JPH09231996A - Manufacture of sealed lead acid battery - Google Patents

Manufacture of sealed lead acid battery

Info

Publication number
JPH09231996A
JPH09231996A JP8035234A JP3523496A JPH09231996A JP H09231996 A JPH09231996 A JP H09231996A JP 8035234 A JP8035234 A JP 8035234A JP 3523496 A JP3523496 A JP 3523496A JP H09231996 A JPH09231996 A JP H09231996A
Authority
JP
Japan
Prior art keywords
electrode plate
battery
sealed lead
separator
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8035234A
Other languages
Japanese (ja)
Inventor
Yasuhei Sakata
安平 坂田
Hideki Okada
秀輝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8035234A priority Critical patent/JPH09231996A/en
Publication of JPH09231996A publication Critical patent/JPH09231996A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealed lead acid battery having high superior electric discharging performance and also having a superior long life by a method wherein a paste paper sheet adhered with specified aqueous solution is adhered to either a positive plate or a negative plate. SOLUTION: The manufacturing of a sealed lead acid battery is carried out such that after a paste paper sheet coated with aqueous solution of sodium silicate at its surface is applied, an aged and dried electrode plate and a glass fiber separator are combined to each other to constitute a group of electrode plates. The paste sheet adhered to the surface of the electrode plate has no acid resistive characteristics, it may be decomposed or melted and eliminated while being immersed in electrolyte. However, sodium silicate coated on the paste paper sheet is changed into gelation and left at the surface of the electrode plate. With such an arrangement as above, a contact between the electrode and the separator is kept well so as to keep a dispersion of electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、密閉形鉛蓄電池に
関するものであり、特に高率放電用途に使用される密閉
形鉛蓄電池の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead acid battery, and more particularly to an improvement of a sealed lead acid battery used for high rate discharge applications.

【0002】[0002]

【従来の技術】近来、密閉形鉛蓄電池は、無停電電源装
置(以下、UPSとする)等の非常時のバックアップ電
源に使用されている。この種の密閉形鉛蓄電池は、ビル
等で使用されるため、電池のスペース効率を高くすると
ともに高率放電性能の改善が求められている。高率放電
性能に対しては、薄形の極板格子を用いて規定寸法のセ
ル内の極板枚数を増やし、極板一枚あたりの電流密度を
低下させる方法で対処している。しかし、一般に極板格
子材料として用いられるPb−Ca−Sn合金は、鋳造
による薄形化に限界があるため、近年ではエキスパンド
加工により極板格子を作製している。電槽材料には一般
にアクリロニトリル−ブタジエン−スチレン共重合体
(以下、ABS樹脂とする)が用いられ、その肉厚は、
放熱性、成形性、強度、コスト等を考慮して2〜3mm
とされている。
2. Description of the Related Art Recently, a sealed lead-acid battery has been used as an emergency backup power source such as an uninterruptible power supply (hereinafter referred to as UPS). Since this type of sealed lead acid battery is used in buildings and the like, it is required to improve the space efficiency of the battery and improve the high rate discharge performance. The high rate discharge performance is dealt with by using a thin electrode plate grid to increase the number of electrode plates in a cell having a specified size and reduce the current density per electrode plate. However, since the Pb-Ca-Sn alloy that is generally used as the electrode plate material has a limit in thinning by casting, in recent years, the electrode plate grating is manufactured by the expanding process. Acrylonitrile-butadiene-styrene copolymer (hereinafter referred to as ABS resin) is generally used as the battery case material, and its wall thickness is
2-3 mm considering heat dissipation, moldability, strength, cost, etc.
It has been.

【0003】[0003]

【発明が解決しようとする課題】しかし、このような密
閉形鉛蓄電池をバックアップ電源に用いる場合、長期間
の放置により、電解液中の水分が電槽樹脂部分を透過し
て散逸し、電解液体積が減少することにより、セパレー
タは収縮して反発力が低下していた。その結果、セパレ
ータと極板の接触が十分にとれず、放電時に必要な硫酸
の拡散が阻害され、電解液中の硫酸濃度が不均一になる
ことにより、極板が早期に劣化し、特に高率放電性能の
低下をもたらしていた。さらに、温度制御が困難な場所
に設置された場合、熱の拡散が十分にできず、電池温度
が高くなるため、電池の耐熱性の改善が求められてい
る。電槽肉厚を厚くすることにより電解液中の水分の散
逸を抑制することはできるが、コストアップや放熱性悪
化の要因になる。また、セパレータの圧縮率を高くする
ことにより、液拡散を良くしてトリクル寿命を改善する
ことができるが、高温環境下においては、かえって電槽
の変形を招き、これによりセパレータの反発力は低下
し、電池の高率放電性能が悪化する。本発明は、これら
の問題点を解決し、高率放電性能に優れ、かつトリクル
寿命の優れた密閉形鉛蓄電池を提供することを目的とす
る。
However, when such a sealed lead-acid battery is used as a backup power source, the moisture in the electrolytic solution is dissipated by passing through the resin portion of the battery case when left for a long time, and the electrolytic solution is discharged. Due to the decrease in the product, the separator contracted and the repulsive force was reduced. As a result, the contact between the separator and the electrode plate cannot be sufficiently taken, diffusion of sulfuric acid required during discharge is hindered, and the concentration of sulfuric acid in the electrolytic solution becomes non-uniform, so that the electrode plate deteriorates early, and especially The rate discharge performance was deteriorated. Further, when it is installed in a place where temperature control is difficult, heat cannot be sufficiently diffused and the battery temperature rises. Therefore, it is required to improve the heat resistance of the battery. Although the dissipation of water in the electrolytic solution can be suppressed by increasing the thickness of the battery case, it causes an increase in cost and deterioration of heat dissipation. Also, by increasing the compressibility of the separator, it is possible to improve the liquid diffusion and improve the trickle life, but under high temperature environment, rather, the battery case is deformed, which reduces the repulsive force of the separator. However, the high rate discharge performance of the battery deteriorates. An object of the present invention is to solve these problems and to provide a sealed lead acid battery having excellent high rate discharge performance and excellent trickle life.

【0004】[0004]

【課題を解決するための手段】本発明の密閉形鉛蓄電池
の製造法は、表面にケイ酸ナトリウム水溶液を塗布した
ペースト紙を貼り付けたのち熟成乾燥した極板とガラス
繊維セパレータを組合せて極板群を構成する。極板表面
に貼付されたペースト紙は、耐酸性がないため電解液に
浸漬されることにより分解あるいは溶解して消失する
が、ペースト紙に塗布されたケイ酸ナトリウムはゲル化
し、極板表面に残存する。この残存したゲル状ケイ酸が
電極とセパレータの間に介在することにより、両者間の
接触を良好に保ち、電解液の拡散を維持するものであ
る。さらに、電槽材料に水蒸気透過性の低いポリプロピ
レンを用い、その肉厚を2mm以上とすることで、電解
液の減少を抑制し、セパレータの反発力を良好に維持す
るものである。これにより、高率放電および寿命特性に
優れた密閉形鉛蓄電池を得ることができる。
The method for manufacturing a sealed lead-acid battery of the present invention is a combination of a plate and a glass fiber separator, which are obtained by pasting a paste paper coated with an aqueous solution of sodium silicate on the surface and then drying it. Make up a group of plates. The paste paper attached to the surface of the electrode plate does not have acid resistance, so it decomposes or dissolves when it is immersed in an electrolytic solution and disappears.However, the sodium silicate applied to the paste paper gels and forms on the surface of the electrode plate. To remain. The remaining gel-like silicic acid intervenes between the electrode and the separator to maintain good contact between the two and maintain the diffusion of the electrolytic solution. Further, by using polypropylene having a low water vapor permeability as the battery case material and having a wall thickness of 2 mm or more, a decrease in the electrolytic solution is suppressed and the repulsive force of the separator is maintained well. As a result, it is possible to obtain a sealed lead-acid battery that is excellent in high rate discharge and life characteristics.

【0005】[0005]

【発明の実施の形態】本発明の密閉形鉛蓄電池の製造法
は、ケイ酸ナトリウム水溶液の付着したペースト紙を正
極板または負極板に貼着する工程と、前記正極板または
負極板を熟成乾燥する工程を含むものである。また、前
記正極板、前記負極板およびガラス繊維を主体とするセ
パレータを含む電極群を、外気と接触する部分の肉厚が
2mm以上であるポリプロピレン製の電槽に挿入する工
程を含むことが好ましい。これにより、電解液中の残液
量を長期にわたり一定にすることができるとともに、恒
常的な電槽の変形や使用中の電槽の変形による圧力変化
も小さくできるため、この点からも寿命向上を図ること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for manufacturing a sealed lead-acid battery of the present invention comprises a step of pasting a paste paper having an aqueous solution of sodium silicate on a positive electrode plate or a negative electrode plate, and aging and drying the positive electrode plate or the negative electrode plate. It includes a step of performing. Further, it is preferable to include a step of inserting an electrode group including the positive electrode plate, the negative electrode plate and a separator mainly composed of glass fiber into a polypropylene battery case having a thickness of 2 mm or more at a portion in contact with outside air. . As a result, the amount of residual liquid in the electrolyte can be kept constant for a long period of time, and pressure changes due to constant deformation of the battery case or deformation of the battery case during use can be reduced. Can be achieved.

【0006】さらに、前記正極板および前記負極板の格
子体がエキスパンド加工されたものであることが好まし
い。これにより、極板を薄くしてセルの構成極板枚数を
増やし、反応面積を広くすることができ、極板の電流密
度を下げることができる。また、極板間隔を狭くするこ
とができ、電解液の抵抗を下げることができる。また、
前記正極板、負極板およびガラス繊維を主体とするセパ
レータを含む電極群を、電槽に挿入された乾燥状態での
前記セパレータの反発力が20〜60kg/dm2とな
るように前記電槽に挿入する工程を含むことが好まし
い。初期の乾燥状態でのセパレータの反発力を20〜6
0kg/dm2とすることにより、電解液が減少しても
セパレータの反発力を十分に維持することができる。
Further, it is preferable that the grids of the positive electrode plate and the negative electrode plate are expanded. This makes it possible to reduce the thickness of the electrode plate, increase the number of electrode plates constituting the cell, increase the reaction area, and reduce the current density of the electrode plate. Further, the electrode plate interval can be narrowed and the resistance of the electrolytic solution can be lowered. Also,
The positive electrode plate, the negative electrode plate, and an electrode group including a separator mainly composed of glass fiber are inserted into the battery case so that the repulsive force of the separator in a dry state is 20 to 60 kg / dm 2. It is preferable to include the step of inserting. The repulsive force of the separator in the initial dry state is 20 to 6
When the amount is 0 kg / dm 2 , the repulsive force of the separator can be sufficiently maintained even when the amount of the electrolytic solution is reduced.

【0007】さらに、前記ペースト紙の主成分が天然セ
ルロースであることが好ましい。耐酸性のない天然セル
ロースを主体としたペースト紙を用いることにより、電
池中でセルロース部分は溶解するものの、セルロース表
面に塗布されたケイ酸ナトリウムはゲル状ケイ酸として
極板とガラス繊維セパレータの間に残存し、両者間を良
好に接触させ、電解液の拡散を均一にすることができ
る。また、前記電極群が挿入された前記電槽内に希硫酸
電解液を注入して化成を行い、残存する電解液が前記セ
パレータの理論空隙体積に対して85〜95%となるよ
うに調整する工程を含むことが好ましい。これにより、
効率放電の寿命特性を向上させることができる。このよ
うに本発明は、高率放電が可能で、しかもトリクル寿命
が向上した鉛蓄電池を得ることができる。
Further, the main component of the paste paper is preferably natural cellulose. By using a paste paper mainly composed of non-acid resistant natural cellulose, the cellulose part is dissolved in the battery, but the sodium silicate applied to the cellulose surface acts as gel silicic acid between the electrode plate and the glass fiber separator. It is possible to make a good contact between the two and make the diffusion of the electrolytic solution uniform. Further, dilute sulfuric acid electrolytic solution is injected into the battery case in which the electrode group is inserted to perform chemical conversion, and the remaining electrolytic solution is adjusted to 85 to 95% of the theoretical void volume of the separator. It is preferable to include a step. This allows
The life characteristics of efficient discharge can be improved. As described above, the present invention can provide a lead storage battery capable of high-rate discharge and having an improved trickle life.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照しながら
詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0009】[実施例1]カルシウム含有量0.08
%、スズ含有量1.1%の鉛合金シートをエキスパンド
加工して格子体を作製した。この格子体の下にペースト
紙を敷き、格子体に鉛ペーストを充填した後、さらにそ
の上にペースト紙を配置した。これをローラで圧着する
ことにより一体に貼着した。ここで、格子体の両面に貼
るペースト紙は、天然セルロース繊維を目付量15g/
2となるよう抄紙し、その表面に20%の無水ケイ酸
を含有したケイ酸ナトリウム水溶液を塗布したものを用
いた。これを熟成乾燥して厚さ1.7mmの正極板を得
た。負極には、カルシウム含有量0.08%、スズ含有
量0.6%の鉛合金シートをエキスパンド加工した格子
体を用い、この格子体の両面に正極と同じケイ酸ナトリ
ウム水溶液を塗布したペースト紙をローラーで圧着し、
厚さ1.3mmの負極板を作製した。
[Example 1] Calcium content 0.08
%, And a lead alloy sheet with a tin content of 1.1% was expanded to form a lattice. A paste paper was laid under the grid, the grid was filled with lead paste, and then the paste paper was placed on the grid. This was attached by pressing with a roller. Here, the paste paper to be attached to both sides of the lattice is made of natural cellulose fiber with a basis weight of 15 g /
The paper was made to have a size of m 2, and the surface thereof was coated with an aqueous sodium silicate solution containing 20% silicic acid anhydride. This was aged and dried to obtain a positive electrode plate having a thickness of 1.7 mm. For the negative electrode, a grid body obtained by expanding a lead alloy sheet having a calcium content of 0.08% and a tin content of 0.6% is used, and the same sodium silicate aqueous solution as the positive electrode is applied to both sides of the grid body. Crimp with a roller,
A negative electrode plate having a thickness of 1.3 mm was produced.

【0010】このようにして作製した正極板および負極
板を用いて、図1に示す密閉形鉛蓄電池を以下のように
して作製した。繊維径約2μmのガラス繊維を主体とす
る厚さ1.0mm、密度0.16g/cm3のセパレー
タ2をU字状に折り曲げ、上記のようにして得られた正
極板1を両面から覆うように挟み込んだ。セパレータ2
で挟まれた正極板1を4枚および負極板3を5枚用い
て、これらを交互に重ね合わせ、正極板1および負極板
3の耳部をそれぞれ溶接して導通接続し、セルを構成す
る極板群を作製した。次に、大気と接触する部分の肉厚
を3mmとしたポリプロピレン製の電槽5に上記のよう
にして得られた極板群を挿入した。このときの乾燥状態
でのセパレータ2の反発力を、40kg/dm2とし
た。その後、隣接するセルをセル間接続体4により直列
に導通接続し、蓋6を電槽5に熱溶着してシールした。
この電槽5に比重1.25の希硫酸を注液し、電流2.
4Aで60時間、電槽化成を行い、最終電解液比重を
1.31、残液量を290g/セルとした12V、24
Ahの密閉形鉛蓄電池を作製した。これを実施例1−1
の電池とする。
Using the positive electrode plate and the negative electrode plate thus produced, the sealed lead acid battery shown in FIG. 1 was produced as follows. A separator 2 having a thickness of 1.0 mm and a density of 0.16 g / cm 3 , which is mainly composed of glass fibers having a fiber diameter of about 2 μm, is bent into a U shape, and the positive electrode plate 1 obtained as described above is covered from both sides. Sandwiched between. Separator 2
Using four positive electrode plates 1 and five negative electrode plates 3 sandwiched in between, these are alternately stacked and the ears of the positive electrode plate 1 and the negative electrode plate 3 are respectively welded and electrically connected to form a cell. An electrode group was prepared. Next, the electrode plate group obtained as described above was inserted into a polypropylene battery case 5 having a wall thickness of 3 mm in contact with the atmosphere. The repulsive force of the separator 2 in the dry state at this time was set to 40 kg / dm 2 . Then, the adjacent cells were electrically connected in series by the inter-cell connection body 4, and the lid 6 was heat-welded to the battery case 5 for sealing.
Dilute sulfuric acid having a specific gravity of 1.25 was poured into the battery case 5 and an electric current of 2.
Battery case formation was performed at 4 A for 60 hours, the final electrolyte specific gravity was 1.31, and the residual liquid amount was 290 g / cell, 12 V, 24
A sealed lead-acid battery of Ah was produced. Example 1-1
Battery.

【0011】実施例1−1の電池と同様の密閉形鉛蓄電
池において、ポリプロピレン製の電槽に代えて大気と接
触する部分の肉厚3mmのABS樹脂製電槽を用いて密
閉形鉛蓄電池を作製した。ただし、蓋6と電槽5はエポ
キシ樹脂接着剤で接着した。ここで、極板群を電槽5に
挿入する際の乾燥状態でのセパレータ2の反発力を、実
施例1−1の電池と同様に40kg/dm2とした。こ
れを実施例1−2の電池とする。
In a sealed lead acid battery similar to the battery of Example 1-1, a sealed lead acid battery was prepared by using a 3 mm thick ABS resin battery container in contact with the atmosphere instead of the polypropylene battery container. It was made. However, the lid 6 and the battery case 5 were bonded with an epoxy resin adhesive. Here, the repulsive force of the separator 2 in a dry state when the electrode plate group was inserted into the battery case 5 was set to 40 kg / dm 2 as in the battery of Example 1-1. This is the battery of Example 1-2.

【0012】実施例1−1の電池と同様の密閉形鉛蓄電
池において、ケイ酸ナトリウムを塗布しないペースト紙
を用いて密閉形鉛蓄電池を作製した。ここで、極板群を
電槽6に挿入する際の乾燥状態でのセパレータ2の反発
力を、実施例1−1の電池と同様に40kg/dm2
した。これを比較例1−1の電池とする。
In a sealed lead acid battery similar to the battery of Example 1-1, a sealed lead acid battery was prepared by using paste paper to which sodium silicate was not applied. Here, the repulsive force of the separator 2 in the dry state when the electrode plate group was inserted into the battery case 6 was set to 40 kg / dm 2 as in the battery of Example 1-1. This is the battery of Comparative Example 1-1.

【0013】実施例1−2の電池と同様の密閉形鉛蓄電
池において、ケイ酸ナトリウムを塗布しないペースト紙
を用いて密閉形鉛蓄電池を作製した。ここで、極板群を
電槽5に挿入する際の乾燥状態でのセパレータ2の反発
力を、実施例1−2の電池と同様に40kg/dm2
した。これを比較例1−2の電池とする。
In a sealed lead acid battery similar to the battery of Example 1-2, a sealed lead acid battery was prepared using paste paper to which sodium silicate was not applied. Here, the repulsive force of the separator 2 in the dry state when the electrode plate group was inserted into the battery case 5 was set to 40 kg / dm 2 as in the battery of Example 1-2. This is the battery of Comparative Example 1-2.

【0014】これら4種の電池、各6個について、60
℃、相対湿度10%の雰囲気中で13.8Vの定電圧充
電を行い、3週間ごとに72Aの放電電流で容量検査を
行うトリクル寿命試験を実施した。また寿命試験と同時
に、電池の重量変化から電解液の散逸量を測定した。そ
れらの結果をそれぞれ図2および図3に示す。
For these four types of batteries, six for each, 60
A trickle life test was performed in which a constant voltage charge of 13.8 V was performed in an atmosphere of ° C and a relative humidity of 10%, and a capacity test was performed every three weeks at a discharge current of 72 A. At the same time as the life test, the amount of electrolyte dissipated was measured from the change in battery weight. The results are shown in FIGS. 2 and 3, respectively.

【0015】ともにポリプロピレン製の電槽を用いた実
施例1−1の電池および比較例1−1の電池を比較する
と、ケイ酸ナトリウムを塗着したペースト紙を使用した
実施例1−1の電池の方が、ケイ酸ナトリウムを塗着し
たペースト紙を用いていない比較例1−1の電池と比べ
て優れた特性を示した。ともにABS樹脂製の電槽を用
いた実施例1−2の電池および比較例1−2の電池の比
較からも、同様の効果が確認された。寿命試験後の電池
を分解して分析した結果、ケイ酸ナトリウムを塗着した
ペースト紙を用いた実施例1−1の電池および実施例1
−2の電池は、ともにペースト紙の天然セルロース繊維
自体は希硫酸により溶解して消失していたが、ゲル状の
ケイ酸が極板表面に残存していた。すなわち、実施例1
−1の電池および1−2の電池は、ゲル状ケイ酸が極板
表面に被覆層を形成することにより、セパレータと極板
の接触が良好に維持され、内部抵抗が低くかつ電解液の
拡散が良好に維持されるため、それぞれケイ酸ナトリウ
ムを塗布したペースト紙を用いていない比較例1−1お
よび1−2の電池と比べて優れた寿命を示すものと考え
られる。
Comparing the battery of Example 1-1 and the battery of Comparative Example 1-1, both of which used a polypropylene battery case, the battery of Example 1-1 using paste paper coated with sodium silicate was used. Shows superior characteristics to the battery of Comparative Example 1-1 in which the paste paper coated with sodium silicate is not used. Similar effects were confirmed by comparison between the battery of Example 1-2 and the battery of Comparative Example 1-2, both of which used an ABS resin battery case. As a result of disassembling and analyzing the battery after the life test, the battery of Example 1-1 using the paste paper coated with sodium silicate and Example 1
In both batteries, the natural cellulose fiber itself of the paste paper was dissolved by dilute sulfuric acid and disappeared, but gel-like silicic acid remained on the surface of the electrode plate. That is, the first embodiment
In the batteries No. 1 and No. 1-2, the gel-like silicic acid forms a coating layer on the surface of the electrode plate, so that good contact between the separator and the electrode plate is maintained, the internal resistance is low, and the diffusion of the electrolytic solution is low. Therefore, it is considered that the battery has excellent life compared with the batteries of Comparative Examples 1-1 and 1-2 which do not use the paste paper coated with sodium silicate.

【0016】また、ポリプロピレン製の電槽を用いた実
施例1−1の電池は、ABS樹脂製の電槽を用いた実施
例1−2の電池と比べて寿命が飛躍的に長くなる。同様
に、ポリプロピレン製の電槽を用いた比較例1−1の電
池は、ABS樹脂製の電槽を用いた比較例1−2の電池
と比べて寿命が長くなる。これは、図3に示す電池の重
量変化から明らかなように、ABS樹脂に比べて約1/
20の水蒸気透過性を示すポリプロピレン樹脂を電槽材
料に用いることにより、電解液中の水分の電池外部への
散逸を抑制することができることによるものと考えられ
る。この結果から、電槽材料にポリプロピレンを用いる
ことにより、電池寿命は向上することがわかる。上記実
施例では、外気と接触する部分の電槽の肉厚を3mmと
したが、肉厚が2mm以上であれば同様の効果が得られ
ることが確認された。また、強度や成形性の面からも肉
厚が2mm以上であれば問題を有しない。
Further, the battery of Example 1-1 using the polypropylene battery case has a much longer life than the battery of Example 1-2 using the ABS resin battery container. Similarly, the battery of Comparative Example 1-1 using the polypropylene battery case has a longer life than the battery of Comparative Example 1-2 using the ABS resin battery container. This is about 1 / compared to ABS resin, as is clear from the change in weight of the battery shown in FIG.
It is considered that the use of the polypropylene resin having water vapor permeability of 20 as the battery case material can suppress the dissipation of water in the electrolytic solution to the outside of the battery. From this result, it is understood that the battery life is improved by using polypropylene as the battery case material. In the above example, the thickness of the battery case at the portion in contact with the outside air was 3 mm, but it was confirmed that the same effect can be obtained if the thickness is 2 mm or more. Also, in terms of strength and moldability, there is no problem if the wall thickness is 2 mm or more.

【0017】[実施例2]実施例1−1と同様の電池を
用いて、セパレータの反発力に対する電池寿命を検討し
た。これは、電極群を電槽に挿入する際のセパレータの
反発力を変化させた電池について、60℃、相対湿度1
0%の雰囲気中で13.8Vの定電圧充電を行った後、
3週間ごとに72Aの放電電流で容量検査を行い、その
容量が初期の60%となった時点で寿命とした。その結
果を図4に示す。図より、セパレータの反発力が密閉形
鉛蓄電池の寿命を決定する要素であることがわかる。特
に、セパレータの反発力が20kg/dm2よりも小さ
くなると、ケイ酸ナトリウムが極板表面に存在していて
もセパレータとの接触が十分に保てず、内部抵抗が上昇
し、放電性能の急激な低下につながる。一方、極板厚の
バラツキや極板群を電槽へ挿入する際の作業性を考慮す
ると、60kg/dm2より大きくすることは適当でな
い。また、そのような大きな反発力を持たせると、使用
時に発熱を生じた場合、電槽肉厚を厚くしても電槽が変
形する危険性がある。すなわち、電槽へ電極群を挿入す
る際のセパレータの反発力は、20〜60kg/dm2
とすることが好ましい。上記実施例では、繊維径約2μ
mのガラス繊維を主体とする厚さ1.0mm、密度0.
16g/cm3のセパレータを用いたが、この傾向は、
セパレータの密度によらず、一定であることを確認し
た。
Example 2 Using the same battery as in Example 1-1, the battery life against the repulsive force of the separator was examined. This is for a battery in which the repulsive force of the separator when inserting the electrode group into the battery case was changed, 60 ° C, relative humidity 1
After constant voltage charging of 13.8V in 0% atmosphere,
The capacity was inspected at a discharge current of 72 A every three weeks, and the life was defined when the capacity reached 60% of the initial value. FIG. 4 shows the results. From the figure, it can be seen that the repulsive force of the separator is a factor that determines the life of the sealed lead acid battery. In particular, when the repulsive force of the separator is less than 20 kg / dm 2 , even if sodium silicate is present on the surface of the electrode plate, the contact with the separator cannot be sufficiently maintained, the internal resistance increases, and the discharge performance rapidly increases. Leading to a decline. On the other hand, considering the variation of the electrode plate thickness and the workability when inserting the electrode plate group into the battery case, it is not appropriate to make it larger than 60 kg / dm 2 . Further, if such a large repulsive force is given, when heat is generated during use, there is a risk that the battery case may be deformed even if the battery case wall thickness is increased. That is, the repulsive force of the separator when inserting the electrode group into the battery case is 20 to 60 kg / dm 2
It is preferable that In the above embodiment, the fiber diameter is about 2μ.
m glass fiber as the main component, thickness 1.0 mm, density 0.
A 16 g / cm 3 separator was used, but this tendency is
It was confirmed to be constant regardless of the density of the separator.

【0018】[実施例3]次に、実施例1−1の電池と
同様の構成の密閉形鉛蓄電池において、電槽化成後のセ
パレータのセル内での反発力をいずれも45kg/dm
2とし、電槽化成後のセパレータの理論空隙体積に対す
る電解液残液量を変えた鉛蓄電池を作製し、それらのト
リクル寿命を測定した。ただし、測定条件および寿命の
判定は実施例2と同様とした。その結果を図5に示す。
図5に示すように、電解液残液量がセパレータの理論空
隙体積に対して85%以下の場合では液枯れ現象と同じ
ように急激に寿命低下が起こった。また、残液量が98
%以上になると、急激な寿命低下を起こした。これは、
負極板でのガス吸収能が低下し、充電電流が大きくなる
ことにより正極格子の腐食が大きくなったものと考えら
れる。
[Embodiment 3] Next, in a sealed lead-acid battery having the same structure as the battery of Embodiment 1-1, the repulsive force in the cells of the separator after formation of the battery case is 45 kg / dm.
2 , lead-acid batteries were prepared in which the amount of the residual electrolyte solution was changed with respect to the theoretical void volume of the separator after the formation of the battery case, and the trickle life of them was measured. However, the measurement conditions and the judgment of the life were the same as in Example 2. The result is shown in FIG.
As shown in FIG. 5, when the residual amount of the electrolytic solution was 85% or less with respect to the theoretical void volume of the separator, the life was rapidly reduced as in the case of the liquid depletion phenomenon. In addition, the residual liquid amount is 98
%, The life was suddenly shortened. this is,
It is probable that the gas absorption capacity of the negative electrode plate decreased and the charging current increased, resulting in greater corrosion of the positive electrode grid.

【0019】上記各実施例では正負両極板にケイ酸ナト
リウムを付着させたが、正負極の少なくとも一方に付着
させても同様な効果を得ることができる。また、塗布に
よりペースト紙表面へケイ酸ナトリウムを付着させた
が、溶液をペースト紙に噴霧して付着させたり、あらか
じめ溶液中にペースト紙を含浸させて付着させても同様
な効果を得ることができる。また、エキスパンド加工さ
れた極板格子を用いることにより、極板を薄くでき、電
池の高率放電性能を向上させることができる。
Although sodium silicate is adhered to the positive and negative bipolar plates in each of the above embodiments, the same effect can be obtained by adhering it to at least one of the positive and negative electrodes. Further, although sodium silicate was attached to the surface of the paste paper by coating, the same effect can be obtained by spraying the solution onto the paste paper to attach it, or impregnating the paste paper in the solution in advance and attaching it. it can. Further, by using the expanded electrode plate grid, the electrode plate can be made thinner and the high rate discharge performance of the battery can be improved.

【0020】[0020]

【発明の効果】本発明によると、極板とセパレータを常
に密着させることができ、密閉形鉛蓄電池の高率放電特
性やトリクル寿命を改善することができる。
According to the present invention, the electrode plate and the separator can be always brought into close contact with each other, and the high rate discharge characteristics and the trickle life of the sealed lead acid battery can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の電池の一部を切り欠いた斜視
図である。
FIG. 1 is a perspective view in which a part of a battery according to an embodiment of the present invention is cut away.

【図2】本発明の実施例の電池のトリクル寿命を示す特
性図である。
FIG. 2 is a characteristic diagram showing a trickle life of a battery according to an example of the present invention.

【図3】同トリクル寿命試験における電解液の重量減を
示す特性図である。
FIG. 3 is a characteristic diagram showing a weight reduction of an electrolytic solution in the same trickle life test.

【図4】同セパレータの圧縮比に対するトリクル寿命を
示す特性図である。
FIG. 4 is a characteristic diagram showing a trickle life with respect to a compression ratio of the separator.

【図5】同電解液の残液量に対するトリクル寿命を示す
特性図である。
FIG. 5 is a characteristic diagram showing a trickle life with respect to a residual liquid amount of the same electrolytic solution.

【符号の説明】[Explanation of symbols]

1 正極板 2 セパレータ 3 負極板 4 セル間接続体 5 電槽 6 蓋 1 Positive Plate 2 Separator 3 Negative Plate 4 Cell-to-Cell Connector 5 Battery Case 6 Lid

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ケイ酸ナトリウム水溶液の付着したペー
スト紙を正極板または負極板に貼着する工程と、前記正
極板または負極板を熟成乾燥する工程を含む密閉形鉛蓄
電池の製造法。
1. A method for producing a sealed lead-acid battery, which comprises a step of attaching a paste paper to which an aqueous solution of sodium silicate is attached to a positive electrode plate or a negative electrode plate, and a step of aging and drying the positive electrode plate or the negative electrode plate.
【請求項2】 正極板、負極板およびガラス繊維を主体
とするセパレータを含む電極群を、外気と接触する部分
の肉厚が2mm以上であるポリプロピレン製の電槽に挿
入する工程を含む請求項1記載の密閉形鉛蓄電池の製造
法。
2. A step of inserting an electrode group including a positive electrode plate, a negative electrode plate and a separator mainly composed of glass fiber into a polypropylene battery case having a thickness of 2 mm or more at a portion in contact with outside air. 1. The method for manufacturing the sealed lead storage battery according to 1.
【請求項3】 正極板および負極板の格子体がエキスパ
ンド加工されたものである請求項1記載の密閉形鉛蓄電
池の製造法。
3. The method for producing a sealed lead-acid battery according to claim 1, wherein the grids of the positive electrode plate and the negative electrode plate are expanded.
【請求項4】 正極板、負極板およびガラス繊維を主体
とするセパレータを含む電極群を、電槽に挿入された乾
燥状態での前記セパレータの反発力が20〜60kg/
dm2となるように前記電槽に挿入する工程を含む請求
項1記載の密閉形鉛蓄電池の製造法。
4. A repulsive force of the separator in a dry state in which an electrode group including a positive electrode plate, a negative electrode plate, and a separator mainly composed of glass fiber is inserted into a battery case and has a repulsive force of 20 to 60 kg /.
The method for producing a sealed lead acid battery according to claim 1, further comprising the step of inserting the battery into the battery case so as to have a dm 2 .
【請求項5】 前記ペースト紙の主成分が天然セルロー
スである請求項1記載の密閉形鉛蓄電池の製造法。
5. The method for manufacturing a sealed lead-acid battery according to claim 1, wherein the paste paper is mainly composed of natural cellulose.
【請求項6】 さらに、前記電槽内に希硫酸電解液を注
入して化成を行い、残存する電解液量が前記セパレータ
の理論空隙体積の85〜95%相当となるように調整す
る工程を含む請求項4記載の密閉形鉛蓄電池の製造法。
6. A step of further injecting a dilute sulfuric acid electrolytic solution into the battery cell to perform chemical conversion, and adjusting the amount of the remaining electrolytic solution so as to correspond to 85 to 95% of the theoretical void volume of the separator. The method for producing a sealed lead-acid battery according to claim 4, which comprises.
JP8035234A 1996-02-22 1996-02-22 Manufacture of sealed lead acid battery Pending JPH09231996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8035234A JPH09231996A (en) 1996-02-22 1996-02-22 Manufacture of sealed lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8035234A JPH09231996A (en) 1996-02-22 1996-02-22 Manufacture of sealed lead acid battery

Publications (1)

Publication Number Publication Date
JPH09231996A true JPH09231996A (en) 1997-09-05

Family

ID=12436160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8035234A Pending JPH09231996A (en) 1996-02-22 1996-02-22 Manufacture of sealed lead acid battery

Country Status (1)

Country Link
JP (1) JPH09231996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107004A1 (en) * 2004-04-28 2005-11-10 Matsushita Electric Industrial Co., Ltd. Lead acid battery
WO2014030735A1 (en) * 2012-08-23 2014-02-27 日本ゼオン株式会社 Lead battery capacitor electrode, lead capacitor battery, method for producing lead battery capacitor electrode and method for producing lead capacitor battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107004A1 (en) * 2004-04-28 2005-11-10 Matsushita Electric Industrial Co., Ltd. Lead acid battery
JPWO2005107004A1 (en) * 2004-04-28 2008-03-21 松下電器産業株式会社 Lead acid battery
CN100448093C (en) * 2004-04-28 2008-12-31 松下电器产业株式会社 Lead acid battery
US7597998B2 (en) 2004-04-28 2009-10-06 Panasonic Corporation Lead acid battery including antimony
KR101068378B1 (en) * 2004-04-28 2011-09-28 파나소닉 주식회사 Lead acid battery
JP5016306B2 (en) * 2004-04-28 2012-09-05 パナソニック株式会社 Lead acid battery
WO2014030735A1 (en) * 2012-08-23 2014-02-27 日本ゼオン株式会社 Lead battery capacitor electrode, lead capacitor battery, method for producing lead battery capacitor electrode and method for producing lead capacitor battery

Similar Documents

Publication Publication Date Title
US4603093A (en) Lead-acid battery
US7006346B2 (en) Positive electrode of an electric double layer capacitor
EP0251683B1 (en) High rate sealed lead-acid battery with ultrathin plates
EP2263276B1 (en) Flooded lead-acid battery
KR20100014606A (en) Optimised energy storage device
JP2011530800A (en) Equipment and methods for lead acid batteries
JP2002352861A (en) Method of manufacturing lithium battery
US5993494A (en) Method of manufacturing modular components for a bipolar battery and the resulting bipolar battery
KR20180113417A (en) Method of manufacturing lithium secondary battery
US5728331A (en) Method of preparing a battery separator
EP0301647B1 (en) Electrochemical cell
JPH09231996A (en) Manufacture of sealed lead acid battery
CA1179013A (en) Sealed, maintenance-free, lead-acid batteries for float applications
Landfors Cycle life test of lead dioxide electrodes in compressed lead/acid cells
JPH08329975A (en) Sealed lead-acid battery
JP2773311B2 (en) Manufacturing method of sealed lead-acid battery
KR100355501B1 (en) Lead acid bettery
JPH10214628A (en) Lead acid-battery and its manufacture
KR100238443B1 (en) The structure for lithium polymer secondary batteries unit cell using the electrode material slurry of including polymer and method thereof
JP2000149932A (en) Lead-acid battery and its manufacture
JP3221154B2 (en) Sealed lead-acid battery
JPH03173065A (en) Sealed lead-acid battery
JPS6049572A (en) Sealed lead-acid battery
JPH10172542A (en) Sealed lead acid storage battery
JPS6047375A (en) Sealed lead storage battery