JP3266918B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP3266918B2
JP3266918B2 JP23231791A JP23231791A JP3266918B2 JP 3266918 B2 JP3266918 B2 JP 3266918B2 JP 23231791 A JP23231791 A JP 23231791A JP 23231791 A JP23231791 A JP 23231791A JP 3266918 B2 JP3266918 B2 JP 3266918B2
Authority
JP
Japan
Prior art keywords
battery
separator
powder
negative electrode
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23231791A
Other languages
Japanese (ja)
Other versions
JPH0547411A (en
Inventor
孝夫 大前
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP23231791A priority Critical patent/JP3266918B2/en
Publication of JPH0547411A publication Critical patent/JPH0547411A/en
Application granted granted Critical
Publication of JP3266918B2 publication Critical patent/JP3266918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は密閉式鉛蓄電池の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a sealed lead-acid battery.

【0002】[0002]

【従来の技術とその課題】現在、密閉式鉛蓄電池として
リテーナ式とゲル式の2種類が実用化されている。いず
れも電池の充電中に発生する酸素ガスを負極で吸収させ
ることで電解液の減少をなくし密閉化をはかっている。
2. Description of the Related Art At present, two types of sealed lead storage batteries, a retainer type and a gel type, have been put into practical use. In each case, the oxygen gas generated during the charging of the battery is absorbed by the negative electrode, so that the electrolyte is not reduced and the hermetic sealing is achieved.

【0003】リテーナ式は正極板と負極板との間に微細
ガラス繊維を素材とするマット状セパレータ(ガラスセ
パレータ)を挿入し、これによって放電に必要な硫酸電
解液の保持と両極の隔離を行なっており、無保守、無漏
液、ポジションフリーなどの特徴を生かして、近年、ポ
ータブル機器やコンピュータのバックアップ電源として
広く用いられるようになってきた。
[0003] In the retainer type, a mat-like separator (glass separator) made of fine glass fiber is inserted between a positive electrode plate and a negative electrode plate, thereby holding a sulfuric acid electrolyte necessary for discharge and isolating both electrodes. In recent years, it has been widely used as a backup power supply for portable devices and computers, taking advantage of features such as maintenance-free, liquid-free, and position-free.

【0004】しかし、反面ガラスセパレータが高価なこ
とや極板群を強く圧迫する必要から電槽の強度も大きく
しなければならないなど電池の製造コストが高くなる要
因が多く、さらに流動液が過剰にある電池(以下、液式
電池という)に比べて低率放電性能が劣るなどの欠点が
あって、この種の密閉電池の普及に障害となっている。
However, on the other hand, there are many factors that increase the production cost of the battery, such as the fact that the glass separator is expensive and the strength of the battery container must be increased due to the need to strongly press the electrode plate group. Such batteries have drawbacks such as inferior low-rate discharge performance as compared with certain batteries (hereinafter, referred to as liquid batteries), which hinders the spread of such sealed batteries.

【0005】一方、ゲル式はリテーナ式よりも安価であ
るが、電池性能が液式やリテーナ式に劣るという欠点を
有している。
On the other hand, the gel type is less expensive than the retainer type, but has a drawback that the battery performance is inferior to the liquid type or the retainer type.

【0006】そこでこれらの欠点を解消するために、微
細ガラス繊維を用いるリテーナ式でもなく、ゲル状の電
解液を用いるゲル式でもない密閉式鉛蓄電池が提案され
ている。すなわち、電解液保持材として高い多孔度と大
きい比表面積を有する粉体、たとえばシリカ粉体を使用
するもので、正極板と負極板との間隙および極板群の周
囲に上記粉体を充填した構成の密閉式鉛蓄電池である。
シリカ粉体は大量に生産、販売されている安価な材料で
あり、耐酸性や電解液の保持力も優れているので、この
タイプの密閉式鉛蓄電池の電解液保持材に用いる粉体と
して優れた素材であるといえる。
In order to solve these drawbacks, a sealed lead-acid battery has been proposed which is neither a retainer type using fine glass fibers nor a gel type using a gel electrolyte. That is, a powder having a high porosity and a large specific surface area, such as silica powder, is used as an electrolyte holding material, and the powder is filled in the gap between the positive electrode plate and the negative electrode plate and around the electrode plate group. It is a sealed lead-acid battery of the configuration.
Silica powder is an inexpensive material that is mass-produced and sold, and has excellent acid resistance and electrolyte retention ability, so it is an excellent powder for use as an electrolyte retention material in this type of sealed lead-acid battery. It can be said that it is a material.

【0007】しかし、シリカ粉体を用いた密閉式鉛蓄電
池の実験を進めていくと共に問題点が明らかになってき
た。それは両極を充分に隔離しなければ特に自動車用な
どのような両極板の間隔の狭い電池ではシリカ粉末の間
隙を通って活物質粒子が浸透し、短絡を起こしてしまう
ことである。これを防止するためには、両極板の間に隔
離体を用いる必要がある。
However, problems have been clarified with the progress of experiments on sealed lead-acid batteries using silica powder. If the electrodes are not sufficiently separated, the active material particles penetrate through the gaps between the silica powders, and cause a short circuit, particularly in a battery having a narrow gap between the electrodes, such as for an automobile. In order to prevent this, it is necessary to use an isolator between both electrode plates.

【0008】シリカの造粒粉体を電解液保持体として用
いる場合、上述したように隔離体を用いなければならな
いが、あわせて両極板間を一定に保つために極間保持体
を併用しなければならない。これまでシート状の隔離体
と極間保持体とを併用する方法や上下方向に直線状のリ
ブのついた隔離体を用いることなどが提案されている。
しかし、これらの方法では上下方向に位置する極間保持
体あるいはリブによって極板の空間がいくつかのブロッ
クに分割されてしまうため電池内へのシリカ造粒粉体の
充填が難しくなり、また充填したシリカ造粒粉体が不均
一になったりした。シリカ造粒粉体を充填し電解液を注
入した後、この電解液の横方向の移動が妨げられ電池性
能に影響することも考えられる。
When the granulated silica powder is used as the electrolyte holder, the separator must be used as described above. In addition, the gap holder must be used together to keep the distance between the two electrode plates constant. Must. Hitherto, a method of using a sheet-shaped separator and an interelectrode holder together, and a method of using a separator having a linear rib in a vertical direction have been proposed.
However, in these methods, the space of the electrode plate is divided into several blocks by the inter-electrode holders or ribs located in the vertical direction, so that it is difficult to fill the inside of the battery with the granulated silica powder. The obtained silica granulated powder became uneven. After filling the silica granulated powder and injecting the electrolytic solution, it is conceivable that the lateral movement of the electrolytic solution is hindered and affects the battery performance.

【0009】また、片面あるいは両面に樹脂などで凸部
を設けた隔離体も提案されている。これを用いると前述
した問題点を解決することができる。しかし、隔離体に
樹脂などで凸部を形成するという加工が必要なことから
製造コストが大幅に増加してしまう。さらに凸部は電池
反応にとっては邪魔な部分なので、凸部が多くなると放
電容量の低下などの悪影響がでてくる恐れがあった。
Also, there has been proposed an isolator having a convex portion formed of resin or the like on one or both surfaces. By using this, the above-mentioned problem can be solved. However, since a process of forming a convex portion with a resin or the like on the separator is required, the manufacturing cost is greatly increased. Furthermore, since the convex portion is a hindrance to the battery reaction, an increase in the number of convex portions may have an adverse effect such as a decrease in discharge capacity.

【0010】[0010]

【課題を解決するための手段】本発明にかかる密閉形鉛
蓄電池は、エンボス加工により片面あるいは両面に凸部
を設けた隔離体を正、負極板間に介在させてなる極板群
を電槽内に収納すると共に、極板間および極板の周囲に
充填したシリカ粉体を固定し、硫酸電解液を該シリカ粉
体、隔離体および正負極板に保持させたことを特徴とす
る。
According to the present invention, there is provided a sealed lead-acid battery comprising an electrode plate formed by embossing a separator provided with a convex portion on one or both surfaces between a positive electrode plate and a negative electrode plate. And the silica powder filled between and around the electrode plates is fixed, and the sulfuric acid electrolyte is held by the silica powder, the separator and the positive and negative electrode plates.

【0011】[0011]

【実施例】図1は本発明による密閉式鉛蓄電池を示す概
略図である。正極板1はアンチモンフリーの鉛合金また
はアンチモンを少量含む鉛合金格子に正極活物質を充填
したものである。アンチモンフリーの鉛合金としては、
カルシウム0.02〜0.12重量%、錫0〜1.0重
量%および微量のアルミニウムを含む一般的な鉛−カル
シウム系合金が使用できる。
FIG. 1 is a schematic view showing a sealed lead-acid battery according to the present invention. The positive electrode plate 1 is an antimony-free lead alloy or a lead alloy lattice containing a small amount of antimony filled with a positive electrode active material. As an antimony-free lead alloy,
A general lead-calcium alloy containing 0.02-0.12% by weight of calcium, 0-1.0% by weight of tin and a trace amount of aluminum can be used.

【0012】本発明で電解液保持体として使用するシリ
カ微粉体は、アンチモンを吸着する特性があるので正極
格子合金に鉛−アンチモン系合金の使用が可能である。
鉛−アンチモン合金を用いた場合のアンチモン含有量と
してはアンチモン0.7〜2.0重量%、とくに0.7
〜1.5重量% が好ましい。
Since the fine silica powder used as the electrolyte holder in the present invention has a property of adsorbing antimony, it is possible to use a lead-antimony alloy as the positive electrode lattice alloy.
When a lead-antimony alloy is used, the content of antimony is 0.7 to 2.0% by weight, particularly 0.7% by weight.
~ 1.5% by weight is preferred.

【0013】負極板2はアンチモンフリーの鉛合金を用
いた格子にリグニンや硫酸バリウムなどの防縮剤を添加
した通常の負極ペーストを充填して製造する。負極格子
の鉛合金はカルシウム0.05〜0.12重量%、錫0
〜0.5重量%および微量のアルミニウムを含む一般的
な鉛−カルシウム系合金が使用できる。負極格子は鋳造
したものや鉛合金シートを展開したエキスパンド格子あ
るいは打ち抜き格子などいずれも使用可能である。
The negative electrode plate 2 is manufactured by filling a grid using an antimony-free lead alloy with a normal negative electrode paste obtained by adding a shrinkproofing agent such as lignin or barium sulfate. The lead alloy of the negative electrode grid is composed of 0.05 to 0.12% by weight of calcium,
Common lead-calcium based alloys containing .about.0.5% by weight and traces of aluminum can be used. As the negative electrode grid, any of a cast grid, an expanded grid obtained by expanding a lead alloy sheet, and a punched grid can be used.

【0014】3は正極板と負極板との間に挿入したエン
ボス加工により両面に断続的に突起部4を設けた隔離体
である。隔離体には厚みが薄く多孔性でかつ電気抵抗が
低ければいずれも使用できるが、孔径の小さすぎるもの
ではガスが透過しにくいので好ましくない。粉体を電解
液保持体とする密閉式鉛蓄電池では正、負極板間に粉体
を均一に充填しなければならないので、極板間の間隔を
一定に保つ必要からこのような突起部を設けるのであ
る。
Reference numeral 3 denotes an isolator inserted between the positive electrode plate and the negative electrode plate and provided with projections 4 intermittently on both surfaces by embossing. Any separator can be used as long as it is thin and porous and has a low electric resistance. However, an insulator having a too small pore diameter is not preferable because the gas hardly permeates. In a sealed lead-acid battery using a powder as an electrolyte holder, since the powder must be uniformly filled between the positive and negative electrodes, such a projection is provided because the interval between the electrodes needs to be kept constant. It is.

【0015】図2にエンボス加工の概略を示す。ロール
状に巻いたセパレータ用の帯状のシート15を突起部を
有するローラー16の間を連続的に通すことで容易に突
起部が形成できる。図3に示す隔離体は無機粉体と無機
繊維および有機繊維とを少量のバインダーと共に湿式抄
造してシート状にし、半球状の突起部をエンボス加工に
より両面に一定間隔で形成せしめ、所定寸法に切断した
ものである。
FIG. 2 shows an outline of embossing. By continuously passing the belt-like sheet 15 for a separator wound in a roll between the rollers 16 having the protrusions, the protrusions can be easily formed. The separator shown in FIG. 3 is obtained by wet-making inorganic powder, inorganic fiber and organic fiber together with a small amount of binder to form a sheet, and forming hemispherical projections at regular intervals on both surfaces by embossing. It is cut.

【0016】上述した正極板、負極板および突起を設け
たセパレータとを積み重ね、正、負極板それぞれ別々に
溶接して極板群を作製し電槽5に挿入する。従来のガラ
スセパレータを用いたものでは、極板群を強く圧迫しな
ければならないので電槽への挿入が非常に困難である
が、本発明では極板群を圧迫する必要がないので挿入は
容易である。極板群を電槽に挿入したのちシリカ微粉体
8を充填する。
The positive electrode plate, the negative electrode plate, and the separator provided with the projections are stacked, and the positive electrode plate and the negative electrode plate are separately welded to form an electrode plate group. In the case of using a conventional glass separator, it is very difficult to insert the electrode group into the battery case because the electrode group must be strongly pressed, but in the present invention, it is not necessary to press the electrode group, so the insertion is easy. It is. After inserting the electrode plate group into the battery case, the silica fine powder 8 is filled.

【0017】本実施例ではシリカ微粉体として、一次粒
子径が10〜40ミリミクロン、比表面積100〜15
0m2 /gの含水二酸化珪素(SiO2 /nH2 O)微
細粒子が凝集して50〜200ミクロンの二次粒子を形
成している粉体であって、安息角が25〜30度の流動
性のよい粉体を用いた。このように流動性に優れた粉体
なので、電槽内への粉体の充填は重力加速度2〜4G、
振幅1〜2mmの振動をかければ短時間に密に充填でき
る。
In this embodiment, the silica fine powder has a primary particle diameter of 10 to 40 millimicrons and a specific surface area of 100 to 15
0 m 2 / g hydrous silicon dioxide (SiO 2 / nH 2 O) is a powder in which fine particles are agglomerated to form secondary particles of 50 to 200 μm, and have a repose angle of 25 to 30 degrees. Good powder was used. Since the powder is excellent in fluidity as described above, the filling of the powder into the battery container is performed at a gravitational acceleration of 2 to 4 G,
If a vibration having an amplitude of 1 to 2 mm is applied, dense filling can be performed in a short time.

【0018】またこの粉体は、工業的に大量生産されて
いるため非常に安価であり、容易に入手することができ
る。該粉体は極板群の正極ストラップ6および負極スト
ラップ7がちょうど埋まる程度まで充填するのがよい。
This powder is very inexpensive because it is industrially mass-produced and can be easily obtained. The powder is preferably filled so that the positive electrode strap 6 and the negative electrode strap 7 of the electrode group are just filled.

【0019】ついでこの粉体の上部に、連続気泡を有す
る発泡樹脂板9を挿入し、粉体層を固定した。本発明で
用いた粉体は流動性が高いので、もし粉体8を発泡樹脂
板9で固定しないと粉体粒子が容易に移動し、粉体層内
に空洞が生じてしまう。とくに未充電電池に硫酸電解液
を注液する際や初充電中のガッシングで生じやすい。粉
体層に空洞が生じるとその部分には電解液が保持されな
いので、活物質が働かなくなって目標の電池性能が得ら
れない。粉体層の固定は非常に重要である。極板群を収
納し粉体を充填したのち上述した方法で粉体層を固定す
れば、あとは電槽5と電槽フタ12を接着または溶着す
れば未充電電池が完成する。
Next, a foamed resin plate 9 having open cells was inserted above the powder to fix the powder layer. Since the powder used in the present invention has a high fluidity, if the powder 8 is not fixed with the foamed resin plate 9, the powder particles easily move and a cavity is formed in the powder layer. This is particularly likely to occur when a sulfuric acid electrolyte is injected into an uncharged battery or when gassing occurs during initial charging. When a cavity is formed in the powder layer, the electrolytic solution is not held in that portion, so that the active material does not work and the target battery performance cannot be obtained. The fixation of the powder bed is very important. After accommodating the electrode plate group and filling the powder, the powder layer is fixed by the above-described method, and then the battery case 5 and the battery case lid 12 are bonded or welded to complete the uncharged battery.

【0020】13は電槽フタ12と一体になった排気栓
で、14は電池内圧が上昇したときには開き、減圧され
たときは閉じるような排気弁である。排気弁14はキャ
ップ弁、リング弁、板弁など一般的に用いられるいずれ
の弁でもよい。排気弁は未充電電池に硫酸電解液を注液
後装着してもよいし、初充電後に装着してもよい。ただ
し、電池を充電してから装着する場合は充電完了後直ち
に装着しなければならない。
Reference numeral 13 denotes an exhaust valve integrated with the battery case lid 12, and reference numeral 14 denotes an exhaust valve that opens when the internal pressure of the battery increases and closes when the internal pressure of the battery decreases. The exhaust valve 14 may be any commonly used valve such as a cap valve, a ring valve, and a plate valve. The exhaust valve may be installed after the sulfuric acid electrolyte is injected into the uncharged battery, or may be installed after the first charge. However, when installing after charging the battery, it must be installed immediately after charging is completed.

【0021】次に本発明による密閉式鉛蓄電池の容量試
験の結果を説明する。試験に供した電池は12Vの自動
車用密閉式鉛蓄電池で、公称容量は25Ahである。
Next, the results of the capacity test of the sealed lead-acid battery according to the present invention will be described. The battery used for the test was a 12 V automotive sealed lead-acid battery with a nominal capacity of 25 Ah.

【0022】電池No.1は、エンボス加工を施したセ
パレータを用い、シリカ微粉体を充填した本発明の電池
である。このセパレータは無機粉体と無機繊維および有
機繊維とを少量のバインダーと共に湿式抄造してシート
状にし、直径約2mm,高さ約0.6mmの円柱状の凸
部を両面に一定間隔で形成せしめたものである。この凸
部はロール状に巻いたセパレータ用の帯状のシートを凸
部を有するローラーの間を連続的に通して形成した。こ
こでは厚み0.25mmの合成セパレータの両面に直径
約 2mm、高さ0.6mmの突起を隔離板の面積の約
0.7%となるように設けた。
Battery No. Reference numeral 1 denotes a battery of the present invention in which an embossed separator is used and silica fine powder is filled. This separator is made by wet-making inorganic powder, inorganic fiber and organic fiber together with a small amount of binder to form a sheet, and cylindrical protrusions of about 2 mm in diameter and about 0.6 mm in height are formed on both sides at regular intervals. It is a thing. The convex portion was formed by continuously passing a belt-like sheet for a separator wound into a roll between rollers having the convex portion. Here, projections having a diameter of about 2 mm and a height of 0.6 mm were provided on both sides of a synthetic separator having a thickness of 0.25 mm so as to be about 0.7% of the area of the separator.

【0023】電池No.2は、スポットリブ加工を施し
たセパレータを用い、シリカ微粉体を充填した電池であ
る。スポットリブ加工とは、セパレータに樹脂の突起を
つけたものである。この突起はロール状に巻いたセパレ
ータ用の帯状のシートにホットメルトガンを用いて断続
的に点状または線状にホットメルト樹脂を付着させるこ
とによって形成した。セパレータには突起を設けた部分
では、セパレータの空孔がブロックされてイオン電導性
が失われるため、突起部分の占める面積を大きくするの
は電池性能上好ましくない。本実施例では厚み0.25
mmの合成セパレータの片面に直径約 2mm、高さ
1.2mmの突起を隔離板の面積の約0.7%となるよ
うに設けた。
Battery No. Reference numeral 2 denotes a battery filled with silica fine powder using a separator subjected to spot rib processing. The spot rib process is a process in which a resin protrusion is provided on a separator. The projections were formed by intermittently applying a hot melt resin to the strip-shaped sheet for the separator wound in a roll shape using a hot melt gun in a dotted or linear manner. Since the voids of the separator are blocked at the portion where the protrusions are provided on the separator and ion conductivity is lost, it is not preferable in terms of battery performance to increase the area occupied by the protrusions. In this embodiment, the thickness is 0.25.
A protrusion having a diameter of about 2 mm and a height of 1.2 mm was provided on one side of a synthetic separator having a thickness of about 2 mm so as to be about 0.7% of the area of the separator.

【0024】いずれの電池も正極には、厚み1.6mm
のものを鉛−カルシウム−錫−アルミニウム合金を用い
て通常の方法で作製した鋳造格子を用いた。
In each of the batteries, the positive electrode had a thickness of 1.6 mm.
Was used in a conventional method using a lead-calcium-tin-aluminum alloy.

【0025】負極格子には、いずれの電池についても厚
み0.6mmの鉛−カルシウム−錫合金よりなる鉛シー
トより作ったエキスパンド格子を用いた。
As the negative electrode grid, an expanded grid made of a lead sheet made of a lead-calcium-tin alloy having a thickness of 0.6 mm was used for all batteries.

【0026】正負極活物質などは通常のものを用い、電
槽化成を行なった。電槽化成後の電解液比重は1.30
とした。次に容量試験を行なった結果を表2に示す。
As the positive and negative electrode active materials, ordinary ones were used, and a battery case was formed. The specific gravity of the electrolytic solution after formation of the battery case is 1.30.
And Next, the results of the capacity test are shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】25℃、5A放電容量は電池No.2は2
3Ahであったのに対し、電池No.1は26Ahと大
きかった。−15℃、150A放電容量についても電池
No.2は7.4Ahであったのに対し、電池No.1
は7.7Ahと大きかった。
The discharge capacity at 25 ° C. and 5 A was the same as that of Battery No. 2 is 2
3Ah, the battery No. 1 was as large as 26 Ah. -15 ° C, 150A discharge capacity was the same for Battery No. Battery No. 2 was 7.4 Ah while Battery No. 2 was 7.4 Ah. 1
Was as large as 7.7 Ah.

【0029】電池No.2は樹脂の突起を設けたセパレ
ータを用いているため、セパレータの空孔が樹脂により
ブロックされてイオン電導性が失われ、放電反応が起こ
りにくくなったため、容量が少なかったものと考えられ
る。それに対し電池No.1のエンボス加工を施したセ
パレータを用いたものでは突起の部分でもイオン導電性
が失われることはないので容量が大きかったものと思わ
れる。
Battery No. It is probable that the capacity of the separator No. 2 was small because the separators provided with resin protrusions blocked the pores of the separator by the resin, lost ion conductivity and made it difficult for a discharge reaction to occur. On the other hand, battery No. In the case of using the separator having been subjected to the embossing process of No. 1, it is considered that the capacity was large because the ionic conductivity was not lost even at the projections.

【0030】また、エンボス加工は、スポットリブ加工
などに比べ非常に安価にできるので、エンボス加工した
セパレータを用いシリカ微粉体を充填した密閉式鉛蓄電
池は低コストで製作可能であった。
Further, since embossing can be performed at a very low cost as compared with spot rib processing or the like, a sealed lead-acid battery filled with silica fine powder using an embossed separator can be manufactured at low cost.

【0031】[0031]

【発明の効果】上述の実施例からも明らかなように、従
来の密閉式鉛蓄電池に比べ低コストとなるものであり、
その工業的価値は甚だ大なるものである。
As is clear from the above embodiment, the cost is lower than that of a conventional sealed lead-acid battery.
Its industrial value is enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明密閉式鉛蓄電池の要部断面図FIG. 1 is a sectional view of a main part of a sealed lead-acid battery of the present invention.

【図2】エンボス加工法の概略を示した図FIG. 2 is a view schematically showing an embossing method.

【図3】エンボス加工したセパレータの図FIG. 3 is a diagram of an embossed separator.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 エンボス加工したセパレータ 4 突起 5 電槽 8 シリカ微粉体 9 発泡樹脂板 12 電槽フタ DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Embossed separator 4 Projection 5 Battery case 8 Fine silica powder 9 Foamed resin plate 12 Battery case lid

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電池の充電中に発生する酸素ガスを負極で
吸収させる密閉式鉛蓄電池において、エンボス加工によ
り片面あるいは両面に凸部を設けた隔離体を正、負極板
間に介在させてなる極板群を電槽内に収納すると共に
極板間および極板の周囲に充填したシリカ粉体を固定
し、硫酸電解液を該シリカ粉体、隔離体および正負極板
保持させたことを特徴とする密閉式鉛蓄電池。
1. A sealed lead-acid battery in which oxygen gas generated during charging of a battery is absorbed by a negative electrode, wherein a separator provided with a convex portion on one or both surfaces by embossing is interposed between the positive and negative electrode plates. While storing the electrode group in the battery case,
Fixing the silica powder filled around the electrode plates and the electrode plate
And a sulfuric acid electrolytic solution held by the silica powder , the separator and the positive and negative electrode plates.
JP23231791A 1991-08-19 1991-08-19 Sealed lead-acid battery Expired - Fee Related JP3266918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23231791A JP3266918B2 (en) 1991-08-19 1991-08-19 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23231791A JP3266918B2 (en) 1991-08-19 1991-08-19 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH0547411A JPH0547411A (en) 1993-02-26
JP3266918B2 true JP3266918B2 (en) 2002-03-18

Family

ID=16937310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23231791A Expired - Fee Related JP3266918B2 (en) 1991-08-19 1991-08-19 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3266918B2 (en)

Also Published As

Publication number Publication date
JPH0547411A (en) 1993-02-26

Similar Documents

Publication Publication Date Title
EP0443451B1 (en) Sealed lead-acid battery
JP3266918B2 (en) Sealed lead-acid battery
JP3388265B2 (en) Lead-acid battery separator
JP3146438B2 (en) Sealed lead-acid battery
JPH06260208A (en) Sealed lead-acid battery
JP3676387B2 (en) Manufacturing method of sealed lead-acid battery
JP2586249B2 (en) Sealed lead-acid battery
JP3261417B2 (en) Sealed lead-acid battery
JPH0729595A (en) Retainer type sealed lead-acid battery
JP2794588B2 (en) Sealed lead-acid battery
JP3163510B2 (en) Sealed lead-acid battery
JP2573082B2 (en) Sealed lead-acid battery
JPH0693367B2 (en) Sealed lead acid battery
JP2958791B2 (en) Sealed lead-acid battery
JP3099527B2 (en) Manufacturing method of sealed lead-acid battery
JP2855677B2 (en) Sealed lead-acid battery
JPH0451470A (en) Sealed type lead acid battery
JPH05174864A (en) Hermetic type lead-acid battery
JPH0636793A (en) Sealed lead-acid battery
JPH06150961A (en) Sealed lead-acid battery
JPH05343093A (en) Sealed lead acid battery
JPH05151988A (en) Sealed type lead acid battery
JPH03147255A (en) Lead-acid battery
JPH07122289A (en) Sealed lead-acid battery
JPH0652882A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees