JPH06150961A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH06150961A
JPH06150961A JP4316484A JP31648492A JPH06150961A JP H06150961 A JPH06150961 A JP H06150961A JP 4316484 A JP4316484 A JP 4316484A JP 31648492 A JP31648492 A JP 31648492A JP H06150961 A JPH06150961 A JP H06150961A
Authority
JP
Japan
Prior art keywords
powder
electrode plate
electrode plates
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4316484A
Other languages
Japanese (ja)
Inventor
Yukio Tokuhara
幸夫 得原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4316484A priority Critical patent/JPH06150961A/en
Publication of JPH06150961A publication Critical patent/JPH06150961A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the discharge performance and life performance without increasing the battery volume by filling the powder having the preset standard in gaps between positive electrode plates and negative electrode plates and on the periphery of an electrode plate group, and fixing the electrode plate group. CONSTITUTION:A sealed lead-acid battery is provided with (m) positive electrode plates 2 and (n) negative electrode plates 1, where m=n or m=n+1 and the powder 14 having the preset porosity and specific surface area is filled in gaps between the positive electrode plates 2 and the negative electrode plates 1 and on the periphery of an electrode plate group. A sufficient quantity of a sulfuric acid electrolyte required for the charge/discharge of a battery is impregnated in the powder 14 and a group of the electrode plates 1, 2. The powder 14 having high porosity when filled, acid resistance, excellent electrode absorbing force, and high fluidity is preferable, and the granular powder coagulated with fine grains of moisture-containing silicon dioxide having the primary grain size of 10 to 40mum and the specific surface area of 150-200m<2>/g into the secondary grains of 50-200mum is used as an example.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉形鉛蓄電池の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved sealed lead acid battery.

【0002】[0002]

【従来の技術とその課題】従来の一般的な鉛蓄電池はm
枚の正極板とm+1枚の負極板および2m枚のセパレー
タを重ね合わせ、同じ極性の極板どうしを溶接によって
接続することにより単位セルを構成し、単位セルを複数
個接続することにより所定電圧のモジュール電池を構成
している。
2. Description of the Related Art Conventional lead-acid batteries are generally m
One positive electrode plate, m + 1 negative electrode plate, and 2m separators are superposed, and electrode plates of the same polarity are connected by welding to form a unit cell. By connecting a plurality of unit cells, a predetermined voltage is applied. It constitutes a module battery.

【0003】単位セルにおいて負極板枚数が正極板枚数
より1枚多いのは充放電サイクルに伴う正極活物質の軟
化、脱落を防止する上で正極板の表裏両側にセパレータ
が当接されているほうが有利なためである。また自動車
用電池などにおいては良好な高率放電性能が要求される
ため、高率放電容量を制限する負極板の枚数を正極板よ
り1枚多くする構成が適しているためである。
In the unit cell, the number of the negative electrode plates is one more than the number of the positive electrode plates. It is preferable that the separators are in contact with the front and back sides of the positive electrode plate in order to prevent the positive electrode active material from softening and falling off during the charge / discharge cycle. This is because it is advantageous. Also, since a good high-rate discharge performance is required for automobile batteries and the like, a configuration in which the number of negative electrode plates that limit the high-rate discharge capacity is one more than that of the positive electrode plates is suitable.

【0004】しかし近年電気自動車用鉛電池など深放電
サイクルを繰り返す用途の電池においては3時間率放電
容量を制限する正極活物質の量を限られた容積内でいか
に多く確保するかが性能を向上させる上で不可欠な要素
になったきた。
However, in recent years, in batteries for repeated deep discharge cycles such as lead batteries for electric vehicles, the performance is improved by securing a large amount of the positive electrode active material that limits the 3-hour rate discharge capacity within a limited volume. It has become an indispensable element in making it happen.

【0005】このため正極、負極同一枚数構成や正極板
を負極板より1枚多くすることによって単位セル内の正
極活物質量を増加させる方法が考えられるがこのような
電池は極板群の外側に位置し、セパレータが当接されて
いない面を持つ正極板の劣化が激しく、寿命性能が劣る
欠点があった。
For this reason, a method of increasing the amount of the positive electrode active material in the unit cell by constructing the same number of positive electrodes and negative electrodes or increasing the number of positive electrode plates by one more than the negative electrode plates can be considered. However, the positive electrode plate having the surface not contacted with the separator is severely deteriorated and has a drawback that the life performance is deteriorated.

【0006】[0006]

【課題を解決するための手段】本発明は正極板と負極板
との間隙および極板群の周囲に高い多孔度および大きい
比表面積を有する粉体を充填し、電池の充放電に必要、
十分な量の硫酸電解液を実質的に該粉体および極板群に
含浸保持させるとともに、正極板枚数mと負極板枚数n
がm=nまたはm=n+1である構成とすることによ
り、放電性能、寿命性能ともにすぐれた密閉形鉛蓄電池
を得るものである。
The present invention fills a gap between a positive electrode plate and a negative electrode plate and a periphery of an electrode plate with a powder having high porosity and a large specific surface area, and is necessary for charging and discharging a battery.
A sufficient amount of sulfuric acid electrolytic solution is substantially impregnated and held in the powder and the electrode plate group, and the number of positive electrode plates m and the number of negative electrode plates n.
Is a structure in which m = n or m = n + 1, a sealed lead-acid battery having excellent discharge performance and life performance is obtained.

【0007】[0007]

【実施例】以下に本発明を実施例にもとづいて説明す
る。図1は本発明による密閉形鉛蓄電池を電気自動車用
電池に適用した場合の一実施例を示す概略図である。図
において、正極板2はアンチモンフリーの鉛合金または
アンチモンを少量含む鉛合金からなる格子に正極ペース
トを充填した正極板である。アンチモンフリーの鉛合金
としては、カルシウムCa 0.05 〜 0.12 wt%、錫Sn 0.2
0 〜 1.0wt%を含む一般的な鉛カルシウム系が使用でき
る。なお、電池の用途によってはSn含有量を1.5 〜 5.0
wt%にすることや鋳造時のCa含有量の安定化を図るた
め、アルミニウムAlを0.001 〜 0.02 wt%程度添加する
こともできる。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a schematic diagram showing an embodiment in which the sealed lead acid battery according to the present invention is applied to a battery for an electric vehicle. In the figure, the positive electrode plate 2 is a positive electrode plate in which a grid made of an antimony-free lead alloy or a lead alloy containing a small amount of antimony is filled with a positive electrode paste. As an antimony-free lead alloy, calcium Ca 0.05 to 0.12 wt%, tin Sn 0.2
A general lead calcium system containing 0 to 1.0 wt% can be used. Depending on the battery application, the Sn content should be 1.5-5.0.
Aluminum Al may be added in an amount of about 0.001 to 0.02 wt% in order to adjust the wt% and stabilize the Ca content during casting.

【0008】鉛アンチモン系合金のアンチモンSb添加量
としてはSb 0.7〜 2.0wt%とくに 0.7〜 1.5wt%が好ま
しく、アンチモン以外の金属としてひ素Asを0.1 〜 0.3
wt%を添加する。なお深放電後の充電性を改善するため
Snを0.01〜 0.5wt%程度添加したり、鋳造性や耐食性を
改善するためセレンSe、イオウS 、銅Cuなどを0.003〜
0.03 wt%程度添加することも有効である。
The amount of antimony Sb added to the lead antimony-based alloy is preferably Sb 0.7 to 2.0 wt%, particularly 0.7 to 1.5 wt%, and arsenic As is 0.1 to 0.3 as a metal other than antimony.
wt% is added. In order to improve the chargeability after deep discharge
Add 0.01 to 0.5wt% Sn or add 0.003 to 0.003% selenium Se, sulfur S, copper Cu, etc. to improve castability and corrosion resistance.
It is also effective to add about 0.03 wt%.

【0009】正極格子に充填する正極ペーストは、鉛粉
を希硫酸と混練して調製する一般的なペーストも使用可
能であるが、正極板の化成性や電池性能の向上を図るた
めには、鉛粉に鉛丹( Pb3 4 ) を混入するのが好まし
い。
As the positive electrode paste to be filled in the positive electrode grid, a general paste prepared by kneading lead powder with dilute sulfuric acid can be used, but in order to improve the chemical conversion property of the positive electrode plate and the battery performance, It is preferable to mix lead tin (Pb 3 O 4 ) in the lead powder.

【0010】負極板1は、アンチモンフリーの鉛合金を
用いた格子にリグニンや硫酸バリウムなどのエキスパン
ダーを添加した通常の負極ペーストを充填して製造す
る。負極格子の鉛合金はCa 0.05 〜 0.12 wt%、Sn 0〜
0.7 wt%、Al 0〜 0.02 wt%を含む一般的な鉛カルシ
ウム系合金が使用できる。
The negative electrode plate 1 is manufactured by filling an ordinary negative electrode paste prepared by adding an expander such as lignin or barium sulfate to a lattice made of an antimony-free lead alloy. The lead alloy of the negative electrode grid is Ca 0.05 to 0.12 wt%, Sn 0 to
A general lead calcium based alloy containing 0.7 wt% and Al 0 to 0.02 wt% can be used.

【0011】上述した正極および負極格子は鋳造したも
のや鉛合金シートを展開したエキスパンド格子あるいは
打ち抜き格子などいずれも使用可能である。なお、ペー
ストを充填した極板は30〜50℃の部屋で熟成してから使
用する。正極板の熟成は電池性能上とくに重要である。
As the positive and negative electrode grids described above, any of cast ones, expanded grids obtained by expanding a lead alloy sheet, punched grids and the like can be used. The electrode plate filled with the paste should be aged in a room at 30 to 50 ° C before use. Aging of the positive electrode plate is particularly important for battery performance.

【0012】3は正極板と負極板との間に挿入した合成
セパレータである。厚みが薄く多孔性でかつ電気抵抗の
低いセパレータであればいずれも使用できるが、孔径の
小さすぎるセパレータは酸素ガスが透過しにくく、負極
による酸素吸収反応を妨げるので好ましくはない。
Reference numeral 3 is a synthetic separator inserted between the positive electrode plate and the negative electrode plate. Any separator having a small thickness and porosity and a low electric resistance can be used, but a separator having an excessively small pore size is not preferable because oxygen gas hardly permeates and the oxygen absorption reaction by the negative electrode is hindered.

【0013】また、正、負極板間に粉体を充填するため
には、両極板間に隙間を設ける必要があり、その目的の
ためには、波付きセパレータやエンボスセパレータなど
表面に凹凸を設けたセパレータを使用するのが都合が良
い。なお後述する粉体を電解液保持体として使用すれ
ば、極間の粉体層がセパレータとしての機能も有するの
でこのような場合にはセパレータの使用を省略すること
ができる。
Further, in order to fill the powder between the positive and negative electrode plates, it is necessary to provide a gap between the both electrode plates. For that purpose, a corrugated separator, an embossed separator or the like is provided with irregularities on the surface. It is convenient to use a separate separator. If the powder described below is used as the electrolytic solution holder, the powder layer between the electrodes also has a function as a separator, and in such a case, the use of the separator can be omitted.

【0014】上述した正極板、負極板およびセパレータ
とを積み重ね、正、負極板それぞれ別々に溶接して極板
群を作成し電槽4に挿入する。従来のガラスセパレータ
を用いたものでは、極板群を強く圧迫しなければならな
いので電槽への挿入が非常に困難であったが、本発明で
は極板群を圧迫する必要がないので挿入は容易である。
極板群を電槽に挿入したのち、セル間の接続を行う。図
において5はストラップ、6はセル間接続部、7は極柱
である。
The positive electrode plate, the negative electrode plate, and the separator described above are stacked, and the positive and negative electrode plates are separately welded to form an electrode plate group, which is inserted into the battery case 4. In the one using the conventional glass separator, it was very difficult to insert into the battery case because the electrode plate group had to be strongly pressed, but in the present invention it is not necessary to press the electrode plate group so that the insertion is not possible. It's easy.
After inserting the electrode group into the battery case, the cells are connected. In the figure, 5 is a strap, 6 is an inter-cell connecting portion, and 7 is a pole.

【0015】次に電槽蓋8を電槽4に溶着する。ここで
電槽蓋8には排気室9と粉体の充填口10が設けてあ
り、排気室9の上部には排気弁12が、その下部には通
気性のある多孔板13がそれぞれ配置してある。排気弁
12は電池内圧が上昇した時は開き、減圧した時は閉じ
る機能を有し、キャップ弁、リング弁、板弁など一般的
に用いられるいずれの弁も使用できる。
Next, the battery case lid 8 is welded to the battery case 4. Here, the battery case lid 8 is provided with an exhaust chamber 9 and a powder filling port 10, an exhaust valve 12 is disposed above the exhaust chamber 9, and an air-permeable porous plate 13 is disposed below the exhaust valve 12. There is. The exhaust valve 12 has a function of opening when the internal pressure of the battery rises and closing when reducing the internal pressure of the battery, and any generally used valve such as a cap valve, a ring valve and a plate valve can be used.

【0016】また、多孔板13は、電池に注液する際や
初充電中あるいは使用時の充電で発生するガスを外部に
逃がすためのもので、気体や液体は通過し、粉体は通過
しない大きさの孔を有する耐酸性のある連続気泡の多孔
体、例えば発泡フェノールやアルミナの焼結体からでき
ている。
The perforated plate 13 is for releasing the gas generated during the charging of the battery, the initial charging or the charging during use to the outside, and allows the gas and the liquid to pass through, but does not pass the powder. It is made of an acid-resistant open-cell porous body having pores of a size, for example, a sintered body of foamed phenol or alumina.

【0017】なお多孔板13の下端を極板群の上端に近
接させて配置すると、初充電時に先だって電解液を注入
する際、注液時間を短縮することができる。すなわち、
多孔板を極板群の上端に近接させると、注入した電解液
がまず極板に吸収されて周囲に広がるため、注液時間を
大幅に短縮することができる。
If the lower end of the perforated plate 13 is arranged close to the upper end of the electrode plate group, the liquid injection time can be shortened when the electrolytic solution is injected prior to the initial charging. That is,
When the porous plate is brought close to the upper end of the electrode plate group, the injected electrolytic solution is first absorbed by the electrode plate and spreads around, so that the liquid injection time can be greatly shortened.

【0018】上記構造の鉛蓄電池を組み立てたあとは、
粉体14の一定量を充填口10から供給し、電池に振動
を加えながら正、負極板間や極板群の周囲に充填する。
粉体充填後、密封栓11を用いて密封を行う。
After assembling the lead-acid battery having the above structure,
A certain amount of the powder 14 is supplied from the filling port 10 and is filled between the positive and negative electrode plates and around the electrode plate group while applying vibration to the battery.
After filling the powder, sealing is performed using the sealing plug 11.

【0019】なお電解液保持体としての粉体は、充填し
た状態での多孔度が高く、耐酸性があって電解液吸収力
の優れた流動性の高いものがよく、本実施例では、一次
粒子径が10〜40ミリミクロン、比表面積 150〜 200 m2
/gの含水二酸化珪素(SiO2 ・nH2 O)の微粒子が凝集して
50〜 200ミクロンの二次粒子を形成している顆粒状の粉
体を用いた。この粉体は流動性に優れており、電槽内へ
の粉体の充填は重力加速度2〜4G 、振幅1〜2mm程度
の振動をかければ短時間で密に充填でき、電槽蓋の裏側
の凹凸のある場所にも隙間なく充填できている。また、
充填後の粉体はガラスセパレータに匹敵する90%近い
多孔度を有している。
It is to be noted that the powder as the electrolytic solution holder is preferably one having a high porosity in a filled state, an acid resistance and an excellent electrolytic solution absorbing ability and a high fluidity. particle size of 10 to 40 millimicrons and a specific surface area 150 to 200 m 2
/ g of water-containing silicon dioxide (SiO 2 · nH 2 O) particles aggregate
A granular powder forming secondary particles of 50-200 microns was used. This powder has excellent fluidity, and it can be packed tightly in a short time if the powder is filled in the battery case with vibration of gravity acceleration of 2 to 4 G and amplitude of 1 to 2 mm. It is possible to fill even uneven places without gaps. Also,
The powder after filling has a porosity close to 90%, comparable to a glass separator.

【0020】このようにして組み立てた電池を初充電す
る場合は、まず排気弁12を取り外して所定量の硫酸電
解液を注入する。注入した電解液は多孔板13を通過
し、その下の粉体を通って正、負極板、セパレータ、お
よびその周囲の粉体に吸収される。なお上述したように
多孔板13の下端を極板群の上端に近接して設けておく
と、より一層短時間で注液が完了する。初充電は排気弁
12を装着した状態で行う。充電中はガッシングによっ
て電解液面が上昇するが、排気室9内にトラップされる
ため、従来のように溢液防止治具を装着しなくても外部
に電解液が漏れ出すことはない。
When initially charging the battery thus assembled, the exhaust valve 12 is first removed and a predetermined amount of sulfuric acid electrolyte is injected. The injected electrolytic solution passes through the perforated plate 13, passes through the powder below it, and is absorbed by the positive and negative electrode plates, the separator, and the powder around it. When the lower end of the porous plate 13 is provided close to the upper end of the electrode plate group as described above, the liquid injection is completed in a shorter time. The initial charging is performed with the exhaust valve 12 attached. Although the electrolyte surface rises due to gassing during charging, the electrolyte surface is trapped in the exhaust chamber 9, so that the electrolyte solution does not leak to the outside even if an overflow prevention jig is not mounted as in the conventional case.

【0021】次に本発明による密閉形鉛蓄電池の初期性
能試験および寿命試験を行った結果について説明する。
試験を行った電池は12Vの電気自動車用密閉形鉛蓄電
池で3時間率公称容量は50Ahである。表1に試験結
果を示す。なお寿命試験については放電が16.7Aで
144分(DOD80%)、充電は16.7Aで115
分行った後5Aで144分の二段充電を行った。また寿
命判定基準は容量が40Ahに到達した時点とした。
Next, the results of the initial performance test and life test of the sealed lead acid battery according to the present invention will be described.
The battery tested was a 12V sealed lead acid battery for electric vehicles and had a 3-hour nominal capacity of 50 Ah. Table 1 shows the test results. Regarding the life test, discharge was 16.7A for 144 minutes (DOD 80%), charge was 16.7A for 115 minutes.
After 2 minutes, two-stage charging was performed at 5A for 144 minutes. The life criterion was the time when the capacity reached 40 Ah.

【0022】[0022]

【表1】 [Table 1]

【0023】表1においてA、Bは電解液保持体に粉体
を用いたものでBは本発明による構成の電池、CはAと
同じ極板構成のリテーナ式の従来品、Dは本発明品Bと
同じ極板構成のリテーナ式の電池である。なお試験に用
いた電池の正負極板間隔および極板群の長さを同一にす
るため、BおよびDの電池については極板群の両端に位
置する正極板の厚さを中央のそれの約8割にした。
In Table 1, A and B are those in which powder is used for the electrolytic solution holder, B is a battery having the structure according to the present invention, C is a retainer type conventional product having the same electrode plate structure as A, and D is the present invention. It is a retainer type battery having the same electrode plate configuration as the product B. In order to make the distance between the positive and negative electrode plates and the length of the electrode plate group of the batteries used in the test the same, for the batteries B and D, the thickness of the positive electrode plates located at both ends of the electrode plate group was about 80%.

【0024】本実験例から3時間率放電容量はD>B>
C>Aの順であった。同一の極板構成でリテーナ式電池
が粉体を電解液保持体に用いた電池よりも放電容量が多
かったのはガラスセパレータの多孔度が粉体のそれより
も大きいために、極板間の保持液量が多かったためと思
われる。
From this experimental example, the 3-hour rate discharge capacity is D>B>
The order was C> A. The retainer type battery with the same electrode plate structure had a larger discharge capacity than the battery using the powder as the electrolyte holder because the porosity of the glass separator was larger than that of the powder, It seems that the amount of retentate was large.

【0025】寿命性能はB>A>D>Cの順であった。
寿命試験後に電池を解体して観察すると、ガラスセパレ
ータを用いた従来のリテーナ式電池C,Dは正極格子の
腐食や活物質の劣化が著しく、特にDの電池の極板群の
両端に位置する正極板の活物質の泥状化が進んでいた。
これに対して本発明品Bは充填した粉体によって極板が
三次元的に固定されており、正極格子の腐食や活物質の
劣化があまり進行しておらず、極板群の両端に位置する
正極板と中央のそれとでは格子の腐食や活物質の劣化の
程度に大きな差は見られなかった。
The life performance was in the order of B>A>D> C.
When disassembling and observing the battery after the life test, the conventional retainer batteries C and D using the glass separator have significant corrosion of the positive electrode grid and deterioration of the active material, and are particularly located at both ends of the electrode plate group of the battery D. The active material of the positive electrode plate was becoming muddy.
On the other hand, in the product B of the present invention, the electrode plates were three-dimensionally fixed by the filled powder, and the corrosion of the positive electrode grid and the deterioration of the active material did not proceed so much, and the electrode plates were positioned at both ends. No significant difference was observed between the positive electrode plate and the central positive electrode plate in the degree of lattice corrosion and deterioration of the active material.

【0026】[0026]

【発明の効果】以上詳述したように本発明の密閉形鉛蓄
電池は正極板と負極板との間隙および極板群の周囲に粉
体を充填し極板群を固定することにより、正極板が極板
群の外側に位置する構成においてもその正極板の劣化を
防ぐことができる。つまり電池容積を増加させずに放電
性能、および寿命性能を向上させることが可能でありそ
の工業的価値は非常に大きい。
As described above in detail, in the sealed lead-acid battery of the present invention, the positive electrode plate is fixed by filling the gap between the positive electrode plate and the negative electrode plate and the periphery of the electrode plate group with powder. Even in a configuration in which is located outside the electrode plate group, deterioration of the positive electrode plate can be prevented. That is, it is possible to improve discharge performance and life performance without increasing the battery volume, and its industrial value is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明密閉形鉛蓄電池の要部断面模式図FIG. 1 is a schematic cross-sectional view of a main part of a sealed lead acid battery of the present invention.

【符号の説明】[Explanation of symbols]

1 負極板 2 正極板 3 セパレータ 4 電槽 8 電槽ふた 9 排気室 10 粉体の充填口 11 密封栓 12 弁 13 多孔板 14 粉体 1 Negative Electrode Plate 2 Positive Electrode Plate 3 Separator 4 Battery Case 8 Battery Case Lid 9 Exhaust Chamber 10 Powder Filling Port 11 Sealing Plug 12 Valve 13 Perforated Plate 14 Powder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極板枚数mと負極板枚数nがm=nま
たはm=n+1であり、かつ正極板と負極板との間隙お
よび極板群の周囲に高い多孔度および大きい比表面積を
有する粉体を充填し、電池の充放電に必要、十分な量の
硫酸電解液を実質的に該粉体および極板群に含浸保持さ
せたことを特徴とする密閉形鉛蓄電池。
1. The number m of positive electrode plates and the number n of negative electrode plates are m = n or m = n + 1, and have a high porosity and a large specific surface area in the gap between the positive electrode plate and the negative electrode plate and around the electrode plate group. A sealed lead-acid battery, which is characterized in that it is filled with a powder, and a sufficient amount of sulfuric acid electrolyte necessary for charging and discharging the battery is impregnated and held in the powder and the electrode plate group.
JP4316484A 1992-10-31 1992-10-31 Sealed lead-acid battery Pending JPH06150961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4316484A JPH06150961A (en) 1992-10-31 1992-10-31 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4316484A JPH06150961A (en) 1992-10-31 1992-10-31 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH06150961A true JPH06150961A (en) 1994-05-31

Family

ID=18077608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4316484A Pending JPH06150961A (en) 1992-10-31 1992-10-31 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH06150961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013058058A1 (en) * 2011-10-18 2015-04-02 新神戸電機株式会社 Lead acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013058058A1 (en) * 2011-10-18 2015-04-02 新神戸電機株式会社 Lead acid battery

Similar Documents

Publication Publication Date Title
KR101951453B1 (en) Battery, battery plate assembly, and method of assembly
US5128218A (en) Sealed lead-acid battery
US6492059B1 (en) Separator for sealed lead-acid battery
US11824204B2 (en) Battery and battery plate assembly with absorbent separator
JPH06295718A (en) Lead-acid battery separator
JPH06150961A (en) Sealed lead-acid battery
JP2586249B2 (en) Sealed lead-acid battery
JPH06260208A (en) Sealed lead-acid battery
JP3163510B2 (en) Sealed lead-acid battery
JP3146438B2 (en) Sealed lead-acid battery
JPH0636793A (en) Sealed lead-acid battery
CN211320252U (en) Lead-acid battery
JPH0693367B2 (en) Sealed lead acid battery
JPH0729595A (en) Retainer type sealed lead-acid battery
JPH0652882A (en) Sealed lead-acid battery
JP2794588B2 (en) Sealed lead-acid battery
JPH05343093A (en) Sealed lead acid battery
JPH05290875A (en) Sealed lead-acid battery
JP2023154163A (en) lead acid battery
JP2024035553A (en) Lead-acid battery
JP2024035653A (en) Lead-acid battery
JP2006066252A (en) Lead-acid storage battery
JPH0636792A (en) Sealed lead-acid battery
JP3266918B2 (en) Sealed lead-acid battery
JP2002343412A (en) Seal type lead-acid battery