JP2005100794A - Sealed type lead-acid battery - Google Patents

Sealed type lead-acid battery Download PDF

Info

Publication number
JP2005100794A
JP2005100794A JP2003332974A JP2003332974A JP2005100794A JP 2005100794 A JP2005100794 A JP 2005100794A JP 2003332974 A JP2003332974 A JP 2003332974A JP 2003332974 A JP2003332974 A JP 2003332974A JP 2005100794 A JP2005100794 A JP 2005100794A
Authority
JP
Japan
Prior art keywords
electrode plate
plate group
acid battery
kpa
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003332974A
Other languages
Japanese (ja)
Other versions
JP4332783B2 (en
Inventor
Masaaki Hosokawa
正明 細川
Takeshi Kameda
毅 亀田
Hitoshi Morimitsu
仁 守光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2003332974A priority Critical patent/JP4332783B2/en
Priority to PCT/JP2004/014014 priority patent/WO2005031907A1/en
Priority to CNB2004800273662A priority patent/CN100477365C/en
Publication of JP2005100794A publication Critical patent/JP2005100794A/en
Application granted granted Critical
Publication of JP4332783B2 publication Critical patent/JP4332783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed type lead-acid battery in which the stratification of an electrolytic solution is hard to occur, and which has a long life and is highly reliable. <P>SOLUTION: (1) In the sealed type lead-acid battery which is provided with an electrode plate group composed of a positive electrode plate, a negative electrode plate, and a separator which has glass fibers as a main body and has mixed silica powder, the electrode plate group is assembled so that a compression force is 60 kpa or larger and the group is inserted into an electrical container. (2) In the sealed type lead-acid battery, the filling rate of the electrolytic solution as opposed to the total hole volume of the electrode plate group is made to be 92% or less. Or, (1) and (2) are combined. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、密閉形鉛蓄電池に関するものであり、さらに詳しくは、ガラス繊維を主体とするセパレータを備えた長寿命、高信頼性の密閉形鉛蓄電池に関するものである。   The present invention relates to a sealed lead-acid battery, and more particularly to a long-life, high-reliability sealed lead-acid battery including a separator mainly composed of glass fiber.

自動車用や電気車用の密閉形鉛蓄電池では、ガラス繊維のマット状シートがセパレータとして実用化されてきたが、さらにセパレータの吸液性を高めて電解液保持性を改良しようとするものとして、ガラス繊維と無機質粉末とを組み合わせたものが公知である。   In sealed lead-acid batteries for automobiles and electric cars, glass fiber mat-like sheets have been put into practical use as separators, but as an attempt to improve the electrolyte retention by further increasing the liquid absorption of the separator, A combination of glass fiber and inorganic powder is known.

このようなセパレータとして、平均直径0.5〜1.0μmの含アルカリ珪酸塩ガラス繊維を主体とする繊維と、比表面積が100m2/g以上のシリカ粉末を主体とする粉末とが湿式混抄され、前記繊維が絡み合わされると共に、繊維と繊維との間に前記粉末粒子が介在されてなる鉛蓄電池用セパレータがある(特許文献1参照)。 As such a separator, a fiber mainly composed of an alkali-containing silicate glass fiber having an average diameter of 0.5 to 1.0 μm and a powder mainly composed of silica powder having a specific surface area of 100 m 2 / g or more are wet-mixed. There is a lead-acid battery separator in which the fibers are entangled and the powder particles are interposed between the fibers (see Patent Document 1).

特開昭60−221954公報(特許請求の範囲、第1頁左下欄下から第2行〜右下欄第7行、第2頁右上欄第1行〜第5行、第2頁左下欄第4行〜第11行、第3頁左下欄第6行〜第11行)JP-A-60-221954 (Claims, page 1, lower left column to second line to lower right column, seventh line, second page upper right column, first line to fifth line, second page, lower left column) (Line 4 to line 11, page 3, lower left column line 6 to line 11)

特許文献1には、平均直径1μm以下のガラス繊維のマット状シートをセパレータとして使用した密閉形鉛蓄電池においては、極板高さが、例えば180mm以上となる大型電池になると、繊維の毛管現象による吸液高さが低下するため、マット状シートの上部の電解液保持量が下部よりもかなり少なくなる、いわゆる電解液の成層化が生じ、所望の性能が得られないという問題点があることが記載されているが、特許文献1の発明は、この問題点を、平均直径0.5〜1.0μmの含アルカリ珪酸塩ガラス繊維と比表面積が100m2/g以上のシリカ粉末を使用し、含アルカリ珪酸塩ガラスの繊維の表面に生ずる水ガラス状接着層より、両者を接着することにより解決するものであり、極板群の圧迫力、電解液の充填率を調整することにより解決するものではない。   In Patent Document 1, in a sealed lead-acid battery that uses a glass fiber mat-like sheet having an average diameter of 1 μm or less as a separator, when a large battery with an electrode plate height of, for example, 180 mm or more, is caused by the capillary action of fibers. Since the liquid absorption height is lowered, the amount of electrolyte held in the upper part of the mat-like sheet is considerably less than that in the lower part, so-called stratification of the electrolyte occurs, and there is a problem that desired performance cannot be obtained. Although described, the invention of Patent Document 1 includes this problem using an alkali-containing silicate glass fiber having an average diameter of 0.5 to 1.0 μm and a silica powder having a specific surface area of 100 m 2 / g or more. It is solved by adhering both from the water-glass-like adhesive layer formed on the surface of the fiber of the alkali silicate glass. By adjusting the pressing force of the electrode plate group and the filling rate of the electrolyte solution It is not a solution.

また、電解液の成層化の防止等を目的として、密閉形鉛蓄電池において、極板群隔離材は平均繊維径6μm以上のガラス繊維を主体としたリテーナを用い、硫酸電解液に耐酸性で電解液を保持できる無機粉体を最大で2%添加し、正極板、負極板、リテーナからなる極板群に対し、電解液を注入する前の乾燥状態において10〜50kg/dm2の圧力で圧迫しているものがある(特許文献2参照)。   In addition, in order to prevent stratification of the electrolyte, etc., in the sealed lead-acid battery, the electrode group separator is a retainer mainly composed of glass fibers having an average fiber diameter of 6 μm or more. Add up to 2% of inorganic powder that can hold the liquid, and press against the electrode plate group consisting of the positive electrode plate, negative electrode plate, and retainer at a pressure of 10 to 50 kg / dm 2 in the dry state before injecting the electrolyte. (See Patent Document 2).

特開平7−94206号公報(特許請求の範囲の請求項2、段落[0004]〜[0005]、段落[0015])JP-A-7-94206 (Claim 2, Claims, Paragraphs [0004] to [0005], Paragraph [0015])

特許文献2には、極板群を圧迫することによって、極板とリテーナとの間に隙間が生じにくくなり成層化が防止されることが示されているが、極板群を50kg/dm2を超える圧力で圧迫すると電槽が膨れ、均一に圧力を加えておくことが不可能であると記載されており、また、無機粉体は、電解液に添加するものであり、ガラス繊維を主体としたリテーナ(セパレータ)に添加するものではないから、電解液の成層化を防止するために、正極板、負極板、ガラス繊維を主体とし無機粉体を添加したセパレータからなる極板群に対し、50kg/dm2(約49kpa)を超える圧力で圧迫することが示唆されているとはいえない。 Patent Document 2 shows that pressing the electrode plate group makes it difficult for a gap to be formed between the electrode plate and the retainer, thereby preventing stratification. However, the electrode plate group is reduced to 50 kg / dm 2. It is described that the battery case swells when pressed with a pressure exceeding 1, and it is impossible to uniformly apply pressure. In addition, inorganic powder is added to the electrolyte and is mainly composed of glass fiber. In order to prevent stratification of the electrolyte, the positive electrode plate, the negative electrode plate, and the electrode plate group consisting of separators mainly made of glass fibers and added with inorganic powder are not added to the retainer (separator). Therefore, it cannot be said that compression is performed at a pressure exceeding 50 kg / dm 2 (about 49 kpa).

鉛蓄電池の極板群(極群)に高い圧迫力を与える従来の技術として、クラッド式正極板とペースト式負極板とを、平板状の保液性セパレータを介して交互に積層して極板群を形成した密閉形クラッド式鉛蓄電池であって、極板群は40kg/dm2 以上の圧迫度で圧迫されており、保液性セパレータは平均繊維径が0.4ミクロン以下のガラス繊維を主体としたものである密閉形クラッド式鉛蓄電池(特許文献3参照)、正極板と負極板の間にガラスマットを挟んで積層した極群を、該極群の圧迫力を30〜80kg/dm2として電槽内に収納している負極吸収式密閉形鉛蓄電池(特許文献4参照)、正極板と負極板とをガラス繊維等からなるマットセパレータを介して積層した極板群を電槽に収納した密閉形鉛蓄電池において、前記極板群にはその積層方向に39200N/m2以上の群圧を印加した密閉形鉛蓄電池(特許文献5参照)がある。 As a conventional technology that gives a high pressing force to the electrode plate group (electrode group) of a lead storage battery, a clad positive electrode plate and a paste negative electrode plate are alternately laminated via a flat liquid retaining separator. A sealed clad lead storage battery in which a group of electrodes is pressed with a pressure of 40 kg / dm 2 or more, and a liquid retaining separator is made of glass fibers having an average fiber diameter of 0.4 microns or less. A sealed clad lead storage battery (see Patent Document 3), which is the main component, and a pole group in which a glass mat is sandwiched between a positive electrode plate and a negative electrode plate, and the pressing force of the electrode group is set to 30 to 80 kg / dm 2 A negative electrode absorption type sealed lead-acid battery (see Patent Document 4) housed in a battery case, and an electrode plate group obtained by laminating a positive electrode plate and a negative electrode plate via a mat separator made of glass fiber or the like were housed in the battery case. In a sealed lead-acid battery, the electrode plate group Has a sealed lead-acid battery (see Patent Document 5) in which a group pressure of 39200 N / m 2 or more is applied in the stacking direction.

特開平5−198311号公報(特許請求の範囲、段落[0005]、[0009])JP 5-198311 A (claims, paragraphs [0005], [0009])

特開平11−185764号公報(特許請求の範囲の請求項3、段落[0018]、[0023])JP-A-11-185564 (Claim 3 of the Claims, Paragraphs [0018] and [0023])

特開2002−42857号公報(特許請求の範囲の請求項1、段落[0014]〜[0019]、[0034]〜[0038])JP 2002-42857 A (Claim 1 of the claims, paragraphs [0014] to [0019], [0034] to [0038])

特許文献3には、圧迫度を80kg/dm2(約78.4kpa)にすることにより、正極板とセパレータとの接触面積が大きくなり、放電容量の大きくなることが示されているが、長寿命とすることは示唆がなく、特許文献4の発明は、正極板を圧迫し、伸びを抑制して、長寿命の密閉形鉛蓄電池を提供するために、極板群の圧迫力を30〜80kg/dm2にするものであるが、具体的に示されている圧迫力は、35kg/dm2(約34.3kpa)までであり、特許文献5の発明は、正極板や負極板の変形を抑制するために、極板群を電槽に収納するに従い徐々に群圧を印加するものであり、39200N/m2(39.2kpa)〜98000N/m2(98kpa)の群圧を印加することにより寿命・高率放電特性を改善するものであるが、電槽に極板群を挿入する際に挿入当初は39.2kpa以上の群圧は極板群に印加されておらず、また、いずれの発明も、シリカ粉末を含有したセパレータを用いるものではなく、電解液の成層化の防止を目的とするものでもない。 Patent Document 3 shows that when the degree of compression is 80 kg / dm 2 (about 78.4 kpa), the contact area between the positive electrode plate and the separator increases, and the discharge capacity increases. There is no suggestion of a lifetime, and the invention of Patent Document 4 presses the positive electrode plate, suppresses elongation, and provides a long-life sealed lead-acid battery. but is intended to 80 kg / dm 2, compressive force is specifically shown, is up to 35 kg / dm 2 (about 34.3Kpa), the invention of Patent Document 5, the positive electrode plate and deformation of the negative electrode plate In order to suppress this, a group pressure is gradually applied as the electrode plate group is housed in the battery case, and a group pressure of 39200 N / m 2 (39.2 kpa) to 98000 N / m 2 (98 kpa) is applied. To improve the life and high rate discharge characteristics. However, when the electrode plate group is inserted into the battery case, the group pressure of 39.2 kpa or more is not applied to the electrode plate group at the beginning of insertion, and any invention also uses a separator containing silica powder. It is not used, nor is it intended to prevent stratification of the electrolyte.

また、電解液量に関しては、電槽内に収納した極板群空間体積の0.9〜1.0倍の範囲の電解液量を極板群に含浸保持させた密閉形鉛蓄電池(特許文献6参照)がある。   In addition, with respect to the amount of electrolyte, a sealed lead-acid battery in which the electrode plate group is impregnated and held with an electrolyte amount in the range of 0.9 to 1.0 times the volume of the electrode plate group stored in the battery case (Patent Document) 6).

特開昭60−185370号公報(特許請求の範囲、第2頁左上欄第15行〜第18行)JP 60-185370 A (Claims, page 2, upper left column, lines 15 to 18)

特許文献6の発明は、電解液量を極板群空間体積の0.9未満にするとガスの吸収反応はおこるが容量の低下はまぬがれないということで0.9〜1.0倍の範囲とするものであるから、電解液量を極板群空間体積の0.9未満にすることが示唆されているとはいえない。   In the invention of Patent Document 6, when the amount of the electrolyte is less than 0.9 of the electrode group space volume, the gas absorption reaction occurs, but the capacity is not reduced, and the range is 0.9 to 1.0 times. Therefore, it cannot be said that the amount of the electrolytic solution is less than 0.9 of the electrode plate group space volume.

極板の高さを高くした大容量密閉形鉛蓄電池において、電池の上下での電解液の偏在(電解液の成層化)を防ぎ高性能で長寿命の電池とするために、密閉形鉛蓄電池の電解液量を適正な範囲まで減らして、極板内部の電解液を正・負極板及びリテーナのポアーに固定するもの(特許文献7参照)がある。   In a large capacity sealed lead-acid battery with a high electrode plate, a sealed lead-acid battery is used to prevent the uneven distribution of electrolyte (stratification of the electrolyte) above and below the battery, resulting in a high-performance and long-life battery. The amount of the electrolyte solution is reduced to an appropriate range, and the electrolyte solution inside the electrode plate is fixed to the positive / negative electrode plate and the pore of the retainer (see Patent Document 7).

特開昭60−243976号公報(特許請求の範囲第1項、第2項、第1頁右下欄下から第5行〜第2頁左上欄第4行)Japanese Patent Application Laid-Open No. 60-243976 (claims 1st and 2nd paragraphs, from the lower right column on the first page to the fifth line to the upper left column on the second page, the fourth line)

特許文献7には、セル当りの電解液量を正・負極板の総ポアー・ボリュウムの2.3〜3.5倍とすることが示されているが、リテーナ(セパレータ)を含めた極板群総ポアー・ボリュウムのどの程度にするのかは示されていない。   Patent Document 7 discloses that the amount of electrolyte per cell is 2.3 to 3.5 times the total pore volume of the positive and negative electrode plates, but an electrode plate including a retainer (separator). It is not shown how much of the total pore volume will be.

ところで、高出力の要求される自動車用や電気車用の密閉形鉛蓄電池では、極板間の距離を短くするなどして液抵抗を低減する手法がとられている。しかし、極板間の距離を短くすると、浸透短絡を起こすことがあり、前記公知の文献に記載されているシリカ粉末には、電解液保持の効果だけでなく、浸透短絡を防ぐ効果もあるが、ガラス繊維にシリカ粉末を混入したセパレータを密閉形鉛蓄電池に用いると、極板高さが130mm程度の電池でも、電解液が成層化するという問題点があることが分かってきた。   By the way, in sealed lead-acid batteries for automobiles and electric cars that require high output, a technique for reducing the liquid resistance by, for example, shortening the distance between the electrode plates is used. However, if the distance between the electrode plates is shortened, an osmotic short-circuit may occur, and the silica powder described in the known literature has an effect of preventing the osmotic short-circuit as well as the effect of retaining the electrolyte solution. When a separator in which silica powder is mixed in glass fiber is used for a sealed lead-acid battery, it has been found that there is a problem that the electrolyte solution is stratified even in a battery having an electrode plate height of about 130 mm.

本発明は、前記問題点を解決するためになされたものであって、電解液の成層化が起こりにくい、長寿命、高信頼性の密閉形鉛蓄電池を提供することを課題とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a long-life, high-reliability sealed lead-acid battery in which stratification of an electrolytic solution hardly occurs.

前記の課題を解決するために、本発明者らは鋭意検討の結果、極板群の圧迫力、極板群総空孔体積に対する電解液の充填率を特定の範囲のものとすることにより電解液の成層化が起こりにくくなり、長寿命、高信頼性を備える密閉形鉛蓄電池が得られることを見出し、本発明に至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, made the electrolytic solution by making the filling rate of the electrolytic solution with respect to the compression force of the electrode plate group and the total pore volume of the electrode plate group within a specific range. The liquid stratification is less likely to occur, and it has been found that a sealed lead-acid battery having a long life and high reliability can be obtained.

本発明は、(1)正極板、負極板、及びガラス繊維を主体としシリカ粉末を混入したセパレータからなる極板群を備えた密閉形鉛蓄電池において、極板群を圧迫力が60kpa以上となるように組み立てて電槽に挿入することを特徴とする密閉形鉛蓄電池である(請求項1)。   The present invention provides (1) a sealed lead-acid battery comprising a positive electrode plate, a negative electrode plate, and an electrode plate group mainly composed of glass fibers and mixed with silica powder. In the sealed lead-acid battery, the pressing force of the electrode plate group is 60 kpa or more. Thus, the sealed lead-acid battery is assembled and inserted into the battery case (Claim 1).

(2)前記極板群を圧迫力が60kpa以上140kpa以下となるように組み立てることを特徴とする前記(1)に記載の密閉形鉛蓄電池である(請求項2)。 (2) The sealed lead-acid battery according to (1), wherein the electrode plate group is assembled so that the pressing force is 60 kpa or more and 140 kpa or less (Claim 2).

また、本発明は、(3)正極板、負極板、及びガラス繊維を主体としシリカ粉末を混入したセパレータからなる極板群を備えた密閉形鉛蓄電池において、極板群総空孔体積に対する電解液の充填率を92%以下にすることを特徴とする密閉形鉛蓄電池である(請求項3)。   The present invention also relates to (3) a sealed lead-acid battery comprising a positive electrode plate, a negative electrode plate, and an electrode plate group mainly composed of glass fibers and mixed with silica powder. A sealed lead-acid battery characterized in that the liquid filling rate is set to 92% or less (claim 3).

(4)前記極板群総空孔体積に対する電解液の充填率を76%以上92%以下にすることを特徴とする前記(3)に記載の密閉形鉛蓄電池である(請求項4)。 (4) The sealed lead-acid battery according to (3), wherein a filling rate of the electrolyte with respect to the total pore volume of the electrode plate group is 76% or more and 92% or less (claim 4).

さらに、本発明は、前記(1)の発明と前記(3)の発明とを組み合わせた、(5)正極板、負極板、及びガラス繊維を主体としシリカ粉末を混入したセパレータからなる極板群を備えた密閉形鉛蓄電池において、極板群を圧迫力が60kpa以上となるように組み立てて電槽に挿入すると共に、極板群総空孔体積に対する電解液の充填率を92%以下にすることを特徴とする密閉形鉛蓄電池である(請求項5)。   Further, the present invention is an electrode plate group consisting of a positive electrode plate, a negative electrode plate, and a separator mainly composed of glass fibers mixed with silica powder, which is a combination of the invention of (1) and the invention of (3). In the sealed lead-acid battery having the above structure, the electrode plate group is assembled so that the pressing force is 60 kpa or more and inserted into the battery case, and the filling rate of the electrolyte with respect to the total hole volume of the electrode plate group is set to 92% or less. This is a sealed lead-acid battery (claim 5).

(6)前記極板群を圧迫力が60kpa以上140kpa以下となるように組み立てると共に、前記極板群総空孔体積に対する電解液の充填率を76%以上92%以下にすることを特徴とする前記(5)に記載の密閉形鉛蓄電池である(請求項6)。 (6) The electrode plate group is assembled so that the pressing force is not less than 60 kpa and not more than 140 kpa, and the filling rate of the electrolyte with respect to the total hole volume of the electrode plate group is not less than 76% and not more than 92%. The sealed lead-acid battery according to (5) (Claim 6).

本発明は、極板群の圧迫力を60kpa以上にするか、極板群総空孔体積に対する電解液の充填率を92%以下にすることにより、または、両者を組み合わせることにより、電解液の成層化が起こりにくい(極板間の上下の電解液比重差が小さい)、長寿命、高信頼性の密閉形鉛蓄電池を提供できる。   In the present invention, the pressing force of the electrode plate group is set to 60 kpa or more, the filling rate of the electrolyte solution to the electrode plate group total pore volume is set to 92% or less, or a combination of the two is used. It is possible to provide a sealed lead-acid battery that is less likely to be stratified (small difference in upper and lower electrolyte specific gravity between electrode plates), has a long life, and is highly reliable.

以下に、本発明の実施の形態を例示するが、本発明は、以下の実施の形態に限定されるものではない。
ガラス繊維としては、セパレータに通常使用されている市販のガラス繊維を使用できる。平均直径は限定されるものではないが、0.8〜3.5μmのものが好ましい。
Embodiments of the present invention will be exemplified below, but the present invention is not limited to the following embodiments.
As glass fiber, the commercially available glass fiber normally used for the separator can be used. The average diameter is not limited, but is preferably 0.8 to 3.5 μm.

シリカ粉末としては、セパレータに通常使用されている乾式法SiO2や湿式法SiO2や珪藻土等が使用できるが、その中でも、比表面積100m2/g以上のものが好ましい。これは酸に対する濡れが良いこと、比表面積が大きい程微粉となり水への分散安定性に優れるためである。 As the silica powder, dry method SiO 2 , wet method SiO 2 , diatomaceous earth and the like which are usually used for separators can be used, and among them, those having a specific surface area of 100 m 2 / g or more are preferable. This is because the wetness to acid is good and the larger the specific surface area, the finer the powder becomes, and the better the dispersion stability in water.

耐硫酸性のシリカ粉末の含有量は限定されるものではないが、セパレータ重量の1〜40重量%含有させることができ、5〜30重量%が好ましい。セパレータ重量の1重量%未満では吸液性向上効果が乏しく、40重量%を超えると電気抵抗が上がりすぎ、また、シリカ粉末が脱落し易い欠点がある。   The content of the sulfuric acid-resistant silica powder is not limited, but can be 1 to 40% by weight of the separator weight, and preferably 5 to 30% by weight. If it is less than 1% by weight of the separator weight, the effect of improving the liquid absorbency is poor.

ガラス繊維と耐硫酸性の無機質粉末は混合して湿式抄造されるが、ガラス繊維以外に、ポリエステル繊維等の合成繊維を混抄することもできる。   Glass fiber and sulfuric acid-resistant inorganic powder are mixed and wet-made. However, in addition to glass fiber, synthetic fiber such as polyester fiber can be mixed.

極板群の圧迫力は、ドライな状態での極板群を積層方向に圧迫したときの単位面積当たりの圧力である。この圧迫力はドライな状態から電解液の充填率が70%程度になるまでは徐々に低下し、その後該充填率が80〜90%程度になるまでの間では徐々に上昇し、そこから電解液の充填率を80〜90%程度から70%程度にしていくと、ドライな状態から70%程度にした時より低い圧迫力となる。たとえば、ドライな状態の圧迫力を60kpaとして電解液の充填率を約70%にすると圧迫力は30kpa程度になり、その後該充填率を約90%にすると圧迫力は40kpa程度になり、そこから該充填率を約70%にすると圧迫力は20kpa程度になる。   The pressing force of the electrode plate group is a pressure per unit area when the electrode plate group in a dry state is pressed in the stacking direction. The compression force gradually decreases from a dry state until the electrolyte filling rate reaches about 70%, and then gradually increases until the filling rate reaches about 80 to 90%, from which the electrolysis is performed. When the filling rate of the liquid is increased from about 80 to 90% to about 70%, the pressing force becomes lower than when the dry state is increased to about 70%. For example, when the compression force in the dry state is 60 kpa and the filling rate of the electrolyte is about 70%, the compression force becomes about 30 kpa, and when the filling rate is about 90% after that, the compression force becomes about 40 kpa. When the filling rate is about 70%, the compression force is about 20 kpa.

極板群の圧迫力を60kpa以上にすると、極板間の上下の電解液の比重差は0.04d以下となり、サイクル寿命は顕著に向上する。60kpa未満では、極板群総空孔体積に対する電解液の充填率を92%にしても、極板間の上下の電解液の比重差が0.04dを超えて、サイクル寿命が短くなる。
極板群の圧迫力を60kpa以上にしても、極板群総空孔体積に対する電解液の充填率が92%より大きいと、極板間の上下の電解液の比重差が0.04dを超える場合があるが、その場合でも、極板群の圧迫力が60kpa未満の場合と比較して極板間の上下の電解液の比重差は小さくなり、サイクル寿命は向上する。
極板群の圧迫力の上限については限定されるものではないが、極板群の組み立て易さからみると、140kpa以下が好ましい。
When the pressing force of the electrode plate group is 60 kpa or more, the specific gravity difference between the upper and lower electrolytes between the electrode plates becomes 0.04 d or less, and the cycle life is remarkably improved. If it is less than 60 kpa, the specific gravity difference between the upper and lower electrolytes between the electrode plates exceeds 0.04d and the cycle life is shortened even if the filling rate of the electrolyte solution with respect to the total pore volume of the electrode plate group is 92%.
Even if the compression force of the electrode plate group is 60 kpa or more, if the filling ratio of the electrolyte solution to the electrode plate group total pore volume is larger than 92%, the specific gravity difference between the upper and lower electrolyte solutions between the electrode plates exceeds 0.04d. In some cases, the specific gravity difference between the upper and lower electrolytes between the electrode plates is smaller than that when the pressing force of the electrode group is less than 60 kpa, and the cycle life is improved.
Although the upper limit of the pressing force of the electrode plate group is not limited, 140 kpa or less is preferable from the viewpoint of ease of assembly of the electrode plate group.

極板群総空孔体積は、以下の式により求め、極板群総空孔体積に対する電解液の充填率は、電槽に注入した電解液の体積を極板群総空孔体積で割ることにより算出した。
極板群総空孔体積=正極板空孔体積+負極板空孔体積+セパレータ空孔体積
正極板空孔体積=正極板体積−正極活物質体積−正極格子体体積
負極板空孔体積=負極板体積−負極活物質体積−負極格子体体積
セパレータ空孔体積=セパレータ体積×(セパレータ空孔率)
The electrode group total pore volume is obtained by the following formula, and the electrolyte filling ratio relative to the electrode plate group total void volume is obtained by dividing the volume of the electrolyte injected into the battery case by the electrode plate group total hole volume. Calculated by
Total plate hole volume = positive electrode plate hole volume + negative electrode plate hole volume + separator hole volume positive electrode plate hole volume = positive electrode plate volume-positive electrode active material volume-positive electrode lattice volume negative electrode plate hole volume = negative electrode Plate volume-negative electrode active material volume-negative electrode lattice volume separator pore volume = separator volume x (separator porosity)

極板群総空孔体積に対する電解液の充填率を92%以下にすると、極板間の上下の電解液の比重差は0.04d以下となり、サイクル寿命は顕著に向上する。92%より大きいと、極板群の圧迫力を60kpaにしても、極板間の上下の電解液の比重差が0.04dを超えて、サイクル寿命が短くなる。
極板群総空孔体積に対する電解液の充填率を92%以下にしても、極板群の圧迫力が60kpa未満であると、極板間の上下の電解液の比重差が0.04dを超える場合があるが、その場合でも、極板群総空孔体積に対する電解液の充填率が92%より大きい場合と比較して極板間の上下の電解液の比重差は小さくなり、サイクル寿命は向上する。
電解液の充填率の下限については限定されるものではないが、76%未満になると、硫酸量(電解液量)が少なくなって、放電容量が少なくなり、さらに、電解液と活物質の接触面積が少なくなり、高率放電特性が低下するので、76%以上とすることが好ましい。
When the filling rate of the electrolyte with respect to the total pore volume of the electrode plate group is set to 92% or less, the specific gravity difference between the upper and lower electrolyte solutions between the electrode plates becomes 0.04 d or less, and the cycle life is remarkably improved. If it is greater than 92%, even if the pressing force of the electrode plate group is 60 kpa, the specific gravity difference between the upper and lower electrolytes between the electrode plates exceeds 0.04 d, and the cycle life is shortened.
Even if the filling rate of the electrolyte solution with respect to the total pore volume of the electrode plate group is 92% or less, if the pressing force of the electrode plate group is less than 60 kpa, the specific gravity difference between the upper and lower electrolyte solutions between the electrode plates is 0.04d. Even in such a case, the difference in specific gravity of the upper and lower electrolytes between the electrode plates is smaller than that in the case where the filling rate of the electrolyte solution with respect to the total pore volume of the electrode plate group is larger than 92%, and the cycle life is reduced. Will improve.
The lower limit of the filling rate of the electrolytic solution is not limited. However, when it is less than 76%, the amount of sulfuric acid (the amount of the electrolytic solution) decreases, the discharge capacity decreases, and the contact between the electrolytic solution and the active material. Since the area is reduced and the high rate discharge characteristics are lowered, it is preferable to be 76% or more.

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明は以下の記載により限定されるものではなく、試験方法や構成する電池の正極板、負極板、正極活物質、負極活物質、セパレータ、電解液並びに電池形状等は任意である。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by the following description, and the positive electrode plate, the negative electrode plate, the positive electrode active material, the negative electrode active material of the test method and the constituent battery are not limited thereto. The substance, separator, electrolyte, battery shape, etc. are arbitrary.

本実施例の密閉形鉛蓄電池は、高さ130mm幅75mmの未化成の正極板(厚さ1.3mm)5枚および負極板(厚さ1.1mm)6枚と、ガラス繊維と10重量%のシリカ粉末から構成したセパレータ5枚で、正極板をU字状に包み、圧迫力が20〜140kpaの範囲で20kpa毎となるように極板群を組み立てた後、該極板群を電槽内に挿入し、電解液を注入して電槽内で極板化成を行った。
該電池のセルあたりの極板群総空孔体積は142mlであり、極板群総空孔体積に対する電解液の充填率を92%として、化成後の完成電池の電解液比重が1.300dになるように化成した。
なお、極板群総空孔体積は以下のように算出した。
正極板空孔体積=正極板体積−正極活物質体積−正極格子体体積
=63.4cm3−19.5cm3−16.4cm3
=27.5cm3
正極板体積:(13.0cm×7.5cm×0.13cm)×5枚=63.4cm3
正極活物質体積:19.5cm3(重量36g÷密度9.2g/cm3)×5枚
正極格子体体積:3.28cm3×5枚=16.4cm3
負極板空孔体積=負極板体積−負極活物質体積−負極格子体体積
=64.4cm3−15.6cm3−15.3cm3
=33.5cm3
負極板体積:(13.0cm×7.5cm×0.11cm)×6枚=64.4cm3
負極活物質体積:15.6cm3(重量29.3g÷密度11.3g/cm3)×6枚
負極格子体体積:2.55cm3×6枚=15.3cm3
セパレータ空孔体積=セパレータ体積×セパレータ空孔率
=90cm3×90%=81cm3
セパレータ体積:(8.4cm×26.8cm×0.08cm)×5枚=90cm3
セパレータ空孔率:90%
極板群総空孔体積=正極板空孔体積+負極板空孔体積+セパレータ空孔体積
=27.5cm3+33.5cm3+81cm3
=142cm3
これらの電池について、25℃における5時間率の初期容量試験を実施した後に、電池を分解して極板の上部と下部の電解液比重を測定し、その比重差を算出した。
極板群の圧迫力と極板間の上下の電解液比重差との関係について図1に示す。
The sealed lead-acid battery of this example has five unformed positive plates (thickness 1.3 mm) and six negative plates (thickness 1.1 mm) having a height of 130 mm and a width of 75 mm, glass fiber, and 10% by weight. After assembling the electrode plate group so that the pressing force is every 20 kpa in the range of 20 to 140 kpa, the electrode plate is assembled into a battery case. It was inserted into the inside, and an electrolytic solution was injected to form an electrode plate in the battery case.
The electrode group total pore volume per cell of the battery is 142 ml, the electrolyte filling rate with respect to the electrode plate group total hole volume is 92%, and the electrolyte specific gravity of the finished battery after the formation is 1.300d. It was formed to become.
In addition, the electrode plate group total pore volume was calculated as follows.
Positive electrode plate pore volume = positive electrode plate volume-positive electrode active material volume-positive electrode grid volume
= 63.4 cm 3 -19.5 cm 3 -16.4 cm 3
= 27.5cm3
Positive electrode plate volume: (13.0 cm × 7.5 cm × 0.13 cm) × 5 = 63.4 cm 3
The positive electrode active material volume: 19.5cm 3 (weight 36 g ÷ density 9.2g / cm 3) × 5 MaiTadashikyoku grid volume: 3.28cm 3 × 5 sheets = 16.4 cm 3
Negative electrode plate pore volume = negative electrode plate volume-negative electrode active material volume-negative electrode lattice volume
= 64.4 cm 3 -15.6 cm 3 -15.3 cm 3
= 33.5cm 3
Negative electrode plate volume: (13.0 cm × 7.5 cm × 0.11 cm) × 6 sheets = 64.4 cm 3
Negative electrode active material volume: 15.6cm 3 (weight 29.3 g ÷ density 11.3g / cm 3) × 6 Maimakekyoku grid volume: 2.55 cm 3 × 6 Like = 15.3 cm 3
Separator pore volume = separator volume x separator porosity
= 90cm 3 × 90% = 81cm 3
Separator volume: (8.4 cm × 26.8 cm × 0.08 cm) × 5 sheets = 90 cm 3
Separator porosity: 90%
Total hole volume of electrode plate group = positive electrode plate hole volume + negative electrode plate hole volume + separator hole volume
= 27.5cm 3 + 33.5cm 3 + 81cm 3
= 142cm 3
These batteries were subjected to a 5-hour rate initial capacity test at 25 ° C., and then the batteries were disassembled to measure the electrolyte specific gravity at the upper and lower parts of the electrode plate, and the specific gravity difference was calculated.
FIG. 1 shows the relationship between the pressing force of the electrode plate group and the upper and lower electrolyte specific gravity differences between the electrode plates.

図1によれば、電解液の充填率が92%の場合、極板群の圧迫力が60kpa以下では極板間の上下の電解液比重差が0.04d以上となり、極板群の圧迫力が60kpa以上では極板間の上下の電解液比重差が0.04d以下となった。
また、極板群の圧迫力を60kpa以上にしても、電解液の充填率が92%より大きいと、極板間の上下の電解液の比重差が0.04dを超える場合があるが、その場合でも、極板群の圧迫力が60kpa未満の場合と比較して極板間の上下の電解液の比重差が小さくなることは明らかである。
なお、極板群の圧迫力が140kpa以上の調査をしていないのは、電池組立時に極板群を電槽の各セル室に挿入する極板群挿入工程において、現状の装置では140kpaを超える圧迫力がかけられなかったからであり、装置上140kpa以上の圧迫力をかけることが可能であるならば、限定されるものではない。
According to FIG. 1, when the filling rate of the electrolytic solution is 92%, when the pressing force of the electrode plate group is 60 kpa or less, the upper and lower electrolyte specific gravity difference is 0.04d or more, and the pressing force of the electrode plate group is Is 60 kpa or more, the upper and lower electrolyte specific gravity difference between the electrode plates is 0.04 d or less.
Further, even if the pressing force of the electrode plate group is 60 kpa or more, if the filling rate of the electrolyte is greater than 92%, the specific gravity difference between the upper and lower electrolytes between the electrodes may exceed 0.04d. Even in this case, it is clear that the specific gravity difference between the upper and lower electrolytes between the electrode plates is smaller than when the pressing force of the electrode plate group is less than 60 kpa.
The reason why the pressing force of the electrode plate group is not more than 140 kpa is that the current device exceeds 140 kpa in the electrode plate group insertion process in which the electrode plate group is inserted into each cell chamber of the battery case during battery assembly. This is because the pressing force could not be applied, and there is no limitation as long as it is possible to apply a pressing force of 140 kpa or more on the apparatus.

実施例1と同じ正極板、負極板およびセパレータを用い、極板群の圧迫力は60kpaとして、電解液の充填率を76〜100%の範囲で4%毎に、化成後の完成電池の電解液比重が1.300dになるように化成した。
これらの電池について、実施例1と同様に極板の上部と下部の電解液比重を測定し、その比重差を算出した。
総空孔に対する電解液の充填率と極板間の上下の電解液比重差との関係について図2に示す。
The same positive electrode plate, negative electrode plate and separator as in Example 1 were used. The compression force of the electrode plate group was 60 kpa, and the electrolyte filling rate was every 4% within the range of 76 to 100%. Chemical conversion was performed so that the liquid specific gravity was 1.300 d.
About these batteries, the specific gravity of electrolyte solution of the upper part and lower part of an electrode plate was measured similarly to Example 1, and the specific gravity difference was computed.
FIG. 2 shows the relationship between the filling rate of the electrolyte with respect to the total pores and the upper and lower electrolyte specific gravity differences between the electrode plates.

図2によれば、極板群の圧迫力が60kpaの場合、電解液の充填率が92%以上では極板間の上下の電解液比重差が0.04d以上となり、電解液の充填率が92%以下では極板間の上下の電解液比重差が0.04d以下となった。
また、電解液の充填率を92%以下にしても、極板群の圧迫力が60kpa未満であると、極板間の上下の電解液の比重差が0.04dを超える場合があるが、その場合でも、電解液の充填率が92%より大きい場合と比較して極板間の上下の電解液の比重差が小さくなることは明らかである。
According to FIG. 2, when the pressing force of the electrode plate group is 60 kpa, when the electrolytic solution filling rate is 92% or more, the upper and lower electrolytic solution specific gravity difference is 0.04d or more, and the electrolytic solution filling rate is Below 92%, the upper and lower electrolyte specific gravity difference between the electrode plates was 0.04 d or less.
Moreover, even if the filling rate of the electrolyte solution is 92% or less, if the pressing force of the electrode plate group is less than 60 kpa, the specific gravity difference between the upper and lower electrolyte solutions between the electrode plates may exceed 0.04d. Even in such a case, it is clear that the specific gravity difference between the upper and lower electrolyte solutions between the electrode plates is smaller than when the filling rate of the electrolyte solution is greater than 92%.

実施例1及び実施例2に示した電池について、25℃の環境温度においてDST(dynamic stress test)の寿命試験を行った。
極板間の上下の電解液比重差とサイクル寿命との関係について図3に示す。
The batteries shown in Example 1 and Example 2 were subjected to a DST (dynamic stress test) life test at an environmental temperature of 25 ° C.
FIG. 3 shows the relationship between the upper and lower electrolyte specific gravity difference between the electrode plates and the cycle life.

図3によれば、極板間の上下の電解液比重差が0.04dを超える(0.06d、0.07d)電池は、比重差が大きくなるほど、サイクル寿命の低下が大きくなり、また、極板間の上下の電解液比重差が0.04d以下の電池は、サイクル寿命が顕著に向上することが分かった。
サイクル寿命性能が低下する原因として、極板間の上下の電解液比重差が大きくなると、極板の下部は比重が高いので充電されにくくなり、また極板間の上下で電解液濃度差による濃淡電池が生じ、極板下部が放電することが挙げられる。これらにより、極板下部は濃淡電池により放電するが、充電されにくくなるので、負極板の下部はサルフェーションが起こり易くなる。
According to FIG. 3, in the batteries where the upper and lower electrolyte specific gravity difference between the electrode plates exceeds 0.04d (0.06d, 0.07d), the cycle life decreases greatly as the specific gravity difference increases. It was found that the cycle life of the battery having a difference in specific gravity between the upper and lower electrolyte plates of 0.04 d or less was significantly improved.
The reason for the decrease in cycle life performance is that when the difference in specific gravity between the upper and lower electrolyte plates increases, the lower part of the electrode plate is difficult to be charged due to its high specific gravity. A battery is produced, and the lower part of the electrode plate is discharged. As a result, the lower part of the electrode plate is discharged by the concentration battery, but it is difficult to be charged, so that the lower part of the negative electrode plate is susceptible to sulfation.

極板群の圧迫力と極板間の上下の電解液比重差との関係を示す図である。It is a figure which shows the relationship between the compression force of an electrode group, and the electrolyte solution specific gravity difference between the upper and lower sides between electrode plates. 極板群総空孔体積に対する電解液の充填率と極板間の上下の電解液比重差との関係を示す図である。It is a figure which shows the relationship between the filling rate of the electrolyte solution with respect to electrode plate group total void | hole volume, and the electrolyte solution specific gravity difference of the upper and lower sides between electrode plates. 極板間の上下の電解液比重差とサイクル寿命との関係を示す図である。It is a figure which shows the relationship between the electrolyte solution specific gravity difference between electrode plates, and cycle life.

Claims (6)

正極板、負極板、及びガラス繊維を主体としシリカ粉末を混入したセパレータからなる極板群を備えた密閉形鉛蓄電池において、極板群を圧迫力が60kpa以上となるように組み立てて電槽に挿入することを特徴とする密閉形鉛蓄電池。   In a sealed lead-acid battery including a positive electrode plate, a negative electrode plate, and an electrode plate group mainly composed of glass fibers and mixed with silica powder, the electrode plate group is assembled to a battery case so that the pressing force is 60 kpa or more. A sealed lead-acid battery characterized by being inserted. 前記極板群を圧迫力が60kpa以上140kpa以下となるように組み立てることを特徴とする請求項1に記載の密閉形鉛蓄電池。   2. The sealed lead-acid battery according to claim 1, wherein the electrode plate group is assembled so that a pressing force is 60 kpa or more and 140 kpa or less. 正極板、負極板、及びガラス繊維を主体としシリカ粉末を混入したセパレータからなる極板群を備えた密閉形鉛蓄電池において、極板群総空孔体積に対する電解液の充填率を92%以下にすることを特徴とする密閉形鉛蓄電池。   In a sealed lead-acid battery including a positive electrode plate, a negative electrode plate, and an electrode plate group mainly composed of glass fibers and mixed with silica powder, the filling rate of the electrolytic solution with respect to the total hole volume of the electrode plate group is set to 92% or less. A sealed lead-acid battery. 前記極板群総空孔体積に対する電解液の充填率を76%以上92%以下にすることを特徴とする請求項3に記載の密閉形鉛蓄電池。   The sealed lead-acid battery according to claim 3, wherein a filling rate of the electrolytic solution with respect to the total pore volume of the electrode plate group is 76% or more and 92% or less. 正極板、負極板、及びガラス繊維を主体としシリカ粉末を混入したセパレータからなる極板群を備えた密閉形鉛蓄電池において、極板群を圧迫力が60kpa以上となるように組み立てて電槽に挿入すると共に、極板群総空孔体積に対する電解液の充填率を92%以下にすることを特徴とする密閉形鉛蓄電池。   In a sealed lead-acid battery having a positive electrode plate, a negative electrode plate, and a sealed lead-acid battery comprising a separator composed mainly of glass fiber and mixed with silica powder, the electrode plate group is assembled to a battery case so that the pressing force is 60 kpa or more. A sealed lead-acid battery that is inserted and has an electrolyte filling rate of 92% or less relative to the total pore volume of the electrode plate group. 前記極板群を圧迫力が60kpa以上140kpa以下となるように組み立てると共に、前記極板群総空孔体積に対する電解液の充填率を76%以上92%以下にすることを特徴とする請求項5に記載の密閉形鉛蓄電池。
6. The electrode plate group is assembled so that the pressing force is 60 kpa or more and 140 kpa or less, and the filling ratio of the electrolyte with respect to the total hole volume of the electrode plate group is 76% or more and 92% or less. The sealed lead-acid battery described in 1.
JP2003332974A 2003-09-25 2003-09-25 Sealed lead acid battery Expired - Fee Related JP4332783B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003332974A JP4332783B2 (en) 2003-09-25 2003-09-25 Sealed lead acid battery
PCT/JP2004/014014 WO2005031907A1 (en) 2003-09-25 2004-09-17 Closed lead acid storage battery
CNB2004800273662A CN100477365C (en) 2003-09-25 2004-09-17 Closed lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003332974A JP4332783B2 (en) 2003-09-25 2003-09-25 Sealed lead acid battery

Publications (2)

Publication Number Publication Date
JP2005100794A true JP2005100794A (en) 2005-04-14
JP4332783B2 JP4332783B2 (en) 2009-09-16

Family

ID=34385971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003332974A Expired - Fee Related JP4332783B2 (en) 2003-09-25 2003-09-25 Sealed lead acid battery

Country Status (3)

Country Link
JP (1) JP4332783B2 (en)
CN (1) CN100477365C (en)
WO (1) WO2005031907A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018628A (en) * 2013-07-09 2015-01-29 株式会社Gsユアサ Control valve type lead storage battery and method of manufacturing the same
JP2016103422A (en) * 2014-11-28 2016-06-02 株式会社Gsユアサ Lead storage battery and negative electrode plate thereof
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
JP2016189298A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid storage battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630900B (en) * 2010-05-10 2021-11-09 新神户电机株式会社 Lead-acid battery
JP6136080B2 (en) * 2015-02-18 2017-05-31 株式会社Gsユアサ Lead acid battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185370A (en) * 1984-03-01 1985-09-20 Furukawa Battery Co Ltd:The Enclosed type lead storage battery
JPS60221954A (en) * 1984-04-09 1985-11-06 Nippon Sheet Glass Co Ltd Separator for storage battery
JP3692746B2 (en) * 1997-12-17 2005-09-07 株式会社ユアサコーポレーション Negative electrode absorption sealed lead-acid battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018628A (en) * 2013-07-09 2015-01-29 株式会社Gsユアサ Control valve type lead storage battery and method of manufacturing the same
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
US9899666B2 (en) 2013-07-19 2018-02-20 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
JP2016103422A (en) * 2014-11-28 2016-06-02 株式会社Gsユアサ Lead storage battery and negative electrode plate thereof
JP2016189298A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid storage battery

Also Published As

Publication number Publication date
CN100477365C (en) 2009-04-08
WO2005031907A1 (en) 2005-04-07
JP4332783B2 (en) 2009-09-16
CN1856899A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US7006346B2 (en) Positive electrode of an electric double layer capacitor
KR20010042790A (en) Separator for sealed lead storage batteries
WO2005124920A1 (en) Lead storage battery
EP4220810A1 (en) Improved separators, batteries, battery strings with improved performance, and related methods
JP2011530800A (en) Equipment and methods for lead acid batteries
US5576116A (en) Sealed storage cell operating at low pressure
US6406813B2 (en) Lead-acid separators and cells and batteries using such separators
Toniazzo The key to success: Gelled-electrolyte and optimized separators for stationary lead-acid batteries
JP4332783B2 (en) Sealed lead acid battery
JP2003077445A (en) Lead acid storage battery
KR101722773B1 (en) Electrode plate for a battery
KR102568421B1 (en) Membrane electrode assembly and zinc-bromide supercapattery comprising the same
JP2003036831A (en) Sealed lead storage battery having gel electrolyte
JP2004055323A (en) Control valve type lead-acid battery
WO2011077640A1 (en) Valve-regulated lead acid battery
JP2001102027A (en) Enclosed lead battery
JPH08329975A (en) Sealed lead-acid battery
CN114450836A (en) Active material with oxidized fiber additive, and electrode and battery having the same
JPS63250066A (en) Hermetically sealed lead-acid battery
KR20100116063A (en) Activated carbon electrode for power battery with good water electrolyte wettability and method of manufacturing the activated carbon electrode
JP4699686B2 (en) Current collector for electrochemical device, battery using the same, and electric double layer capacitor using the same
JPS59501428A (en) Nickel↓-cadmium battery with advanced electrolyte reservoir
CN219067141U (en) Diaphragm, battery cell and electric equipment
JPS5826778B2 (en) lead acid battery
WO2023210636A1 (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4332783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees