JPH02236964A - Sealed secondary battery - Google Patents
Sealed secondary batteryInfo
- Publication number
- JPH02236964A JPH02236964A JP1057076A JP5707689A JPH02236964A JP H02236964 A JPH02236964 A JP H02236964A JP 1057076 A JP1057076 A JP 1057076A JP 5707689 A JP5707689 A JP 5707689A JP H02236964 A JPH02236964 A JP H02236964A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- electrode plate
- nonwoven fabric
- secondary battery
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003792 electrolyte Substances 0.000 claims abstract description 45
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 25
- 239000011245 gel electrolyte Substances 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 6
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 239000003365 glass fiber Substances 0.000 abstract description 4
- 238000007789 sealing Methods 0.000 abstract description 2
- 230000000717 retained effect Effects 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/12—Construction or manufacture
- H01M10/126—Small-sized flat cells or batteries for portable equipment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は,密閉形二次電池の薄形化に関するものである
゜.
従来の技術
従来,鉛蓄電池等の二次電池は均等充電や補水等の保守
が必要であったが,格子合金の改良や電解液保持方法の
改良等により正極で発生する酸素ガスを負極で吸収還元
する負極吸収式による密閉化が可能となった。このため
、電池の保守は不要となり、且つ、電池の設置方向を問
わず無漏液化も可能となった。従って.OA機器やオー
ディオ機器等への用途拡大が行なわれ、これに伴い,密
閉形鉛蓄電池の小形化、薄形化が要求されるようになっ
てきている。しかし、従来のように正極板,電解質保持
体、負極板を交互に積層する方式では薄形化に限界があ
り、そこで、第5図に示すような、同一平面上に正極板
1と負極板2を電解質保持体5を介して配置し、且つ、
全体を電池ケース基板4上に固定支持、密着した構造の
密閉形釦蓄電池が提案されている。(従来品)
発明が解決しようとする課題
しかしながら、この種電池は、正極から発生する酸素ガ
スを負極で吸収して密閉化を図るために、電解液量が制
限されていることから、極板と電解質保持体との密着が
重要となっているにもかかわらず、上記提案の構造では
、電解質保持体の極板に接触する方向に対して加圧がか
からない。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to making a sealed secondary battery thinner. Conventional technology Traditionally, secondary batteries such as lead-acid batteries required maintenance such as equal charging and water replenishment, but improvements in lattice alloys and electrolyte retention methods have made it possible to absorb oxygen gas generated at the positive electrode at the negative electrode. Sealing is now possible using a negative electrode absorption method that reduces. Therefore, maintenance of the battery is no longer necessary, and leak-free operation is possible regardless of the direction in which the battery is installed. Therefore. With the expansion of applications to office automation equipment, audio equipment, etc., sealed lead-acid batteries are required to be smaller and thinner. However, the conventional method of stacking the positive electrode plate, electrolyte holder, and negative electrode plate alternately has a limit to thinning, and therefore, as shown in Fig. 5, the positive electrode plate 1 and the negative electrode plate are placed on the same plane. 2 is arranged via an electrolyte holder 5, and
A sealed button storage battery has been proposed that has a structure in which the entire battery case is fixedly supported on a battery case substrate 4 and is in close contact with the battery case substrate 4. (Conventional Product) Problems to be Solved by the Invention However, in this type of battery, the amount of electrolyte is limited because the negative electrode absorbs oxygen gas generated from the positive electrode and seals it. Although close contact between the electrolyte holder and the electrolyte holder is important, in the structure proposed above, no pressure is applied in the direction of contact with the electrode plate of the electrolyte holder.
このため、第5図に示すように、正極板1、負極板2、
電解質保持体5との間に隙間6が生じ易く密着が悪くな
る。また、充電時に発生する酸素ガスが負極板2に至ら
ずガス溜り8となって正極板1と電解質保持体5間に残
存し、電解質保持体5中の電解液が各極板1、2に接触
しないので、十分な放電容量がでない欠点があり、さら
に,該電池を急速充電に供すると、ガス発生は一段と激
しくなって早期に電解液との接触が断たれ,負極吸収反
応を妨げる欠点を有している。Therefore, as shown in FIG. 5, the positive electrode plate 1, the negative electrode plate 2,
A gap 6 is likely to be formed between the electrolyte holder 5 and the adhesion becomes poor. In addition, oxygen gas generated during charging does not reach the negative electrode plate 2 and remains between the positive electrode plate 1 and the electrolyte holder 5 as a gas reservoir 8, and the electrolyte in the electrolyte holder 5 is transferred to each electrode plate 1, 2. Since there is no contact, there is a drawback that sufficient discharge capacity is not obtained.Furthermore, when the battery is subjected to rapid charging, gas generation becomes even more intense and contact with the electrolyte is cut off early, which has the disadvantage of hindering the negative electrode absorption reaction. have.
本発明は、上記の問題を解決し、容量性能や充放電サイ
クル性能の向上を可能とするような密閉形二次電池を提
供することを目的とする。An object of the present invention is to solve the above problems and provide a sealed secondary battery that can improve capacity performance and charge/discharge cycle performance.
課題を解決するための手段
本発明は、電解液を保持した不織布とゲル状電解質で構
成されている電解質保持体と,正極板と、負極板とが同
一平面上に設置されて密封されたことを特徴とする。Means for Solving the Problems The present invention is characterized in that an electrolyte holder composed of a nonwoven fabric holding an electrolyte and a gel electrolyte, a positive electrode plate, and a negative electrode plate are installed on the same plane and sealed. It is characterized by
作用
本発明は、上記の特徴を有することにより、不織布中に
存在するゲル状電解貿は、注液時はゾル状態で注液後ゲ
ル化するため、極板形状に影響されることなく極板との
接触(密着)は良好となり、これと不織布中の電解液と
が相俟って極板との反応に寄与する。Operation The present invention has the above-mentioned features, so that the gel-like electrolyte present in the nonwoven fabric is in a sol state when the liquid is poured and turns into a gel after the liquid is poured. The contact (adhesion) with the nonwoven fabric becomes good, and this together with the electrolyte in the nonwoven fabric contributes to the reaction with the electrode plate.
実施例
以下、本発明の一実施例について説明する.第1図は、
本発明の密閉形二次電池に関する実施例として密閉形鉛
蓄電池をとりあげ、その平面図を示すもので、1は正極
板,2は負極板、3は電解質保持体、4は極板群を固定
する基板である。EXAMPLE An example of the present invention will be described below. Figure 1 shows
A sealed lead-acid battery is taken up as an example of the sealed secondary battery of the present invention, and its plan view is shown in which 1 is a positive electrode plate, 2 is a negative electrode plate, 3 is an electrolyte holder, and 4 is a fixed electrode plate group. This is a board for
第1図において、密封される正極板1と負極板2との間
に、電解液を保持した微細ガラス繊維を主体とする不織
布とゲル状電解質7で構成された電解質保持体3を基板
4上に設置した状態を示している。例えば不織布は0.
7mの繊維径を主体としたガラス繊維不織布であり、ゲ
ル状電解質7は希硫酸等の電解液を珪酸等のゲル化剤で
ゲル化したものを用いる.次に電解質保持体3と極板1
、2間の状態を拡大してみると第2図に示すように、正
極板1,負極板2と電解質保持体3を同一平面の基板4
上に設置した場合、正極板1,負極板2と電解質保持体
3の不織布との接触方向に生じる隙間G中にはゲル状電
解質7が形成されるので、正極板1、負極板2(活物質
)と電解貿保持体3の不織布中の電解液との反応は無加
圧状態でも充分行なわれる。不織布は主にゲル状電解質
7の機械的強度の補強を目的とするが,本実施例のよう
に繊維径を細くすることにより,不織布中へのゲルの浸
透を表面的にすれば、不織布内部の電解液と極板活物質
との反応が更に生じ易い状態とすることができる.すな
わち、不織布へのゲルの浸透を表面的にするには、不織
布の繊維径が5〜30 I1のように比較的太い場合は
ゲルの浸透が容易なため、ゲル中の固形分が6〜20
wt%のように比較的多いゲル状電解質7を適用してゲ
ルの浸透を抑制し、一方、不織布の繊維径が4m以下の
ように比較的細い場合は、ゲルの不織布中への浸透が少
ないため,ゲル中の固形分が0.5〜5wt%のように
比較的少ないゲル状電解質7が適用できる。In FIG. 1, between a positive electrode plate 1 and a negative electrode plate 2 which are sealed, an electrolyte holder 3 composed of a gel electrolyte 7 and a nonwoven fabric mainly made of fine glass fibers holding an electrolyte is placed on a substrate 4. It shows the state where it is installed. For example, nonwoven fabric is 0.
It is a glass fiber nonwoven fabric mainly having a fiber diameter of 7 m, and the gel electrolyte 7 is made by gelling an electrolytic solution such as dilute sulfuric acid with a gelling agent such as silicic acid. Next, electrolyte holder 3 and electrode plate 1
, as shown in Figure 2, the positive electrode plate 1, the negative electrode plate 2, and the electrolyte holder 3 are placed on the same plane as the substrate 4.
When the positive electrode plate 1, the negative electrode plate 2, and the nonwoven fabric of the electrolyte holder 3 are placed on the The reaction between the electrolytic material (substance) and the electrolytic solution in the nonwoven fabric of the electrolytic holder 3 is sufficiently carried out even in a non-pressurized state. The purpose of the nonwoven fabric is mainly to reinforce the mechanical strength of the gel electrolyte 7, but by making the fiber diameter thinner as in this example, the gel can penetrate into the nonwoven fabric superficially. It is possible to create a state in which the reaction between the electrolyte and the electrode plate active material is more likely to occur. That is, in order to superficially penetrate the gel into the nonwoven fabric, the fiber diameter of the nonwoven fabric should be 5 to 30%.If the fiber diameter of the nonwoven fabric is relatively thick like I1, the gel should penetrate easily, so the solid content in the gel should be 6 to 20%.
Applying a relatively large amount of gel electrolyte 7, such as wt%, suppresses gel penetration. On the other hand, when the fiber diameter of the nonwoven fabric is relatively thin, such as 4 m or less, gel penetration into the nonwoven fabric is small. Therefore, a gel electrolyte 7 in which the solid content in the gel is relatively small, such as 0.5 to 5 wt%, can be applied.
また,不織布はガラス繊維のばかアルミナ繊維、ジルコ
ニア繊維等の無機繊維やボリプロ繊維、ポリエステル繊
維、アクリル繊維等の有機繊維を使用することができる
。Furthermore, as the nonwoven fabric, inorganic fibers such as glass fibers, alumina fibers, and zirconia fibers, and organic fibers such as polypropylene fibers, polyester fibers, and acrylic fibers can be used.
さらに、第2図に示すように,負極板2の厚みを、正極
板1の厚みより薄く形成させると、負極板2の上面は密
閉電池内部で全て露出している状態になって、酸素ガス
の吸収還元能力が更に向上する。また、第3図(a)に
示すように、電解質保持体3の不織布が正極板1と負極
板2との間の空間よりも多少大きい形状である場合は、
第3図(b)に示すように、空間に押し込むことにより
、正極板1、負極板2との接触方向の密着性を更に向上
でき、さらに、電解質保持体3の不織布が第4図(a)
に示すように、正極板1,負極板2の厚さより厚くて多
少巾狭の形状の場合でも、第4図(b)に示すように、
加圧により多少変形するので、ゲル状電解質7との併用
であれば正極板1、負極板2との接触方向の密着性を容
易に向上させることができる.第6図に密閉形鉛蓄電池
として製作した本発明品と従来品について,急速充放電
サイクル試験を行なった結果を示す。試験条件として、
充電:1}I、放電:ICA、温度=25±2℃で行な
った結果、本発明品は容量性能も良く,シかも従来品の
2倍以上の充放電回数に耐えられることがわかる。Furthermore, as shown in Figure 2, if the thickness of the negative electrode plate 2 is formed to be thinner than the thickness of the positive electrode plate 1, the upper surface of the negative electrode plate 2 will be completely exposed inside the sealed battery, and the oxygen gas will be released. The absorption and reduction ability of Further, as shown in FIG. 3(a), if the nonwoven fabric of the electrolyte holder 3 has a shape slightly larger than the space between the positive electrode plate 1 and the negative electrode plate 2,
As shown in FIG. 3(b), by pushing the material into the space, the adhesion in the contact direction with the positive electrode plate 1 and negative electrode plate 2 can be further improved. )
As shown in FIG. 4(b), even if the shape is thicker and somewhat narrower than the thickness of the positive electrode plate 1 and negative electrode plate 2, as shown in FIG. 4(b),
Since it is slightly deformed by pressurization, if it is used in combination with the gel electrolyte 7, the adhesion in the contact direction with the positive electrode plate 1 and the negative electrode plate 2 can be easily improved. Figure 6 shows the results of a rapid charge/discharge cycle test conducted on the product of the present invention and the conventional product manufactured as sealed lead-acid batteries. As the test conditions,
The results of charging: 1}I, discharging: ICA, and temperature = 25±2°C show that the product of the present invention has good capacity performance and can withstand more than twice as many charges and discharges as the conventional product.
発明の効果
上述したように,本発明によれば,極板と電解質保持体
との密着は無加圧状態でも加圧状態でも共に良好となり
、容量性能や充放電サイクル性能が充分に得られ,且つ
、酸素ガス吸収能力が良いため急速充電も可能となる。Effects of the Invention As described above, according to the present invention, the adhesion between the electrode plate and the electrolyte holder is good both in the non-pressurized state and in the pressurized state, and sufficient capacity performance and charge/discharge cycle performance can be obtained. In addition, rapid charging is also possible due to its good oxygen gas absorption ability.
第1図は本発明の一実施例を示す平面図、第2図は第1
図における要部拡大縦断面図、第3図及び第4図は本発
明の他の実施例における(a)電解質保持体挿入前の状
態、(b)電解質保持体挿入後の状態、をそれぞれ示す
要部拡大縦断面図、第5図は従来の電解質保持体を用い
た場合の極板と電解質保持体間の拡大縦断面図,第6図
は本発明品と従来品の急速充放電サイクル特性を示す比
較曲線図である。
1は正極板、2は負極板、3は本発明における不織布と
ゲル状電解質とで構成された電解質保持体、4は極板群
を固定する基板、5は従来の電解質保持体,6は隙間、
7はゲル状電解質、8はガス溜りFig. 1 is a plan view showing one embodiment of the present invention, and Fig. 2 is a plan view showing an embodiment of the present invention.
The enlarged vertical sectional view of the main part in the figure, and FIGS. 3 and 4 respectively show (a) the state before the electrolyte holder is inserted, and (b) the state after the electrolyte holder is inserted, in other embodiments of the present invention. Figure 5 is an enlarged vertical cross-sectional view of the main parts, Figure 5 is an enlarged vertical cross-sectional view between the electrode plate and the electrolyte retainer when a conventional electrolyte retainer is used, and Figure 6 is the rapid charge/discharge cycle characteristics of the inventive product and the conventional product. FIG. 1 is a positive electrode plate, 2 is a negative electrode plate, 3 is an electrolyte holder composed of a nonwoven fabric and a gel electrolyte according to the present invention, 4 is a substrate for fixing the electrode plate group, 5 is a conventional electrolyte holder, and 6 is a gap ,
7 is gel electrolyte, 8 is gas reservoir
Claims (5)
れた電解質保持体と、正極板と、負極板とが同一平面上
に配置されて密封されたことを特徴とする密閉形二次電
池。(1) A sealed secondary battery characterized in that an electrolyte holder composed of a nonwoven fabric holding an electrolyte and a gel electrolyte, a positive electrode plate, and a negative electrode plate are arranged on the same plane and sealed. .
る請求項1記載の密閉形二次電池。(2) The sealed secondary battery according to claim 1, wherein the negative electrode plate thickness is thinner than the positive electrode plate thickness.
板の形成する空間形状より大きい形状とし、正極板、負
極板と電解質保持体とが接触方向に密着されていること
を特徴とする請求項1記載の密閉形二次電池。(3) The shape of the electrolyte holder is larger than the space formed by the positive electrode plate and the negative electrode plate on the same plane, and the positive electrode plate, the negative electrode plate, and the electrolyte holder are in close contact with each other in the contact direction. The sealed secondary battery according to claim 1.
板の厚さより厚い形状とし、平面に対して垂直方向に加
圧することによって正極板、負極板と電解質保持体とが
接触方向に密着されていることを特徴とする請求項1記
載の密閉形二次電池。(4) The shape of the electrolyte holder is thicker than the thickness of the positive and negative plates on the same plane, and by applying pressure in the direction perpendicular to the plane, the positive and negative plates and the electrolyte holder are brought into contact with each other. The sealed secondary battery according to claim 1, wherein the sealed secondary battery is in close contact with the battery.
状電解質の固形成分が分布していることを特徴とする請
求項1〜4のいずれか1項記載の密閉形二次電池。(5) The sealed secondary battery according to any one of claims 1 to 4, wherein the electrolyte holder has a gel electrolyte solid component distributed on the surface of the nonwoven fabric facing the electrode plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1057076A JP2552353B2 (en) | 1989-03-09 | 1989-03-09 | Sealed secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1057076A JP2552353B2 (en) | 1989-03-09 | 1989-03-09 | Sealed secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02236964A true JPH02236964A (en) | 1990-09-19 |
JP2552353B2 JP2552353B2 (en) | 1996-11-13 |
Family
ID=13045373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1057076A Expired - Lifetime JP2552353B2 (en) | 1989-03-09 | 1989-03-09 | Sealed secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2552353B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04144070A (en) * | 1990-10-03 | 1992-05-18 | Shin Kobe Electric Mach Co Ltd | Storage battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58108653A (en) * | 1981-12-22 | 1983-06-28 | Matsushita Electric Ind Co Ltd | Sealed storage battery |
JPS603658U (en) * | 1983-06-21 | 1985-01-11 | 新神戸電機株式会社 | sealed lead acid battery |
JPS63250066A (en) * | 1987-04-03 | 1988-10-17 | Japan Storage Battery Co Ltd | Hermetically sealed lead-acid battery |
-
1989
- 1989-03-09 JP JP1057076A patent/JP2552353B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58108653A (en) * | 1981-12-22 | 1983-06-28 | Matsushita Electric Ind Co Ltd | Sealed storage battery |
JPS603658U (en) * | 1983-06-21 | 1985-01-11 | 新神戸電機株式会社 | sealed lead acid battery |
JPS63250066A (en) * | 1987-04-03 | 1988-10-17 | Japan Storage Battery Co Ltd | Hermetically sealed lead-acid battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04144070A (en) * | 1990-10-03 | 1992-05-18 | Shin Kobe Electric Mach Co Ltd | Storage battery |
Also Published As
Publication number | Publication date |
---|---|
JP2552353B2 (en) | 1996-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2298264C2 (en) | Bipolar electrochemical battery of stacked flat galvanic cells | |
US3870563A (en) | Hermetically sealed storage battery | |
JPS60198055A (en) | Manufacture of plate for lead storage battery | |
JPH02236964A (en) | Sealed secondary battery | |
JPH06295718A (en) | Lead-acid battery separator | |
JP3555177B2 (en) | Sealed lead-acid battery | |
JPH0343966A (en) | Sealed lead-acid battery | |
JP2982545B2 (en) | Sealed storage battery | |
JPS63146348A (en) | Separator for enclosed lead storage battery | |
JP2536682B2 (en) | Sealed lead acid battery | |
JPS6366863A (en) | Sodium-sulfur battery | |
JP2855677B2 (en) | Sealed lead-acid battery | |
JP3182225B2 (en) | Method for producing cadmium negative electrode for alkaline storage battery | |
JPS607069A (en) | Manufacture of sealed lead-acid battery | |
JPS61263043A (en) | Organic electrolyte battery | |
JPS59138062A (en) | Lead storage battery | |
JP3266918B2 (en) | Sealed lead-acid battery | |
JPS6247972A (en) | Sealed lead-acid battery | |
JPH0530291Y2 (en) | ||
JPS63190260A (en) | Lead storage battery | |
JPS5875766A (en) | Charging of lead storage battery | |
JPH09231996A (en) | Manufacture of sealed lead acid battery | |
JPH02236965A (en) | Sealed lead-acid battery | |
JPH025360A (en) | Enclosed lead storage battery | |
JPS60112250A (en) | Sealed lead storage battery |