does not contain salt (sodium chloride) refers to groundwater that has a salt (sodium chloride) concentration of 300 ppm or less.

前記微多孔質フィルムのベース厚さは、0.1~0.3mmであることが好ましいが、0.3mmを超えると電気抵抗が悪化し、0.1mm未満であると、良好な耐短絡性(ここで言う短絡とは、デンドライトショートと呼ばれる浸透短絡、局部的な基材の弱い部分、極板の凸部からの高圧迫や衝撃や突刺し、極板からの酸化力による酸化損耗等、が原因で孔が開くまたは割れを生じることで引き起こされる通常の短絡の両方を指す)が維持できにくくなる。 The base thickness of the microporous film is preferably 0.1 to 0.3 mm, but if it exceeds 0.3 mm, the electrical resistance will deteriorate, and if it is less than 0.1 mm, it will have good short circuit resistance. (Short circuits here include penetration short circuits called dendrite shorts, local weak parts of the base material, high pressure, impact, and puncture from convex parts of the electrode plate, oxidative damage due to oxidizing force from the electrode plate, etc.) (refers to both normal short circuits caused by holes or cracks) that become difficult to maintain.

前記微多孔質フィルムの空隙率(水銀圧入法)は、50体積%以上であることが好ましいが、50体積%以上であることで、液式鉛蓄電池用セパレータとして内部抵抗(電気抵抗)を低く抑えることができ、液式鉛蓄電池の高性能化に寄与する。よって、微多孔質フィルムの空隙率(水銀圧入法)は、60~90体積%、更には70~90体積%であることがより好ましい。 The porosity of the microporous film (mercury intrusion method) is preferably 50% by volume or more, and by having a porosity of 50% by volume or more, it can be used as a separator for liquid lead-acid batteries with low internal resistance (electrical resistance). This contributes to improving the performance of liquid lead-acid batteries. Therefore, the porosity (mercury intrusion method) of the microporous film is preferably 60 to 90% by volume, more preferably 70 to 90% by volume.

前記微多孔質フィルムを得る方法は、ポリオレフィン系樹脂と前記シリカ微粉と可塑剤を主体とする原料組成物を溶融混練して製膜後可塑剤の一部または全部を除去することによるのが好ましい。これにより、膜全体に均一かつ微細で複雑に入り組んだ複雑な経路を有する無数の連通孔が形成された膜が得られる。具体的な製造法の一例を以下に示す。まず、所定量のポリオレフィン系樹脂、前記シリカ微粉、可塑剤に、必要に応じて各種添加剤(界面活性剤、酸化防止剤、耐候剤等)を加えた原材料をヘンシェルミキサーまたはレーディゲミキサー等の混合機により攪拌・混合し、原料混合物を得る。次に、この混合物を先端にTダイを取り付けた二軸押出機に投入し加熱溶融・混練しながらシート状に押し出し、一方のロールに所定の溝を刻設した一対の成形ロール間を通すことで、平板状シートの片面に所定形状のリブを一体に成形したフィルム状物を得る。次に、このフィルム状物を、適当な溶剤(例えば、n-ヘキサン)中に浸漬し、鉱物オイルの所定量を抽出除去し乾燥すれば、目的の微多孔質フィルムが得られる。なお、原料組成物とは、溶融混練工程に持ち込まれる全原材料からなる組成物のことを言い、あくまでも「すべての原材料(の組成物)」のことを指す意味であり、特定的に、原料混合物や溶融混練物のことを指す意味ではない。 The method for obtaining the microporous film is preferably by melt-kneading a raw material composition mainly consisting of a polyolefin resin, the silica fine powder, and a plasticizer, and removing part or all of the plasticizer after film formation. . As a result, a membrane can be obtained in which numerous communicating pores are formed throughout the membrane, which are uniform, fine, and have intricately intricate paths. An example of a specific manufacturing method is shown below. First, raw materials prepared by adding various additives (surfactants, antioxidants, weathering agents, etc.) as necessary to a predetermined amount of polyolefin resin, the silica fine powder, and a plasticizer are mixed using a Henschel mixer or Loedige mixer. Stir and mix using a mixer to obtain a raw material mixture. Next, this mixture is put into a twin-screw extruder equipped with a T-die at the tip, extruded into a sheet while heating, melting and kneading, and passed between a pair of forming rolls with predetermined grooves carved on one roll. In this way, a film-like product is obtained in which ribs of a predetermined shape are integrally formed on one side of a flat sheet. Next, this film-like material is immersed in a suitable solvent (for example, n-hexane), a predetermined amount of mineral oil is extracted and removed, and the desired microporous film is obtained. In addition, the raw material composition refers to a composition consisting of all raw materials brought into the melt-kneading process, and is meant to refer to "all raw materials (compositions of)". It does not mean that it refers to a melt-kneaded product.

前記微多孔質フィルムは、ポリオレフィン系樹脂と前記シリカ微粉と可塑剤の合計含有量が90重量%以上、ポリオレフィン系樹脂の含有量が20~60重量%、前記シリカ微粉の含有量が40~80重量%、可塑剤の含有量が0~30重量%、界面活性剤の含有量が0~8重量%であることが好ましい。ポリオレフィン系樹脂の含有量が20重量%未満あるいは前記シリカ微粉の含有量が80重量%超えであると、ポリオレフィン系樹脂による微多孔質フィルムへの機械的強度や耐酸化性やシール性の確保が十分でなくなり、ポリオレフィン系樹脂の含有量が60重量%超えあるいは前記シリカ微粉の含有量が40重量%未満であると、微多孔質フィルムの大きな空隙率や微細かつ複雑な孔構造を確保しづらくなり微多孔質フィルム製セパレータの良好な電気抵抗特性を維持できなくなる。 The microporous film has a total content of polyolefin resin, the silica fine powder, and a plasticizer of 90% by weight or more, a polyolefin resin content of 20 to 60% by weight, and a silica fine powder content of 40 to 80% by weight. It is preferable that the content of the plasticizer is 0 to 30% by weight, and the content of the surfactant is 0 to 8% by weight. If the content of the polyolefin resin is less than 20% by weight or the content of the silica fine powder is more than 80% by weight, the mechanical strength, oxidation resistance, and sealing properties of the polyolefin resin cannot be secured to the microporous film. If the content of the polyolefin resin exceeds 60% by weight or the content of the silica fine powder is less than 40% by weight, it will be difficult to ensure a large porosity and a fine and complex pore structure in the microporous film. This makes it impossible to maintain good electrical resistance characteristics of the microporous film separator.

前記ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等の単独重合体または共重合体およびこれらの混合物が使用できる。中でも、成形性や経済性の面で、ポリエチレンを主体とすることが好ましい。ポリエチレンは、溶融成形温度がポリプロピレンよりも低く、生産性が良好で製造コストを抑えられる。ポリオレフィン系樹脂は、重量平均分子量が50万以上とすることにより、シリカ微粉を多く含んだ微多孔質フィルムにあっても、膜の機械的強度を確保することができる。このため、ポリオレフィン系樹脂は、重量平均分子量が100万以上、更には150万以上であることがより好ましい。ポリオレフィン系樹脂は、シリカ微粉との混合性も良好で、微多孔質フィルムにあってシリカ微粉の骨格を接着機能材料として結合させながら強度を維持するとともに、化学的に安定であり安全性が高い。 As the polyolefin resin, homopolymers or copolymers such as polyethylene, polypropylene, polybutene, polymethylpentene, and mixtures thereof can be used. Among these, it is preferable to use polyethylene as the main material in terms of moldability and economical efficiency. Polyethylene has a lower melt molding temperature than polypropylene, has better productivity, and can reduce manufacturing costs. By setting the weight average molecular weight of the polyolefin resin to 500,000 or more, the mechanical strength of the film can be ensured even in the case of a microporous film containing a large amount of silica fine powder. For this reason, the weight average molecular weight of the polyolefin resin is preferably 1 million or more, more preferably 1.5 million or more. Polyolefin resin has good miscibility with silica fine powder, maintains strength while bonding the skeleton of silica fine powder as an adhesive functional material in a microporous film, and is chemically stable and highly safe. .

前記シリカ微粉としては、粒径が細かく内部や表面に孔構造を備えたものが使用できる。無機粉体の中でもシリカは、粒子径、比表面積等の各種粉体特性の選択範囲が広く、比較的安価で入手しやすく、不純物が少ない。前記シリカ微粉は、比表面積が100m/g以上であると、微多孔質フィルムの孔構造をより微細化(緻密化)かつ複雑化して耐短絡性を高め、微多孔質フィルムの電解液保持力を高め、粉体表面に多数の親水基(-OH)を備えることにより微多孔質フィルムの親水性を高めるため好ましい。このため、前記シリカ微粉の比表面積は150m/g以上であることがより好ましい。また、前記シリカ微粉の比表面積は400m/g以下であることが好ましい。前記シリカ微粉の比表面積が400m/gを超える場合は、粒子の表面活性度が高く凝集力が強くなるため、微多孔質フィルム中で前記シリカ微粉が均一分散されにくくなるため好ましくない。 As the silica fine powder, one having a fine particle size and having a pore structure inside or on the surface can be used. Among inorganic powders, silica has a wide selection range of various powder properties such as particle size and specific surface area, is relatively inexpensive and easily available, and has few impurities. When the silica fine powder has a specific surface area of 100 m 2 /g or more, the pore structure of the microporous film becomes finer (densified) and more complex, thereby increasing the short circuit resistance and improving the electrolyte retention of the microporous film. This is preferable because it increases the hydrophilicity of the microporous film by increasing the strength and providing a large number of hydrophilic groups (-OH) on the powder surface. For this reason, it is more preferable that the specific surface area of the silica fine powder is 150 m 2 /g or more. Further, the specific surface area of the silica fine powder is preferably 400 m 2 /g or less. If the specific surface area of the silica fine powder exceeds 400 m 2 /g, the surface activity of the particles will be high and the cohesive force will be strong, making it difficult to uniformly disperse the silica fine powder in the microporous film, which is not preferable.

前記可塑剤としては、ポリオレフィン系樹脂の可塑剤となり得る材料を選択することが好ましく、ポリオレフィン系樹脂と相溶性を有し各種溶剤等で容易に抽出できる各種有機液状体が使用でき、具体的には、飽和炭化水素(パラフィン)からなる工業用潤滑油等の鉱物オイル、ステアリルアルコール等の高級アルコール、フタル酸ジオクチル等のエステル系可塑剤等が使用できる。中でも、再利用がしやすい点で、鉱物オイルが好ましい。可塑剤は、ポリオレフィン系樹脂、シリカ微粉、可塑剤を主体とした原料組成物中に、30~70重量%配合されることが好ましい。 As the plasticizer, it is preferable to select a material that can serve as a plasticizer for polyolefin resins, and various organic liquids that are compatible with polyolefin resins and can be easily extracted with various solvents can be used. Mineral oils such as industrial lubricating oils made of saturated hydrocarbons (paraffin), higher alcohols such as stearyl alcohol, ester plasticizers such as dioctyl phthalate, etc. can be used. Among these, mineral oil is preferred because it is easy to reuse. The plasticizer is preferably blended in an amount of 30 to 70% by weight in the raw material composition mainly consisting of polyolefin resin, silica fine powder, and plasticizer.

前記可塑剤は、前述した通り、ポリオレフィン系樹脂とシリカ微粉と可塑剤を主体とした原料組成物を溶融混練して所定形状のフィルム状物に成形された後、除去されることで、多孔質化するものであり、微多孔質フィルム製セパレータ中の可塑剤の含有量はゼロであっても構わない。しかし、液式鉛蓄電池用セパレータにおいては、鉱物オイルのような可塑剤を適量含有させておくことで、耐酸化性の向上に寄与させることができる。このような場合、セパレータ中の可塑剤の含有量は5~30重量%とすることが好ましい。但し、可塑剤の含有量を多くすると、微多孔質フィルムの空隙率が低下し、微多孔質フィルム製セパレータの電気抵抗が悪化するため、このような観点からは、可塑剤の含有量は20重量%以下であることがより好ましい。 As mentioned above, the plasticizer is removed after melt-kneading a raw material composition mainly consisting of polyolefin resin, silica fine powder, and plasticizer and forming it into a film-like material of a predetermined shape. The content of plasticizer in the microporous film separator may be zero. However, in a separator for a liquid lead-acid battery, containing an appropriate amount of a plasticizer such as mineral oil can contribute to improving oxidation resistance. In such a case, the content of plasticizer in the separator is preferably 5 to 30% by weight. However, if the plasticizer content is increased, the porosity of the microporous film decreases and the electrical resistance of the microporous film separator worsens, so from this point of view, the plasticizer content should be 20 More preferably, it is less than % by weight.

前記可塑剤を抽出除去するために用いる溶剤としては、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の飽和炭化水素系の有機溶剤を使用することができる。 As the solvent used to extract and remove the plasticizer, saturated hydrocarbon organic solvents such as hexane, heptane, octane, nonane, and decane can be used.

前記原料組成物または前記微多孔質フィルムには、その他、必要に応じて、界面活性剤(親水化剤)、酸化防止剤、紫外線吸収剤、耐候剤、滑剤、抗菌剤、防黴剤、顔料、染料、着色剤、防曇剤、艶消し剤等の添加剤を、本発明の目的および効果を損なわない範囲で添加(配合)または含有させてもよい。 In addition, the raw material composition or the microporous film may contain a surfactant (hydrophilizing agent), an antioxidant, an ultraviolet absorber, a weathering agent, a lubricant, an antibacterial agent, an antifungal agent, and a pigment, as necessary. , dyes, colorants, antifogging agents, matting agents, and other additives may be added (blended) or contained within a range that does not impair the purpose and effects of the present invention.

前記微多孔質フィルムは、比表面積が大きく親水性が高い前記シリカ微粉を多量に含有しており、それだけでも、親水性を有し、水溶液である液式鉛蓄電池の硫酸電解液に対する濡れ性や硫酸電解液の浸透性(浸み込み性)を有するが、電槽内に極板とセパレータが密に組み込まれた積層体に対し硫酸電解液を注液した際に、速やかにセパレータの空隙中に電解液が吸液され速やかにセパレータの空隙が電解液に置換されるようにするため、微多孔質フィルム中には界面活性剤(固形分)を0.2~8重量%含ませることが好ましい。 The microporous film contains a large amount of the silica fine powder, which has a large specific surface area and is highly hydrophilic. The sulfuric acid electrolyte has permeability (infiltration), but when the sulfuric acid electrolyte is injected into a laminate in which electrode plates and separators are tightly assembled in a battery case, it quickly penetrates into the voids of the separator. In order to absorb the electrolyte and quickly replace the voids in the separator with the electrolyte, the microporous film may contain 0.2 to 8% by weight of a surfactant (solid content). preferable.

前記界面活性剤を微多孔質フィルムに含ませる方法としては、製膜前の原料組成物中に予め分散状態に添加しておく方法(内添法)、製膜され可塑剤が除去された微多孔質フィルムに対して後処理(付着処理)する方法(外添法)があるが、製造工程が簡略化できる点と、本発明の微多孔質フィルムから界面活性剤を染み出しにくくできる点で、原料組成物中に予め添加する方法(内添法)が好ましい。界面活性剤(固形分)の含有量(必要量)は、微多孔質フィルム中に0.2~8重量%である。界面活性剤(固形分)の含有量をこの範囲以上に増量しても、微多孔質フィルムの親水性を向上させる効果は大きく伸びず、逆に、微多孔質フィルムの空隙率を低下させて液式鉛蓄電池用セパレータとして内部抵抗(電気抵抗)の増大を招いたり、液式鉛蓄電池用セパレータとして自己放電の増大を招く。よって、界面活性剤(固形分)の含有量は、微多孔質フィルム中に0.2~5重量%であることがより好ましい。 Methods for incorporating the surfactant into the microporous film include adding it to the raw material composition in advance in a dispersed state before forming the film (internal addition method), and adding the surfactant to the microporous film after the plasticizer has been removed. There is a method (external addition method) of post-processing (adhesion treatment) on the porous film, but this method simplifies the manufacturing process and prevents the surfactant from seeping out from the microporous film of the present invention. , a method of adding it in advance to the raw material composition (internal addition method) is preferable. The content (required amount) of the surfactant (solid content) in the microporous film is 0.2 to 8% by weight. Even if the content of the surfactant (solid content) is increased beyond this range, the effect of improving the hydrophilicity of the microporous film will not increase significantly, and on the contrary, it will reduce the porosity of the microporous film. As a separator for liquid lead-acid batteries, it causes an increase in internal resistance (electrical resistance), and as a separator for liquid lead-acid batteries, it causes an increase in self-discharge. Therefore, the content of the surfactant (solid content) in the microporous film is more preferably 0.2 to 5% by weight.

前記界面活性剤としては、微多孔質フィルムの親水性を向上できる材料であればよく、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤の何れも使用できる。ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、脂肪酸モノグリセリド、ソルビタン脂肪酸エステル類等が使用できる。カチオン系界面活性剤としては、脂肪族アミン塩類、第四級アンモニウム塩、ポリオキシエチレンアルキルアミン、アルキルアミンオキシド等が使用できる。アニオン系界面活性剤としては、アルキルスルフォン酸塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、アルキルスルホコハク酸塩、ドデシルベンゼンスルフォン酸塩等が使用できる。中でも、ポリオレフィン系樹脂に対して少量の添加で高い親水性の付与が可能であること、比較的高い耐熱性を有することで界面活性剤を予め原料組成物中に添加して微多孔質フィルムの製造(加熱溶融成形による製造)が行えることなどから、アルキルベンゼンスルフォン酸塩、アルキルスルホコハク酸塩、ドデシルベンゼンスルフォン酸塩が好ましい。 The surfactant may be any material that can improve the hydrophilicity of the microporous film, and any of nonionic surfactants, cationic surfactants, and anionic surfactants can be used. As the nonionic surfactant, polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene alkyl allyl ethers, fatty acid monoglycerides, sorbitan fatty acid esters, etc. can be used. As the cationic surfactant, aliphatic amine salts, quaternary ammonium salts, polyoxyethylene alkylamine, alkylamine oxide, etc. can be used. As the anionic surfactant, alkyl sulfonate, alkylbenzene sulfonate, alkylnaphthalene sulfonate, alkyl sulfosuccinate, dodecylbenzene sulfonate, etc. can be used. Among these, it is possible to impart high hydrophilicity to polyolefin resins by adding a small amount, and because it has relatively high heat resistance, it is possible to add surfactants to the raw material composition in advance to form microporous films. Alkylbenzene sulfonate, alkyl sulfosuccinate, and dodecylbenzene sulfonate are preferred because they can be manufactured (manufactured by hot melt molding).

次に、本発明の実施例について、比較例とともに詳細に説明する。
(実施例1)
ポリオレフィン系樹脂として重量平均分子量が150万の超高分子量ポリエチレン樹脂粉体(融点約135℃)1000重量部と、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量を、水洗処理水の流量を従来よりも多くして低減し、かつ、従来よりもCl分の少ない水洗処理水を使う事で、Cl分の混入を低減し、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm/枚以下、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下となるようにしたもの)2590重量部と、可塑剤としてパラフィン系鉱物オイル5380重量部と、界面活性剤としてアルキルスルホコハク酸塩(固形分)109重量部とをレーディゲミキサーにて混合し、この原料組成物を先端にTダイを取り付けた二軸押出機を用い加熱溶融混練しながらシート状に押し出し、一方のロールに極板当接用主リブのための所定の溝を刻設した一対の成形ロール間を通し、平板状シートの一方の面に所定形状の極板当接用主リブを一体に成形加工したフィルム状物を得た。次に、このフィルム状物をn-ヘキサン中に浸漬し、パラフィン系鉱物オイルの所定量を抽出除去し、乾燥させて、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを実施例1の液式鉛蓄電池用セパレータとした。
Next, examples of the present invention will be described in detail together with comparative examples.
(Example 1)
1000 parts by weight of ultra-high molecular weight polyethylene resin powder (melting point approximately 135°C) with a weight average molecular weight of 1.5 million as a polyolefin resin, and synthetic amorphous silica manufactured by a precipitation method with a specific surface area of 200 m 2 by the BET method. /g of silica fine powder (however, the content of salts such as sodium sulfate produced as by-products in the manufacturing process was reduced by increasing the flow rate of the washing water than before, and the Cl content was lower than before. By using less washing water, the contamination of Cl content is reduced, and the final microporous membrane (10 cm x 10 cm x 2 sheets) is immersed in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50°C for 24 hours. The concentration of alkali metals (Li, Na, K, Rb, Cs) (ICP emission spectroscopic analysis) is 5 mg/100cm 2 /sheet or less, and the halogen content (F, Cl, Br, I) when left as is. 2,590 parts by weight of 5,380 parts by weight of paraffinic mineral oil as a plasticizer, and an alkyl sulfosuccinate as a surfactant. (solid content) in a Loedige mixer, and extruded this raw material composition into a sheet while heating and melting and kneading it using a twin-screw extruder equipped with a T-die at the tip. A film that is passed between a pair of forming rolls with predetermined grooves for the main ribs for contacting the electrode plate, and integrally formed with the main ribs for contacting the electrode plate in a predetermined shape on one side of a flat sheet. I got something like that. Next, this film-like material is immersed in n-hexane, a predetermined amount of paraffinic mineral oil is extracted and removed, and dried. Composed of 16.0% by weight of mineral oil and 1.8% by weight of surfactant (solid content), base thickness is 0.20mm, porosity is 62% by volume by mercury intrusion method, by mercury intrusion method. A ribbed microporous film with an average pore diameter of 0.09 μm and a maximum pore diameter of 0.65 μm determined by mercury intrusion method was obtained. This was used as the separator for liquid lead-acid batteries of Example 1.

(実施例2)
ポリオレフィン系樹脂として重量平均分子量が150万の超高分子量ポリエチレン樹脂粉体(融点約135℃)1000重量部と、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量を、水洗処理水の流量を実施例1よりも多くして更に低減し、かつ、従来よりもCl分の少ない水洗処理水を使う事で、Cl分の混入を低減し、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が4mg/100cm/枚以下、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下となるようにしたもの)2590重量部と、可塑剤としてパラフィン系鉱物オイル5380重量部と、界面活性剤としてアルキルスルホコハク酸塩(固形分)109重量部とをレーディゲミキサーにて混合し、この原料組成物を先端にTダイを取り付けた二軸押出機を用い加熱溶融混練しながらシート状に押し出し、一方のロールに極板当接用主リブのための所定の溝を刻設した一対の成形ロール間を通し、平板状シートの一方の面に所定形状の極板当接用主リブを一体に成形加工したフィルム状物を得た。次に、このフィルム状物をn-ヘキサン中に浸漬し、パラフィン系鉱物オイルの所定量を抽出除去し、乾燥させて、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを実施例2の液式鉛蓄電池用セパレータとした。
(Example 2)
1000 parts by weight of ultra-high molecular weight polyethylene resin powder (melting point approximately 135°C) with a weight average molecular weight of 1.5 million as a polyolefin resin, and synthetic amorphous silica manufactured by a precipitation method with a specific surface area of 200 m 2 by the BET method. /g of silica fine powder (however, the content of salts such as sodium sulfate produced as by-products in the manufacturing process was further reduced by increasing the flow rate of the washing water than in Example 1, and By using washed water with a low Cl content, the contamination of Cl content is reduced, and the final microporous membrane (10 cm x 10 cm x 2 sheets) is soaked in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50°C. The concentration of alkali metals (Li, Na, K, Rb, Cs) (ICP emission spectrometry) is 4 mg/100cm 2 /sheet or less, and the halogen content (F, Cl, Br , 2,590 parts by weight of I) (in which the concentration (ICP emission spectrometry) is 0.4 mg/100 cm 2 / sheet or less), 5,380 parts by weight of paraffin mineral oil as a plasticizer, and alkyl as a surfactant. 109 parts by weight of sulfosuccinate (solid content) was mixed in a Loedige mixer, and this raw material composition was extruded into a sheet while being heated and melted and kneaded using a twin screw extruder equipped with a T-die at the tip. A main rib of a predetermined shape for contacting the electrode plate is integrally formed on one side of the flat sheet by passing it between a pair of forming rolls in which a predetermined groove for the main rib for contacting the electrode plate is cut into the roll. A processed film-like product was obtained. Next, this film-like material is immersed in n-hexane, a predetermined amount of paraffinic mineral oil is extracted and removed, and dried. Composed of 16.0% by weight of mineral oil and 1.8% by weight of surfactant (solid content), base thickness is 0.20mm, porosity is 62% by volume by mercury intrusion method, by mercury intrusion method. A ribbed microporous film having an average pore diameter of 0.09 μm and a maximum pore diameter of 0.65 μm determined by mercury intrusion method was obtained. This was used as a separator for a liquid lead-acid battery in Example 2.

(実施例3)
ポリオレフィン系樹脂として重量平均分子量が150万の超高分子量ポリエチレン樹脂粉体(融点約135℃)1000重量部と、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量を、水洗処理水の流量を従来よりも多くして低減し、かつ、実施例1よりもCl分の少ない水洗処理水を使う事で、Cl分の混入を更に低減し、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm/枚以下、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.1mg/100cm/枚以下となるようにしたもの)2590重量部と、可塑剤としてパラフィン系鉱物オイル5380重量部と、界面活性剤としてアルキルスルホコハク酸塩(固形分)109重量部とをレーディゲミキサーにて混合し、この原料組成物を先端にTダイを取り付けた二軸押出機を用い加熱溶融混練しながらシート状に押し出し、一方のロールに極板当接用主リブのための所定の溝を刻設した一対の成形ロール間を通し、平板状シートの一方の面に所定形状の極板当接用主リブを一体に成形加工したフィルム状物を得た。次に、このフィルム状物をn-ヘキサン中に浸漬し、パラフィン系鉱物オイルの所定量を抽出除去し、乾燥させて、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを実施例3の液式鉛蓄電池用セパレータとした。
(Example 3)
1000 parts by weight of ultra-high molecular weight polyethylene resin powder (melting point approximately 135°C) with a weight average molecular weight of 1.5 million as a polyolefin resin, and synthetic amorphous silica manufactured by a precipitation method with a specific surface area of 200 m 2 by the BET method. /g of silica fine powder (however, the content of salts such as sodium sulfate produced as by-products in the manufacturing process was reduced by increasing the flow rate of the washing water than before, and the Cl content was lower than in Example 1. By using washed water with a low content, the contamination of Cl content is further reduced, and the final microporous membrane (10 cm x 10 cm x 2 pieces) is placed in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50°C. The concentration of alkali metals (Li, Na, K, Rb, Cs) (ICP emission spectrometry) is 5 mg/100cm 2 /sheet or less, and the halogen content (F, Cl, Br , 2,590 parts by weight of I) (in which the concentration (ICP emission spectrometry) is 0.1 mg/100 cm 2 / sheet or less), 5,380 parts by weight of paraffinic mineral oil as a plasticizer, and alkyl as a surfactant. 109 parts by weight of sulfosuccinate (solid content) was mixed in a Loedige mixer, and this raw material composition was extruded into a sheet while being heated and melted and kneaded using a twin screw extruder equipped with a T-die at the tip. A main rib of a predetermined shape for contacting the electrode plate is integrally formed on one side of the flat sheet by passing it between a pair of forming rolls in which a predetermined groove for the main rib for contacting the electrode plate is cut into the roll. A processed film-like product was obtained. Next, this film-like material is immersed in n-hexane, a predetermined amount of paraffinic mineral oil is extracted and removed, and dried. Composed of 16.0% by weight of mineral oil and 1.8% by weight of surfactant (solid content), base thickness is 0.20mm, porosity is 62% by volume by mercury intrusion method, by mercury intrusion method. A ribbed microporous film having an average pore diameter of 0.09 μm and a maximum pore diameter of 0.65 μm determined by mercury intrusion method was obtained. This was used as a separator for a liquid lead-acid battery in Example 3.

(比較例1)
ポリオレフィン系樹脂として重量平均分子量が150万の超高分子量ポリエチレン樹脂粉体(融点約135℃)1000重量部と、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量は従来通りで、Cl分が従来通りの水洗処理水を使った場合、Cl分の混入を低減せず、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm/枚超え、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm/枚超えとなるようにしたもの)2590重量部と、可塑剤としてパラフィン系鉱物オイル5380重量部と、界面活性剤としてアルキルスルホコハク酸塩(固形分)109重量部とをレーディゲミキサーにて混合し、この原料組成物を先端にTダイを取り付けた二軸押出機を用い加熱溶融混練しながらシート状に押し出し、一方のロールに極板当接用主リブのための所定の溝を刻設した一対の成形ロール間を通し、平板状シートの一方の面に所定形状の極板当接用主リブを一体に成形加工したフィルム状物を得た。次に、このフィルム状物をn-ヘキサン中に浸漬し、パラフィン系鉱物オイルの所定量を抽出除去し、乾燥させて、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを比較例1の液式鉛蓄電池用セパレータとした。
(Comparative example 1)
1000 parts by weight of ultra-high molecular weight polyethylene resin powder (melting point approximately 135°C) with a weight average molecular weight of 1.5 million as a polyolefin resin, and synthetic amorphous silica manufactured by a precipitation method with a specific surface area of 200 m 2 by the BET method. /g of silica fine powder (however, the content of salts such as sodium sulfate produced as by-products in the manufacturing process is the same as before, and when using washing water with the same Cl content as before, the contamination of Cl content is reduced. The final microporous membrane (10 cm x 10 cm x 2 sheets) was immersed in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50°C for 24 hours. spectroscopic analysis) exceeds 5 mg/100 cm 2 /sheet, and the concentration of halogen content (ICP emission spectroscopic analysis) exceeds 0.4 mg/100 cm 2 /sheet) 2590 parts by weight, and paraffin mineral as a plasticizer. 5,380 parts by weight of oil and 109 parts by weight of alkyl sulfosuccinate (solid content) as a surfactant were mixed in a Loedige mixer, and this raw material composition was passed through a twin-screw extruder equipped with a T-die at the tip. It is extruded into a sheet while being heated, melted and kneaded, and passed between a pair of forming rolls, one of which has a predetermined groove carved into it for the main rib for contacting the electrode plate, to form a predetermined shape on one side of the flat sheet. A film-like product was obtained in which the main rib for contacting the electrode plate was integrally molded. Next, this film-like material is immersed in n-hexane, a predetermined amount of paraffinic mineral oil is extracted and removed, and dried. Composed of 16.0% by weight of mineral oil and 1.8% by weight of surfactant (solid content), base thickness is 0.20mm, porosity is 62% by volume by mercury intrusion method, by mercury intrusion method. A ribbed microporous film having an average pore diameter of 0.09 μm and a maximum pore diameter of 0.65 μm determined by mercury intrusion method was obtained. This was used as a separator for a liquid lead acid battery in Comparative Example 1.

(比較例2)
シリカ微粉体として、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量は従来通りであるが、従来よりもCl分の少ない水洗処理水を使う事で、Cl分の混入を低減し、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm/枚超え、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下となるようにしたもの)を使用するようにした以外は比較例1と同様にして、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを比較例2の液式鉛蓄電池用セパレータとした。
(Comparative example 2)
The fine silica powder is synthetic amorphous silica manufactured by the precipitation method and has a specific surface area of 200 m 2 /g by the BET method (however, it contains salts such as sodium sulfate that are produced as by-products in the manufacturing process). The amount is the same as before, but by using washing water with a lower Cl content than before, the contamination of Cl content is reduced, and the final microporous membrane (10 cm x 10 cm x 2 pieces) is heated to When immersed in 126 g of sulfuric acid with a specific gravity of 1.26 at 50°C for 24 hours and left for 24 hours, the concentration of alkali metals (ICP emission spectrometry) exceeds 5 mg/100cm 2 /sheet, and the concentration of halogens (ICP emission spectrometry) Polyethylene resin 22.9 % by weight, silica fine powder 59.3% by weight, Composed of 16.0% by weight of paraffinic mineral oil and 1.8% by weight of surfactant (solid content), base thickness is 0.20mm, porosity is 62% by volume by mercury intrusion method, mercury intrusion method A ribbed microporous film with an average pore diameter of 0.09 μm by mercury intrusion method and a maximum pore diameter of 0.65 μm by mercury intrusion method was obtained. This was used as a separator for a liquid lead-acid battery in Comparative Example 2.

(比較例3)
シリカ微粉体として、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量を、水洗処理水の流量を従来よりも多くして低減したが、Cl分が従来通りの水洗処理水を使った場合、Cl分の混入を低減せず、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm/枚以下、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm/枚超えとなるようにしたもの)を使用するようにした以外は比較例1と同様にして、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを比較例3の液式鉛蓄電池用セパレータとした。
(Comparative example 3)
The fine silica powder is synthetic amorphous silica manufactured by the precipitation method and has a specific surface area of 200 m 2 /g by the BET method (however, it contains salts such as sodium sulfate that are produced as by-products in the manufacturing process). The amount of Cl content was reduced by increasing the flow rate of the washing water compared to the conventional method, but if washing water with the same Cl content as before was used, the contamination of Cl content would not be reduced and the final microporous material When a membrane (10 cm x 10 cm x 2 pieces) is immersed in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50°C for 24 hours and left to stand, the concentration of alkali metal (ICP emission spectrometry) is 5 mg/100 cm 2 /sheet or less. Polyethylene resin 22.9 weight %, silica fine powder 59.3% by weight, paraffinic mineral oil 16.0% by weight, surfactant (solid content) 1.8% by weight, base thickness 0.20mm, mercury intrusion method. A ribbed microporous film was obtained with a porosity of 62% by volume, an average pore diameter of 0.09 μm as determined by mercury intrusion, and a maximum pore diameter of 0.65 μm as determined by mercury intrusion. This was used as a separator for a liquid lead-acid battery in Comparative Example 3.

次に、上記にて得られた実施例1~3、比較例1~3の各セパレータについて、以下の方法により、各種特性評価を行った。結果を表1に示す。なお、MD(MD方向)とは、製造されるシートの製造方向、CD(CD方向)とは、MD方向と直交する方向を言う。
〈ベース厚さ〉
ダイヤルゲージ(尾崎製作所社製 ピーコックG-6)を用いて、微多孔質フィルム(リブ状突起を有する場合はリブ状突起を含まない箇所)の任意の点、数箇所を測定した。
〈引張強度、伸び〉
微多孔質フィルムから、MDおよびCD方向に、10mm×70mmの長方形サイズに裁断し試験片とする。容量294N以下のショッパー式またはこれに準ずる引張試験機を用い、試験機のつかみの間隔(a)を約50mmとし、試験片を取り付け、毎分200mmの引張速さで引張試験を行い、試験片が切断した時の引張荷重(b)、距離(c)を読む。引張強度は、引張荷重(b)を試験片の断面積で除して算出する。伸びは、距離(c)を試験機のつかみの間隔(a)で除して算出する。
〈空隙率〉
微多孔質フィルムの細孔容積(水銀圧入法)と真密度(浸漬法)から、次式により算出した。
空隙率=Vp/((1/ρ)+Vp)
但し、Vp:細孔容積(cm/g)、ρ:真密度(g/cm
〈平均細孔径〉
水銀圧入時の、圧力と水銀の容量から細孔径分布を算出した。全細孔容積の50%の容積の水銀が圧入された時点の細孔径を平均細孔径(メディアン径)とした。
〈最大孔径〉
平均細孔径試験における細孔径分布曲線から、水銀の圧入が開始された孔径を最大孔径とした。
〈浸透性〉
微多孔質フィルムを70mm×70mmの正方形サイズに裁断した試験片を、温度20℃の比重1.20の硫酸の液面に浮かべたのち、試験片の表面に硫酸が浸透し、試験片の一部が変色するまでの時間を測定し、浸透性(秒)とした。
〈電気抵抗〉
微多孔質フィルムを70mm×70mmの正方形サイズに裁断して試験片とし、SBA S 0402に準拠した試験装置で測定した。
〈耐酸化寿命〉
50mm×50mmの正方形状の鉛板製の正極および負極を、70mm×70mmの正方形状に裁断した微多孔質フィルム製セパレータを挟んで、同心状にかつ正方形状の向きを合わせて積層し、積層した正極(1枚)、セパレータ(1枚)、負極(1枚)からなる極群に19.6kPaの加圧をかけて電槽内に組み込んだ後、比重1.300(20℃)の希硫酸電解液を1000ml注入し、液温度50±2℃で5.0Aの直流定電流を流し、端子電圧が2.6V以下または電圧差が0.2V以上となった時点の通電時間を測定し、耐酸化時間(h)とした。なお、表1には、比較例1の値を100とした場合の相対値を表示した。
〈デンドライトショート特性〉
70mm×70mmの正方形状にカットした微多孔質フィルムを50mm×50mmの正方形状の鉛極板(純鉛製、厚さ3mm)2枚で挟んで、微多孔質フィルムと2枚の鉛極板の3つの正方形の中心が一致しかつ3つの正方形の各辺が互いに平行であるようにして、電槽内に水平状態に設置し、その上に(正方形の中心位置に)5kgの重りを載せた後、飽和硫酸鉛水溶液を注入する。その後、鉛極板に3.2mAの電流を通電し、電圧の変化を連続的に記録する。電圧は、通電開始後にやや上昇し、その後緩やかに低下する。この時の最大電圧の70%に電圧が低下するまで時間を計測する。なお、表1には、比較例1の値を100とした場合の相対値を表示した。
〈ICP発光分光分析〉
100mm×100mmの正方形状にカットした微多孔質フィルム2枚を、比重1.26の硫酸126gの入ったビーカーに入れる。これを50℃に保持した恒温水槽に入れて、24時間静置する。24時間静置後に、硫酸(抽出液)中から、微多孔質フィルムを取り出す。硫酸(抽出液)を1/10に希釈し、希釈液中のアルカリ金属分(Li、Na、K、Rb、Cs)、および、ハロゲン分(F、Cl、Br、I)を、ICP発光分光分析装置にて定量分析する。得られた値は、ppmからmg/100cm/枚(面積が100cmの微多孔質フィルム1枚当たりの重量)に換算する(但し、微多孔質フィルム1枚当たりとはベース厚さ0.2mm当たりであることとし、ベース厚さがこれと異なる場合は値を換算してベース厚さ0.2mm当たりとなるよう補正する)。
〈電池試験(充電受入性、電池寿命)〉
充電受入性は、JIS D 5301(2006)に基づき、5時間率電流で2.5時間放電した時の、充電開始後の充電電流を測定する。電池寿命は、JIS D 5301(2006)に基づく軽負荷寿命試験の方法で、充放電サイクル試験を行い、30秒目電圧が7.2V以下となった時のサイクル数を測定する。なお、表1の充電受入性、電池寿命は、比較例1の値を100とした場合の相対値(相対結果)を表示した。
Next, various characteristic evaluations were performed on each of the separators of Examples 1 to 3 and Comparative Examples 1 to 3 obtained above using the following methods. The results are shown in Table 1. Note that MD (MD direction) refers to the manufacturing direction of a sheet to be manufactured, and CD (CD direction) refers to a direction perpendicular to the MD direction.
<Base thickness>
Using a dial gauge (Peacock G-6 manufactured by Ozaki Seisakusho Co., Ltd.), measurements were taken at arbitrary points and several locations on the microporous film (in cases where the film had rib-like protrusions, the portions did not contain the rib-like protrusions).
<Tensile strength, elongation>
A test piece is cut from the microporous film into a rectangular size of 10 mm x 70 mm in the MD and CD directions. Using a Schopper type tensile testing machine with a capacity of 294N or less or a similar tensile testing machine, the interval (a) between the grips of the testing machine was set to about 50mm, a test piece was attached, and a tensile test was performed at a tensile speed of 200mm/min. Read the tensile load (b) and distance (c) when it is cut. The tensile strength is calculated by dividing the tensile load (b) by the cross-sectional area of the test piece. Elongation is calculated by dividing the distance (c) by the grip spacing (a) of the testing machine.
<Porosity>
It was calculated using the following formula from the pore volume (mercury intrusion method) and true density (immersion method) of the microporous film.
Porosity = Vp/((1/ρ)+Vp)
However, Vp: pore volume (cm 3 /g), ρ: true density (g/cm 3 )
<Average pore diameter>
The pore size distribution was calculated from the pressure and mercury volume during mercury intrusion. The pore diameter at the time when 50% of the total pore volume of mercury was injected was defined as the average pore diameter (median diameter).
<Maximum hole diameter>
From the pore size distribution curve in the average pore size test, the pore size at which mercury injection started was determined as the maximum pore size.
<Permeability>
A test piece made by cutting a microporous film into a square size of 70 mm x 70 mm was floated on the surface of sulfuric acid with a specific gravity of 1.20 at a temperature of 20°C. The time until the area changes color was measured and defined as permeability (seconds).
<Electrical resistance>
The microporous film was cut into a square size of 70 mm x 70 mm to prepare a test piece, and the test piece was measured using a test device compliant with SBA S 0402.
<Oxidation resistance life>
A positive electrode and a negative electrode made of square lead plates measuring 50 mm x 50 mm are laminated concentrically and squarely aligned with a microporous film separator cut into a square shape of 70 mm x 70 mm in between. After applying a pressure of 19.6 kPa to the electrode group consisting of a positive electrode (1 piece), a separator (1 piece), and a negative electrode (1 piece) and assembling it in a battery case, Inject 1000ml of sulfuric acid electrolyte, apply a constant DC current of 5.0A at a liquid temperature of 50±2°C, and measure the energization time when the terminal voltage becomes 2.6V or less or the voltage difference becomes 0.2V or more. , oxidation resistance time (h). Note that Table 1 shows relative values when the value of Comparative Example 1 is set to 100.
<Dendrite short characteristics>
A microporous film cut into a 70 mm x 70 mm square is sandwiched between two 50 mm x 50 mm square lead electrode plates (made of pure lead, thickness 3 mm), and the microporous film and two lead electrode plates are assembled. Place it horizontally in the battery case so that the centers of the three squares match and the sides of the three squares are parallel to each other, and place a 5 kg weight on top of it (at the center of the square). After that, inject a saturated lead sulfate aqueous solution. Thereafter, a current of 3.2 mA is applied to the lead electrode plate, and changes in voltage are continuously recorded. The voltage increases slightly after the start of energization, and then gradually decreases. The time is measured until the voltage drops to 70% of the maximum voltage at this time. Note that Table 1 shows relative values when the value of Comparative Example 1 is set to 100.
<ICP emission spectrometry analysis>
Two microporous films cut into squares of 100 mm x 100 mm are placed in a beaker containing 126 g of sulfuric acid with a specific gravity of 1.26. This was placed in a constant temperature water bath maintained at 50°C and left standing for 24 hours. After standing still for 24 hours, the microporous film is taken out from the sulfuric acid (extract liquid). The sulfuric acid (extract) was diluted to 1/10, and the alkali metal content (Li, Na, K, Rb, Cs) and halogen content (F, Cl, Br, I) in the diluted solution were analyzed by ICP emission spectroscopy. Perform quantitative analysis using an analyzer. The obtained value is converted from ppm to mg/100cm 2 /sheet (weight per microporous film with an area of 100cm 2 ) (however, "per microporous film" means base thickness 0. If the base thickness is different from this, the value is converted and corrected to be per 0.2 mm of the base thickness).
<Battery test (charge acceptance, battery life)>
Charge acceptability is determined based on JIS D 5301 (2006) by measuring the charging current after the start of charging when discharging at a 5 hour rate current for 2.5 hours. The battery life is determined by performing a charge/discharge cycle test using the light load life test method based on JIS D 5301 (2006), and measuring the number of cycles when the voltage becomes 7.2 V or less at 30 seconds. Note that the charging acceptability and battery life in Table 1 are relative values (relative results) when the value of Comparative Example 1 is set as 100.

Figure 0007444920000001
Figure 0007444920000001

表1の結果から以下のことが分かった。
(1)本発明の実施例1のセパレータは、アルカリ金属分の濃度(ICP発光分光分析)を5mg/100cm/枚以下としたことで、充電受入性が良化するとともに、ハロゲン分の濃度(ICP発光分光分析)を0.4mg/100cm/枚以下としたことで、極板格子や極柱の腐食が妨げられ、電池寿命が良化した。
(2)本発明の実施例2のセパレータは、実施例1のセパレータに対し、更に、アルカリ金属分の濃度(ICP発光分光分析)を4mg/100cm/枚以下としたことで、充電受入性が更に良化した。
(3)本発明の実施例3のセパレータは、実施例1のセパレータに対し、更に、ハロゲン分の濃度(ICP発光分光分析)を0.1mg/100cm/枚以下としたことで、電池寿命が更に良化した。
(4)よって、本発明の実施例1~3のセパレータを自動車用鉛蓄電池に適用すれば、アイドリングストップ車で求められる充電受入性および電池寿命の向上に寄与すると考えられる。
(5)比較例1のセパレータは、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm/枚超えであることから、充電受入性は100%と改善が見られず、また、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm/枚超えであることから、極板格子や極柱の腐食が促進され、電池寿命は100%と改善が見られなかった。
(6)比較例2のセパレータは、ハロゲン分の濃度(ICP発光分光分析)を0.4mg/100cm/枚以下としたことで、極板格子や極柱の腐食が妨げられ、電池寿命が良化したものの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm/枚超えであることから、充電受入性は100%と改善が見られなかった。
(7)比較例3のセパレータは、アルカリ金属分の濃度(ICP発光分光分析)を5mg/100cm/枚以下としたことで、充電受入性が良化したものの、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm/枚超えであることから、極板格子や極柱の腐食が促進され、電池寿命は100%と改善が見られなかった。
The results in Table 1 revealed the following.
(1) The separator of Example 1 of the present invention has an alkali metal concentration (ICP emission spectrometry) of 5 mg/100 cm 2 /sheet or less, which improves charge acceptance and improves halogen concentration. (ICP emission spectroscopy) was set to 0.4 mg/100 cm 2 /sheet or less, which prevented corrosion of the electrode plate grid and pole pillars and improved battery life.
(2) Compared to the separator of Example 1, the separator of Example 2 of the present invention has an alkali metal concentration (ICP emission spectrometry) of 4 mg/100 cm 2 /piece or less, which improves charge acceptance. has further improved.
(3) Compared to the separator of Example 1, the separator of Example 3 of the present invention has a halogen concentration (ICP emission spectrometry) of 0.1 mg/100 cm 2 /sheet or less, which improves battery life. has further improved.
(4) Therefore, if the separators of Examples 1 to 3 of the present invention are applied to automotive lead-acid batteries, it is thought that it will contribute to improving the charging acceptability and battery life required for idling stop vehicles.
(5) Since the separator of Comparative Example 1 has an alkali metal concentration (ICP emission spectrometry) of more than 5 mg/100 cm 2 /sheet, the charge acceptance is 100%, which shows no improvement. Since the concentration (ICP emission spectrometry) of 0.4 mg/100 cm 2 /plate was more than 0.4 mg/100 cm 2 /sheet, corrosion of the electrode plate grid and pole pillars was accelerated, and the battery life was 100%, with no improvement observed.
(6) The separator of Comparative Example 2 has a halogen concentration (ICP emission spectrometry) of 0.4 mg/100 cm 2 /sheet or less, which prevents corrosion of the electrode grid and pole pillars and shortens battery life. Although it was improved, since the concentration of alkali metal content (ICP emission spectrometry) exceeded 5 mg/100 cm 2 /sheet, the charge acceptability was 100% and no improvement was observed.
(7) In the separator of Comparative Example 3, the concentration of alkali metal components (ICP emission spectrometry) was set to 5 mg/100 cm 2 /sheet or less, which improved charge acceptance. Spectroscopic analysis) exceeded 0.4 mg/100 cm 2 /sheet, so corrosion of the electrode plate grid and pole pillars was accelerated, and the battery life was 100%, with no improvement observed.

Claims (3)

合成非晶質シリカであるシリカ微粉を40重量%以上含む微多孔質膜からなる液式鉛蓄電池用セパレータであって、前記微多孔質膜は、ベース厚さが0.18~0.3mmの微多孔質フィルムであり、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)であることを特徴とする液式鉛蓄電池用セパレータ。 A separator for a liquid lead-acid battery comprising a microporous membrane containing 40% by weight or more of silica fine powder, which is synthetic amorphous silica, the microporous membrane having a base thickness of 0.18 to 0.3 mm. It is a microporous film, and the alkali metal content (Li, Na, K, Rb, Cs) concentration (ICP emission spectrometry) is 5 mg/100 cm 2 /sheet or less (however, the base thickness of the microporous membrane is 0.2 mm), and the halogen content (F, Cl, Br , I) for a liquid lead-acid battery, characterized in that the concentration (ICP emission spectrometry) is 0.4 mg/100 cm 2 /sheet or less (value calculated based on the base thickness of the microporous membrane of 0.2 mm). Separator. 前記微多孔質膜は、前記シリカ微粉とポリオレフィン系樹脂を主体としてなる微多孔質フィルムであることを特徴とする請求項1記載の液式鉛蓄電池用セパレータ。 2. The separator for a liquid lead-acid battery according to claim 1 , wherein the microporous membrane is a microporous film mainly composed of the silica fine powder and a polyolefin resin. 前記微多孔質フィルムは、平均細孔径(水銀圧入法)が0.01~0.5μm、空隙率(水銀圧入法)が50~90体積%の微多孔質フィルムであることを特徴とする請求項2記載の液式鉛蓄電池用セパレータ。 The microporous film is a microporous film having an average pore diameter (mercury intrusion method) of 0.01 to 0.5 μm and a porosity (mercury intrusion method) of 50 to 90% by volume. Item 2 : A separator for a liquid lead-acid battery according to item 2.
JP2022072931A 2016-03-31 2022-04-27 Separator for liquid lead-acid batteries Active JP7444920B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016072387 2016-03-31
JP2016072387 2016-03-31
JP2018509493A JP7248425B2 (en) 2016-03-31 2017-03-31 Separator for flooded lead-acid battery
PCT/JP2017/013500 WO2017170977A1 (en) 2016-03-31 2017-03-31 Separator for liquid-type lead storage battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018509493A Division JP7248425B2 (en) 2016-03-31 2017-03-31 Separator for flooded lead-acid battery

Publications (2)

Publication Number Publication Date
JP2022100369A JP2022100369A (en) 2022-07-05
JP7444920B2 true JP7444920B2 (en) 2024-03-06

Family

ID=59965965

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018509493A Active JP7248425B2 (en) 2016-03-31 2017-03-31 Separator for flooded lead-acid battery
JP2022072931A Active JP7444920B2 (en) 2016-03-31 2022-04-27 Separator for liquid lead-acid batteries

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018509493A Active JP7248425B2 (en) 2016-03-31 2017-03-31 Separator for flooded lead-acid battery

Country Status (3)

Country Link
JP (2) JP7248425B2 (en)
CN (1) CN108886124B (en)
WO (1) WO2017170977A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283898A (en) 2000-03-29 2001-10-12 Tokuyama Corp Electrolyte holding agent for lead storage battery
US6818355B1 (en) 1998-03-20 2004-11-16 Ensci Inc. Silica filled polymeric separator containing efficiency improving additives
JP2005251394A (en) 2004-03-01 2005-09-15 Japan Storage Battery Co Ltd Lead storage battery
CN2911976Y (en) 2006-04-17 2007-06-13 周文军 High efficiency environment protection accumulator
CN101060180A (en) 2006-04-17 2007-10-24 周文军 A low sodium silicon colloidal environment-friendly storage battery
JP2013203650A (en) 2012-03-29 2013-10-07 Admatechs Co Ltd Silica particle and thermoplastic resin composition
JP2015216125A (en) 2015-07-27 2015-12-03 日本板硝子株式会社 Separator for liquid-type lead storage batteries, and liquid-type lead storage battery
JP2016024918A (en) 2014-07-18 2016-02-08 三菱製紙株式会社 Method of manufacturing separator for electrochemical element, separator for electrochemical element manufactured by the manufacturing method and electrochemical element using the same
JP2016519389A (en) 2013-03-15 2016-06-30 アムテック リサーチ インターナショナル エルエルシー Small resistivity lead acid battery separator

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19527278A1 (en) * 1995-07-26 1997-01-30 Degussa Precipitated silica
JPH10172532A (en) * 1996-12-10 1998-06-26 Mitsubishi Paper Mills Ltd Non-woven fabric for alkaline battery separator and its manufacture
JPH1143890A (en) * 1996-12-26 1999-02-16 Mitsubishi Paper Mills Ltd Nonwoven fabric, separator for battery and battery
JP2003036831A (en) 2001-07-23 2003-02-07 Furukawa Battery Co Ltd:The Sealed lead storage battery having gel electrolyte
JP5020449B2 (en) 2001-09-28 2012-09-05 日本板硝子株式会社 Sealed separator for sealed lead-acid battery
JP4846193B2 (en) * 2002-07-10 2011-12-28 株式会社トクヤマ Easily dispersible precipitated silica cake and method for producing the same
EP1577263A4 (en) * 2002-07-10 2010-04-14 Tokuyama Corp Cake of easily dispersible precipitated silica and process for producing the same
JP2005053728A (en) 2003-08-01 2005-03-03 Dsl Japan Co Ltd Amorphous silica particle having high oil absorption and high structural performance
JP4628764B2 (en) * 2004-07-06 2011-02-09 旭化成株式会社 Storage device separator
US7445735B2 (en) * 2004-12-07 2008-11-04 Daramic Llc Method of making microporous material
KR100971109B1 (en) 2006-11-20 2010-07-20 데이진 가부시키가이샤 Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2009032677A (en) * 2007-07-04 2009-02-12 Hitachi Maxell Ltd Porous membrane for separator and its manufacturing method; separator for battery and its manufacturing method; electrode for battery and its manufacturing method, and lithium secondary cell
JP5875459B2 (en) 2012-05-11 2016-03-02 太平洋セメント株式会社 Method for cleaning amorphous silica
US10811658B2 (en) * 2012-09-19 2020-10-20 Asahi Kasei Kabushiki Kaisha Separator and method of preparing the same, and lithium ion secondary battery
CN105009352B (en) * 2013-02-22 2017-12-01 株式会社杰士汤浅国际 Flooded lead-acid battery
CN105428570A (en) * 2014-08-20 2016-03-23 招远市海思微孔隔膜有限公司 PVC battery separation plate production method and PVC battery separation plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818355B1 (en) 1998-03-20 2004-11-16 Ensci Inc. Silica filled polymeric separator containing efficiency improving additives
JP2001283898A (en) 2000-03-29 2001-10-12 Tokuyama Corp Electrolyte holding agent for lead storage battery
JP2005251394A (en) 2004-03-01 2005-09-15 Japan Storage Battery Co Ltd Lead storage battery
CN2911976Y (en) 2006-04-17 2007-06-13 周文军 High efficiency environment protection accumulator
CN101060180A (en) 2006-04-17 2007-10-24 周文军 A low sodium silicon colloidal environment-friendly storage battery
JP2013203650A (en) 2012-03-29 2013-10-07 Admatechs Co Ltd Silica particle and thermoplastic resin composition
JP2016519389A (en) 2013-03-15 2016-06-30 アムテック リサーチ インターナショナル エルエルシー Small resistivity lead acid battery separator
JP2016024918A (en) 2014-07-18 2016-02-08 三菱製紙株式会社 Method of manufacturing separator for electrochemical element, separator for electrochemical element manufactured by the manufacturing method and electrochemical element using the same
JP2015216125A (en) 2015-07-27 2015-12-03 日本板硝子株式会社 Separator for liquid-type lead storage batteries, and liquid-type lead storage battery

Also Published As

Publication number Publication date
CN108886124B (en) 2021-06-04
JP7248425B2 (en) 2023-03-29
WO2017170977A1 (en) 2017-10-05
CN108886124A (en) 2018-11-23
JP2022100369A (en) 2022-07-05
JPWO2017170977A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP5841478B2 (en) Separator for liquid lead acid battery and liquid lead acid battery
KR102035034B1 (en) micro-porous hybrid film having electro-chemical stability and method for preparing the same
US20200321580A1 (en) Improved separators for lead acid batteries, improved batteries and related methods
JP5856788B2 (en) Power storage device separator and method for manufacturing the same
JP6030194B2 (en) Liquid lead-acid battery separator and liquid lead-acid battery
US11742550B2 (en) Lead acid battery separators, batteries, and related methods
US10270136B2 (en) Separator for lead-acid battery, and lead-acid battery
WO2017143212A1 (en) Improved separators, lead acid batteries, and methods and systems associated therewith
JP7444920B2 (en) Separator for liquid lead-acid batteries
JP5060034B2 (en) Electric storage device separator and electric storage device
JP5020449B2 (en) Sealed separator for sealed lead-acid battery
JP2013070006A (en) Heat resistance separator for power storage device, and method of manufacturing the same
JP2014179519A (en) Separator for electricity storage device, and electricity storage device
JPH01318049A (en) Microporous polyolefin film
JP4842445B2 (en) Electric double layer capacitor separator
WO2018175699A1 (en) Improved separators, lead acid batteries, and methods and systems associated therewith
JP4737936B2 (en) Capacitor separator
JP2005285688A (en) Separator for battery and its manufacturing method as well as battery
JP6769306B2 (en) Separator for lead-acid battery and lead-acid battery
JP2023020286A (en) Lead-acid battery and separator for the same
JP2007095497A (en) Separator for storage battery, and storage battery
JP2003303738A (en) Separator for capacitor and its manufacturing method
JP2005109245A (en) Separator for capacitor
JPS59154753A (en) Separator for alkaline cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240222

R150 Certificate of patent or registration of utility model

Ref document number: 7444920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150