JPS63250066A - Hermetically sealed lead-acid battery - Google Patents

Hermetically sealed lead-acid battery

Info

Publication number
JPS63250066A
JPS63250066A JP62083584A JP8358487A JPS63250066A JP S63250066 A JPS63250066 A JP S63250066A JP 62083584 A JP62083584 A JP 62083584A JP 8358487 A JP8358487 A JP 8358487A JP S63250066 A JPS63250066 A JP S63250066A
Authority
JP
Japan
Prior art keywords
electrode plate
plates
separator
sulfuric acid
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62083584A
Other languages
Japanese (ja)
Other versions
JPH0675406B2 (en
Inventor
Kunio Yonezu
米津 邦雄
Masaatsu Tsubota
坪田 正温
Eiji Okamoto
英治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP62083584A priority Critical patent/JPH0675406B2/en
Publication of JPS63250066A publication Critical patent/JPS63250066A/en
Publication of JPH0675406B2 publication Critical patent/JPH0675406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve hermetically sealed reaction efficiency, discharging capacity and deep discharging cycle lifetime by composing a group of plates with positive plates, negative plates and specific separators, employing specific dilute sulfuric acid and providing spaces in the partial side areas of the group of plates. CONSTITUTION:A group of plates is composed of positive plates 1, negative plates 2 and separators 3 made of flexible flat perforated plates mainly including glass fibers with average diameter of 5-25 micron and installed in a battery jar 6 provided with a valve 7. Respective spaces 8 are formed between each of the separators 3 on both sides and each inner wall of the battery jar 6 to serve as a passage for fuel oxygen. Gelatinous dilute sulfuric acid electrolyte 9 including 3-7 percentage by weight of silica grain is provided in the holes of the separator 3 and partial areas of the spaces 8. Therefore, the quantity of the electrolyte staying in the separator becomes large to put the space reaction efficiency to be enhanced and also sulfuric acid diffuses from soft gelatinous electrolyte to prevent the liquid in the group of plates from being neutralized. And also, generation of difference of density between upper and lower parts of electrolyte by repeat of deep discharging can be prevented by the difference in steam pressure to improve hermetically sealed reaction efficiency, discharging capacity and deep discharging cycle lifetime.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in sealed lead-acid batteries.

従来の技術とその問題点 酸素ガスと負極板とを反応させる密閉形鉛蓄電池は、シ
リカを7〜15重量パーセン1〜含むゲル状電解液を用
いたゲル式と、直径約20ミクロン以下の細いガラス繊
維からなるマット状レバレークを用いたリデーナ式とが
一般的である。ゲル式電池の正および負極板間に配置す
る材料どしてはシリカ量が7〜15重量パーセントであ
る堅い通常のゲルでは、波形微孔性セパレータと直径約
20ミクロンのガラスマット、波形多孔板と不織布、間
隔を保つための枠体などが実用されている1、:1にシ
リ力量がQ 、 5〜7重量パーセン1−の柔らかいゲ
ルて゛は、平均直径が数ミクロン以下の細いガラス繊維
を主体とするマツ1へ状多孔板が実用されている。
Conventional technology and its problems Sealed lead-acid batteries that react oxygen gas with a negative electrode plate are of the gel type using a gel electrolyte containing 7 to 15 percent by weight of silica, and the thin battery with a diameter of about 20 microns or less. The common type is the Ridena type, which uses mat-like leverage made of glass fiber. The materials placed between the positive and negative plates of a gel battery include a hard conventional gel with a silica content of 7 to 15 percent by weight, a corrugated microporous separator, a glass mat approximately 20 microns in diameter, and a corrugated porous plate. Non-woven fabrics and frames for maintaining spacing are in practical use1: Soft gel with a sillage capacity of Q and 5 to 7 weight percent is mainly made of thin glass fibers with an average diameter of several microns or less. Pine 1 rib-like perforated plates have been put into practical use.

前者はゲル状電解液自体が活物質の脱落を防止し、また
デ゛ンドライ1〜状鉛の生長を抑えて両極板を隔離する
というレバレータとしての機能を有するために極板間に
は疎な構造物を配づるbのである。
In the former case, the gel-like electrolyte itself prevents the active material from falling off, and also has the function of a lever that isolates the two electrode plates by suppressing the growth of the di-dried lead. This is b for distributing the structures.

また、後者(ユ多孔板自体がセパレータとしての機能が
あるためゲル状電解液にはシリカ量の少ない柔らかいも
のを用いている。
In addition, since the latter (U) porous plate itself functions as a separator, a soft gel electrolyte with a small amount of silica is used.

密閉形鉛蓄電池はその構造上の特徴から補水できないの
で正極板から発生した酸素ガスが負極板へ移動しかつ接
触して反応づるという密閉反応効率が優れていな(プれ
ばならない。同時に深い充放電サイクルで使用されるこ
とが多いので、これに耐えかつ長寿命であることが望ま
しい。さらに、負荷に応じた放電条件で容量が多くな【
プればならない。ところが前述のシリカ量を7〜15重
量パーセントとした堅いゲル状電解液を用いた電池では
、密閉反応効率は良いが、放電容量や深いサイクルでの
寿命がやや劣っている。他方、シリカ量の少ないゲルに
よる電池では密閉反応効率が悪く、電解液の水の〕(1
失のために硫酸濃度が^くなって極板が劣化するという
問題がある。これは前者ではゲル部でのイオンの移動が
Rいことおよび極板下部のfa酸濃度が高くなる成層化
現象のためであり、後者では緻密なレバレータにゲル状
?12解液が保持されて酸素ガスの移動を阻害している
からである。
Sealed lead-acid batteries cannot be replenished with water due to their structural characteristics, so oxygen gas generated from the positive electrode plate moves to the negative electrode plate, contacts the negative electrode plate, and reacts, resulting in an excellent sealing reaction efficiency. Since it is often used in discharge cycles, it is desirable that it can withstand this and have a long life.Furthermore, it is desirable that it has a large capacity under the discharge conditions according to the load.
You have to pull it. However, in a battery using a hard gel electrolyte containing 7 to 15 percent by weight of silica, the sealing reaction efficiency is good, but the discharge capacity and deep cycle life are somewhat inferior. On the other hand, in batteries using gel with a small amount of silica, the sealing reaction efficiency is poor, and the electrolyte water] (1
There is a problem in that the concentration of sulfuric acid increases due to the loss of sulfuric acid and the electrode plate deteriorates. In the former case, this is due to the slow movement of ions in the gel part and the stratification phenomenon in which the concentration of FA acid at the bottom of the electrode plate increases.In the latter case, the dense leverator has a gel-like structure. This is because the No. 12 solution is retained and inhibits the movement of oxygen gas.

問題点を解決づるための手段 本発明は、正極板と負極板と平均直径5〜25ミクロン
のガラス繊維を主体とする柔軟な平板状多孔板からなる
セパレータとで極板群を構成し、該極板群は強く圧迫さ
れた状態で弁を協えた電槽内に収納し、少くとも該セパ
レータの孔と該極板群の側部の一部とにシリカ微粒子を
3〜7重量パーセント有づるゲル状希硫酸電解液を存在
させるとともに、該横板群の側部の一=部に空隙を設【
プること、さらに、セパレータを構成する繊維が平面内
では一定の配向を有しない不織ffi状となるようにす
ること、あるいは、希硫酸電解液の保液性が大きい方か
ら正極活物質、負極活物質、セパレータの順になるよう
にすること、または、ゲル状希硫酸電解液として微細な
シリカ微粒子を水に懸濁させたコロイダルシリカと希硫
酸とを混合したゲル状電解液を極板群を収納した電池内
に注入してゲル化させて得ることにより、従来電池の問
題点を解消した密閉形鉛蓄電池を提供しようとするもの
である。
Means for Solving the Problems The present invention comprises an electrode plate group consisting of a positive electrode plate, a negative electrode plate, and a separator consisting of a flexible flat porous plate mainly made of glass fiber with an average diameter of 5 to 25 microns. The electrode plate group is housed in a battery case with a valve in a strongly compressed state, and at least 3 to 7 weight percent of silica particles are present in the holes of the separator and a part of the sides of the electrode plate group. A gel-like dilute sulfuric acid electrolyte is present, and a void is provided in a portion of the side of the horizontal plate group.
In addition, the fibers constituting the separator should have a non-woven ffi-like structure that does not have a fixed orientation in a plane, or the cathode active material should be mixed in the order of the strength of the dilute sulfuric acid electrolyte, starting from the one with the highest liquid retention capacity. The negative electrode active material and the separator should be placed in this order, or the electrode plate group should be prepared using a gel-like dilute sulfuric acid electrolyte, which is a mixture of colloidal silica and dilute sulfuric acid, in which fine silica particles are suspended in water. The present invention aims to provide a sealed lead-acid battery that solves the problems of conventional batteries by injecting the compound into a battery containing the compound and gelling it.

実施例 本発明をその実施例を示す第1図にJ:って説明する。Example The present invention will be explained with reference to FIG. 1, which shows an embodiment thereof.

図において1は正極板、2は負極板でこれらに用いられ
ている格子は負極板の水素過電圧を低下さゼる元素ずな
わちアンブモンを実質的に含んでいない。3はセパレー
タで、平均直径5−25ミクロンのガラス繊維を少量の
熱可塑性プラスチン・り繊維、またはプラスチック接合
剤などによって結合した柔軟な平板状多孔体である。4
は正極の導電体、5は負極の導電体、6は電槽でその蓋
には弁7が装備されており、1.2および3からなる極
板群とこれに保持された電解液からなる発電素子を収納
している。電解液には平均直径20ミリミクロン以下の
シリカ微粒子を3〜7重量パーセント添加されている。
In the figure, 1 is a positive electrode plate, 2 is a negative electrode plate, and the lattice used in these plates does not substantially contain an element that lowers the hydrogen overvoltage of the negative electrode plate, that is, ambumon. 3 is a separator, which is a flexible flat porous body made by bonding glass fibers with an average diameter of 5 to 25 microns with a small amount of thermoplastic plastin fibers or a plastic bonding agent. 4
is a positive electrode conductor, 5 is a negative electrode conductor, 6 is a battery container whose lid is equipped with a valve 7, and consists of a group of electrode plates 1, 2 and 3, and an electrolyte held therein. It houses the power generation element. The electrolytic solution contains 3 to 7 weight percent of silica fine particles having an average diameter of 20 mm or less.

このシリカ微粒子はセパレータよりも極板の活物質の方
が孔径が小さいため濾過現象によって、セパレーク内に
高濃度、活物質内に低濃度で存在している。8は極板8
Yの側部の一部に存在する空隙でガス空間の通路である
。9は極板群の一部に存在する電解液であり極板群と接
しており、セパレータに含浸される電解液どほぼ同じシ
リカmrliを有している。。
Since the pore size of the active material of the electrode plate is smaller than that of the separator, the silica fine particles are present in a high concentration in the separator and in a low concentration in the active material due to a filtration phenomenon. 8 is the electrode plate 8
A gap exists in a part of the side of Y and is a passage for gas space. Reference numeral 9 denotes an electrolytic solution present in a part of the electrode plate group, which is in contact with the electrode plate group, and has almost the same silica mrli as the electrolytic solution impregnated into the separator. .

1.2および3からなる極板群は電槽内壁によって強く
圧迫されている。すなわち、セパレータ3は正極板1お
よび負極板2を強く圧迫している。
The electrode plate group consisting of 1.2 and 3 is strongly pressed by the inner wall of the battery case. That is, the separator 3 strongly presses the positive electrode plate 1 and the negative electrode plate 2.

セパレータ3は長さ数ミリノー1〜ルから十数ミリメー
トルのガラス繊維を水に解こうしてすき士げた不織布状
のものが好ましい1、これはガラス繊維がセパレータ平
面内で一定の配向を有さず、したがってガラス繊維にJ
:つて形成される孔の形状、寸法が一定せず、しかも上
下方向よりも両極板面一〇− と垂直方向に孔が配向するため正極板から負極板へ酸素
ガスが移動しやすい。なお二つの長繊維群を約60度の
角度で交叉させた従来の鉛蓄電池用マットでは、上下の
垂直線に対して約30瓜の角度で斜めに配向する細長い
孔が形成されて、正極板から負極板へのガスの移動を生
じ難く、さらにゲル状電解液が上下に移動しやすいので
成層化現象が起き易く好ましくない。
The separator 3 is preferably a non-woven fabric made by dissolving glass fibers with a length of several millimeters to more than ten millimeters in water. This is because the glass fibers do not have a fixed orientation within the plane of the separator. Therefore, J
: The shape and size of the holes formed are not constant, and the holes are oriented perpendicularly to the surface of both electrode plates rather than vertically, so oxygen gas easily moves from the positive electrode plate to the negative electrode plate. In addition, in conventional lead-acid battery mats in which two groups of long fibers intersect at an angle of about 60 degrees, long and narrow holes are formed that are oriented diagonally at an angle of about 30 degrees with respect to the upper and lower vertical lines, and the positive electrode plate is It is difficult for gas to move from the to the negative electrode plate, and furthermore, the gel electrolyte tends to move up and down, so stratification tends to occur, which is undesirable.

本発明になる電池では、電解fl!2である希硫酸はシ
リカ微粒子と弱(結合しゲル状であって、セパレータの
多孔部に良好に保持される。したがってリデーナ式電池
の場合のように、セパレータの保液性が高いことは必要
ない。保液性の高いセパレータは繊維が細く組織が密で
あるから孔も小さく、そこにゲル状電解液が充填される
と酸素ガスの移動が阻害されてむしろ好ましくない。
In the battery according to the present invention, electrolytic fl! Dilute sulfuric acid, which is No. 2, is weakly combined with silica particles to form a gel-like structure and is well retained in the pores of the separator.Therefore, it is necessary for the separator to have high liquid retention, as in the case of a lidena battery. No. A separator with high liquid retention properties has thin fibers and a dense structure, so the pores are small, and if the gel electrolyte is filled therein, the movement of oxygen gas will be inhibited, which is rather undesirable.

正極板と負極板とを比較でると電解液を保持する力すな
わち保液性は一般に正極板の方が大きい。
When comparing a positive electrode plate and a negative electrode plate, the power of holding the electrolyte, that is, the liquid retention capacity, is generally greater in the positive electrode plate.

これは活物質1グラム当りの表面積が正極板では約5r
A、負極板では約0 、511と前名の方が大きいから
である。本発明になる電池では電解液である希硫酸はシ
リカ微粉末と弱く結合してゲル状になっているので、セ
パレータの保液性は負極板よりも小さくてよい。保液性
の小さなセパレータは孔径が大きく、セパレータの組織
が疎でるから、ゲル状電解液が充填されても空隙があっ
て酸素ガスの移動が大で好ましい。ここで保液性の大小
は、密封した容器内に極板とセパレータとを密着させそ
れに希硫酸を少量注入して故買後、極板とセパレータと
に保持された電解液■を測定して求める。
This means that the surface area per gram of active material is approximately 5r on the positive electrode plate.
A. This is because the negative electrode plate has a larger value of approximately 0.511. In the battery of the present invention, the dilute sulfuric acid that is the electrolytic solution is weakly combined with the silica fine powder to form a gel-like structure, so the liquid retention capacity of the separator may be smaller than that of the negative electrode plate. A separator with a low liquid retention property has a large pore diameter and a loose structure, so even when filled with a gel electrolyte, there are voids and oxygen gas can move through the separator, which is preferable. Here, the level of liquid retention is determined by placing the electrode plate and separator in close contact with each other in a sealed container, injecting a small amount of dilute sulfuric acid into the container, and measuring the electrolyte held by the electrode plate and separator after purchasing. demand.

保液性の大小は極板とレバレータとで、保持づる電解液
量をそれぞれの孔の容積で除した値の大小で判定できる
The level of liquid retention can be determined by the value obtained by dividing the amount of electrolyte retained by the electrode plate and lever by the volume of each hole.

電解液をゲル化舊る方法としては、平均直径20ミリミ
クロン以下のシリカ微粒子を希硫酸に添加して懸濁させ
る方法と、水にシリカ微粒子を懸濁させたコロイダルシ
リカに希硫酸を添加して撹拌しゾルとする方法とがある
。前者ではシリカの粒子が凝集して大きい場合が多く、
電解液をセル内に注入した時に液体成分だけが極板やセ
パレータに含浸されて上部にシリカ粒子が残るので好ま
しくない。後者ではゾル状電解液を極板群を収納したセ
ル内に注入すれば、微細なシリカ粒子はセパレータで濾
過されないので、セパレータと極板群側部の一部とにほ
ぼ同濃度のシリカを含ませることができ、好ましい。た
だし活物質の孔は極めて小ざく、この場合でもシリカ粒
子は活物質内へは少量しか入らない。したがってセパレ
ータの孔にシリカを3〜7重量重量パーセントゲルを保
持させるには、電池内へ注入するコロイダルシリカと8
硫酸との混合ゾルのシリカ量は2〜5重量パーセントに
調合したものを使用するとよい。
Methods for gelling the electrolyte include adding and suspending silica particles with an average diameter of 20 mm or less in dilute sulfuric acid, and adding dilute sulfuric acid to colloidal silica, which is made by suspending silica particles in water. There is a method of stirring to form a sol. In the former case, silica particles often aggregate and are large;
When the electrolytic solution is injected into the cell, only the liquid component is impregnated into the electrode plate or separator, leaving silica particles on the top, which is undesirable. In the latter case, if a sol electrolyte is injected into the cell containing the electrode group, the fine silica particles will not be filtered by the separator, so the separator and part of the side of the electrode group will contain approximately the same concentration of silica. This is preferable. However, the pores of the active material are extremely small, and even in this case, only a small amount of silica particles can enter the active material. Therefore, in order to retain a gel of 3 to 7 weight percent silica in the pores of the separator, the amount of colloidal silica injected into the battery must be
It is preferable to use a mixed sol with sulfuric acid in which the amount of silica is 2 to 5 percent by weight.

本発明において、極板群の側部の一部にゲル状電解液を
、他の一部に空隙を存在させることは重要である。密閉
形電池は液量が少なく、深放電で極板群の内部の硫酸が
消費されて中性となったときには鉛が溶出してショート
することおよび正極板で格子と活物質との界面で絶縁層
が形成することが問題となる。このとき極板群側部のゲ
ル状電解液から硫酸が徐々に拡散して極板群内の液が中
性となることを防ぎ、シー03−1〜や絶縁層の生成を
防ぐことができる。さらに深放電の繰返しで極板群下部
の電解液が高濃度、上部が低濃度になるという成層化現
象を生じたときに、極板群の側部の空隙で、上下の水蒸
気圧の斧から上部で水が蒸発し下部で吸収されるという
水蒸気の移動を可能にして、成層化を解消することがで
きる。
In the present invention, it is important to have a gel electrolyte in a part of the side part of the electrode plate group and to have a void in the other part. Sealed batteries have a small amount of liquid, and when the sulfuric acid inside the electrode plate group is consumed during deep discharge and becomes neutral, lead is eluted and a short circuit occurs, and the positive electrode plate is insulated at the interface between the lattice and the active material. The problem is that layers form. At this time, sulfuric acid gradually diffuses from the gel electrolyte on the side of the electrode group, preventing the liquid inside the electrode group from becoming neutral, and preventing the formation of seams 03-1~ and an insulating layer. . Furthermore, when repeated deep discharges cause a stratification phenomenon in which the electrolyte at the bottom of the plate group becomes highly concentrated and the concentration at the top becomes low, the water vapor pressure axes from above and below occur in the voids on the sides of the plate group. Stratification can be eliminated by allowing the movement of water vapor, where water evaporates at the top and is absorbed at the bottom.

発明の効果 本発明にJ:れば密閉形鉛蓄電池にJ51=jる密閉反
応効率ならびに放電容量および深い放電のサイクル寿命
性能を改良することかできる。
Effects of the Invention The present invention can improve the sealed reaction efficiency, discharge capacity, and deep discharge cycle life performance of a sealed lead-acid battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明密閉形鉛蓄電池の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing an embodiment of a sealed lead-acid battery according to the present invention.

Claims (1)

【特許請求の範囲】 1、正極板と負極板と平均直径5〜25ミクロンのガラ
ス繊維を主体とする柔軟な平板状多孔板からなるセパレ
ータとで極板群を構成し、該極板群は強く圧迫された状
態で弁を備えた電槽内に収納され、少くとも該セパレー
タの孔と該極板群の側部の一部とにシリカ微粒子を3〜
7重量パーセント有するゲル状希硫酸電解液を存在させ
るとともに、該極板群の側部の一部に空隙を設けた酸素
サイクルによる密閉形鉛蓄電池。 2、セパレータを構成する繊維が平面内では一定の配向
を有しない不織布状である特許請求の範囲第1項記載の
密閉形鉛蓄電池。 3、希硫酸電解液の保液性が大きい方から正極活物質、
負極活物質、セパレータの順になるようにしてなる特許
請求の範囲第1項記載の密閉形鉛蓄電池。 4、ゲル状希硫酸電解液が微細なシリカ微粒子を水に懸
濁させたコロイダルシリカと希硫酸とを混合したゲル状
電解液を極板群を収納した電池内に注入してゲル化させ
たものである特許請求の範囲第1項記載の密閉形鉛蓄電
池。
[Claims] 1. An electrode plate group is constituted by a positive electrode plate, a negative electrode plate, and a separator consisting of a flexible flat porous plate mainly made of glass fiber with an average diameter of 5 to 25 microns, and the electrode plate group is It is stored in a battery case equipped with a valve in a strongly compressed state, and 3 to 30% of silica particles are applied to at least the holes of the separator and a part of the sides of the electrode plate group.
A sealed lead-acid battery using an oxygen cycle, in which a gel-like dilute sulfuric acid electrolyte having a concentration of 7% by weight is present, and a gap is provided in a part of the side of the electrode plate group. 2. The sealed lead-acid battery according to claim 1, wherein the fibers constituting the separator are in the form of a nonwoven fabric that does not have a fixed orientation in a plane. 3. Cathode active material in descending order of dilute sulfuric acid electrolyte retention capacity,
The sealed lead-acid battery according to claim 1, wherein the negative electrode active material and the separator are arranged in this order. 4. Gel-like dilute sulfuric acid electrolyte is a mixture of colloidal silica and dilute sulfuric acid, in which fine silica particles are suspended in water, and is injected into the battery containing the electrode plate group and gelled. A sealed lead-acid battery according to claim 1.
JP62083584A 1987-04-03 1987-04-03 Sealed lead acid battery Expired - Lifetime JPH0675406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62083584A JPH0675406B2 (en) 1987-04-03 1987-04-03 Sealed lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62083584A JPH0675406B2 (en) 1987-04-03 1987-04-03 Sealed lead acid battery

Publications (2)

Publication Number Publication Date
JPS63250066A true JPS63250066A (en) 1988-10-17
JPH0675406B2 JPH0675406B2 (en) 1994-09-21

Family

ID=13806545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62083584A Expired - Lifetime JPH0675406B2 (en) 1987-04-03 1987-04-03 Sealed lead acid battery

Country Status (1)

Country Link
JP (1) JPH0675406B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236964A (en) * 1989-03-09 1990-09-19 Shin Kobe Electric Mach Co Ltd Sealed secondary battery
JPH02236965A (en) * 1989-03-09 1990-09-19 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH04296464A (en) * 1991-03-26 1992-10-20 Shin Kobe Electric Mach Co Ltd Sealed-type lead-acid battery
JP2002519819A (en) * 1998-06-23 2002-07-02 ダラミック、インク Separators for sealed lead-acid batteries
JP2008186654A (en) * 2007-01-29 2008-08-14 Matsushita Electric Ind Co Ltd Lead-acid battery
CN106711516A (en) * 2016-12-27 2017-05-24 超威电源有限公司 Gel battery and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857481B2 (en) * 2001-04-16 2012-01-18 株式会社Gsユアサ Method for manufacturing retainer-gel hybrid sealed lead-acid battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221565A (en) * 1987-03-09 1988-09-14 Japan Storage Battery Co Ltd Sealed lead-acid battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221565A (en) * 1987-03-09 1988-09-14 Japan Storage Battery Co Ltd Sealed lead-acid battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236964A (en) * 1989-03-09 1990-09-19 Shin Kobe Electric Mach Co Ltd Sealed secondary battery
JPH02236965A (en) * 1989-03-09 1990-09-19 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH04296464A (en) * 1991-03-26 1992-10-20 Shin Kobe Electric Mach Co Ltd Sealed-type lead-acid battery
JP2002519819A (en) * 1998-06-23 2002-07-02 ダラミック、インク Separators for sealed lead-acid batteries
JP4711506B2 (en) * 1998-06-23 2011-06-29 ダラミック、インク Separator for sealed lead-acid battery
JP2008186654A (en) * 2007-01-29 2008-08-14 Matsushita Electric Ind Co Ltd Lead-acid battery
CN106711516A (en) * 2016-12-27 2017-05-24 超威电源有限公司 Gel battery and production method thereof
CN106711516B (en) * 2016-12-27 2018-12-07 超威电源有限公司 A kind of colloid battery and its production method

Also Published As

Publication number Publication date
JPH0675406B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
US5128218A (en) Sealed lead-acid battery
US4648177A (en) Method for producing a sealed lead-acid cell
US4637966A (en) Sealed lead-acid cell
US3536537A (en) Method of making electrode having improved gas-recombination properties
US20050084762A1 (en) Hybrid gelled-electrolyte valve-regulated lead-acid battery
US6406813B2 (en) Lead-acid separators and cells and batteries using such separators
JPS63250066A (en) Hermetically sealed lead-acid battery
JPS5835877A (en) Closed type lead battery and its production method
CA1179013A (en) Sealed, maintenance-free, lead-acid batteries for float applications
US3674563A (en) Oxygen-depolarized galvanic cell
JP4332783B2 (en) Sealed lead acid battery
JP2001102027A (en) Enclosed lead battery
Toniazzo Amersorb: a new high-performance polymeric separator for lead–acid batteries
JPH0628169B2 (en) Sealed lead acid battery
JPH0343966A (en) Sealed lead-acid battery
JP2573082B2 (en) Sealed lead-acid battery
JPH0766791B2 (en) Recombinable battery and its separator
JP2002110125A (en) Lead-acid battery and its manufacturing method
JPH01124958A (en) Sealed lead-acid battery
JP3099527B2 (en) Manufacturing method of sealed lead-acid battery
JP3163510B2 (en) Sealed lead-acid battery
CN2233623Y (en) Lead-acid accumulator using uncured molecular sieve as electrolyte
JP2002523880A (en) Lead-acid separator and cells and batteries using such a separator
JPS62223988A (en) Sealed lead-acid battery
JPH04149968A (en) Sealed-type lead secondary battery