JPS61271756A - Manufacture of electrolyte for colloid storage battery - Google Patents

Manufacture of electrolyte for colloid storage battery

Info

Publication number
JPS61271756A
JPS61271756A JP60113201A JP11320185A JPS61271756A JP S61271756 A JPS61271756 A JP S61271756A JP 60113201 A JP60113201 A JP 60113201A JP 11320185 A JP11320185 A JP 11320185A JP S61271756 A JPS61271756 A JP S61271756A
Authority
JP
Japan
Prior art keywords
aqueous solution
electrolyte
gel
storage battery
silicic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60113201A
Other languages
Japanese (ja)
Inventor
Yoshiaki Onodera
小野寺 善章
Koichi Ando
安藤 功一
Masanori Aoki
雅典 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S P BATTERY HANBAI KK
Original Assignee
S P BATTERY HANBAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S P BATTERY HANBAI KK filed Critical S P BATTERY HANBAI KK
Priority to JP60113201A priority Critical patent/JPS61271756A/en
Publication of JPS61271756A publication Critical patent/JPS61271756A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • H01M10/10Immobilising of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a storage battery with strikingly excellent performance by dealkali-treating the alkaline aqueous solution of a silicon oxide and adding dilute sulfuric acid to make a gel. CONSTITUTION:1-9wt% alkaline aqueous solution of a silicon oxide is dealkali- treated, and dilute sulfuric acid is added to a silicic acid monomer aqueous solution thus obtained to make a gel. It is necessary that SiO2 density in the aqueous solution of a starting material is over 1wt% as a lower limit density of the starting material since the gel strength which is formed is deficient if the silicic acid density in the silicic acid monomer aqueous solution obtained is too low. And it is preferable that the SiO2 density in the aqueous solution of a starting material is 9wt% as an upper limit of density of the starting material because the silicic acid monomer aqueous solution is quickly solidified during the dealkali-treatment or after the treatment if the SiO2 density is too high. According to this method, by-production of unfavorite substance is lower even if the gel is formed, and it is possible to extremely increase the performance of the storage battery in comparison with the conventional method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコロイド蓄電池用電解質に関するものであり、
更に詳しくは流動性が小さく取扱いの容易なコロイド蓄
電池用電解質に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrolyte for colloidal storage batteries,
More specifically, the present invention relates to an electrolyte for colloidal storage batteries that has low fluidity and is easy to handle.

〔従来の技術〕[Conventional technology]

従来、蓄電池としては一般に鉛蓄電池が容量および高率
放電特性等の性能が安定していることや、低価格である
ことなどのために広く使用されている。
Conventionally, lead-acid batteries have been widely used as storage batteries because of their stable performance such as capacity and high-rate discharge characteristics, and their low cost.

しかしながら鉛蓄電池は、その内部に流動性の大きい希
硫酸を電解液として多量に保持していなければならない
ので、反応性の高い希硫酸を収容している蓄電池自体の
取扱いには細心の注意を払わなければならない。またそ
の使用に当っては放電と充電が繰返し行われるが、充電
の際に過充電の状態になると、そのときに電池内を流れ
る電流は水を電気分解して酸素と水素を発生する好まし
くない現象が起ゆ、電解液が減少するので、常に電解液
量の確認および水の補給に注意しなければならない。
However, lead-acid batteries must contain a large amount of highly fluid dilute sulfuric acid as an electrolyte, so care must be taken when handling the battery itself, which contains highly reactive dilute sulfuric acid. There must be. In addition, during use, discharging and charging are repeated, but if an overcharge occurs during charging, the current flowing through the battery at that time electrolyzes water and generates oxygen and hydrogen, which is undesirable. This phenomenon occurs and the electrolyte decreases, so you must always be careful to check the amount of electrolyte and replenish water.

このような鉛蓄電池の流動性電解液に起因する欠点を排
除するために、いわゆるコロイド蓄電池が開発されてい
る。このコロイド蓄電池は、鉛蓄電池の希硫酸を水ガラ
スまたは硫酸ゾルと混合してゲル化させるか、または乾
燥状態の微細なシリカ粉末を希硫酸中に分散させてゲル
化させることにより、電解液の流動性を無くしたもので
ある。
In order to eliminate the drawbacks caused by the fluid electrolyte of lead-acid batteries, so-called colloidal batteries have been developed. This colloidal storage battery is made by mixing the dilute sulfuric acid of lead-acid batteries with water glass or sulfuric acid sol to form a gel, or by dispersing dry fine silica powder in dilute sulfuric acid and gelling it. It has no liquidity.

このようなゲル化した電解液を用いたコロイド蓄電池に
おいては、大部分の電解質が電池内に固定された状態に
なっている。また生成したゲルの中には無数の亀裂が存
在していて、この亀裂は■極とO極の間のガス通路を形
成している。従って例えば充電末期において■極で発生
する酸素ガスはゲルの中の亀裂を通ってe極に達し、そ
こで次の反応式 %式% に従ってe極を放電させ、水を生成する。従って電解質
中の水の減少が抑制される。
In a colloidal storage battery using such a gelled electrolyte, most of the electrolyte is fixed within the battery. In addition, there are numerous cracks in the generated gel, and these cracks form gas passages between the ■ electrode and the O electrode. Therefore, for example, at the end of charging, oxygen gas generated at the electrode (1) passes through the cracks in the gel and reaches the e-electrode, where the e-electrode is discharged according to the following reaction formula, and water is produced. Therefore, the decrease in water in the electrolyte is suppressed.

このように、流動性のある電解液を使用した鉛蓄電池に
くらべて、コロイド蓄電池は取扱いが容易で、水の減少
量も少ないという利点を有している。しかしながらコロ
イド蓄電池にも次のような欠点がある: (1)ゲル状の電解質は時間の経過と共に収縮すること
によって安定化しようとし、内部に保持していた希硫酸
を分離する、いわゆる離漿(シネレシス)を示す。
As described above, colloidal storage batteries have the advantage that they are easier to handle and reduce the amount of water lost compared to lead-acid batteries that use a fluid electrolyte. However, colloidal storage batteries also have the following drawbacks: (1) The gel-like electrolyte tends to stabilize by shrinking over time, and the so-called syneresis occurs, which separates the dilute sulfuric acid held inside. syneresis).

(乃 流動性のある電解液を使用した鉛蓄電池と比較し
て、極板の活物質量が同じであっても充放電可能な電気
容量が非常に小さい。
(No) Compared to a lead-acid battery that uses a fluid electrolyte, the chargeable and dischargeable electric capacity is very small even if the amount of active material in the electrode plate is the same.

(3)同一の活物質量および極板面積を有する従来の鉛
蓄電池と比較して、コロイド蓄電池は高率放電特性の低
下が大きい。
(3) Compared to conventional lead-acid batteries having the same amount of active material and plate area, colloidal batteries have a large drop in high-rate discharge characteristics.

(4)激しい振動や衝撃によってゲルの破壊が起り、電
解質が流動化する。
(4) Severe vibrations and shocks cause the gel to break down and the electrolyte to become fluid.

〔発明が解決しようとする問題点」 本発明は、従来のコロイド電池の有している上記のよう
な欠点を排除し、取扱いが容易かつ安全であり、水分の
減少量が少なく、電解質の離漿および流動化の発生が少
なく、電気容量が大きく、かつ自動車エンジンの始動に
も使用できるような高率放電特性を有する新規なコロイ
ド蓄電池用電解質を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention eliminates the above-mentioned drawbacks of conventional colloidal batteries, and is easy and safe to handle, reduces water loss, and eliminates electrolyte separation. It is an object of the present invention to provide a novel electrolyte for colloidal storage batteries which has low generation of plasma and fluidization, high electric capacity, and high rate discharge characteristics that can be used for starting automobile engines.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、上記の問題点は硅酸酸化物の1〜9重
量%アルカリ性水溶液を脱アルカリ処理し、こうして得
た硅酸モノマー水溶液に希硫酸、および所望により、向
上剤および結合剤を添加してコ四イド化することを特徴
とするコロイド蓄電池用電解質の製造方法によって解決
される。
According to the present invention, the above problem can be solved by dealkalizing a 1 to 9% by weight alkaline aqueous solution of silicic acid oxide, and adding dilute sulfuric acid and, if desired, an improver and a binder to the thus obtained aqueous silicic acid monomer solution. The problem is solved by a method for producing an electrolyte for a colloidal storage battery, which is characterized in that the electrolyte is added to form a cotetraid.

コロイド蓄電池は基本的にプラスおよびマイナスの電極
板、これらの電極板の接触を防止するための七パレータ
−1およびイオン伝導性を有する流動性のない電解質と
からなる。
A colloidal storage battery basically consists of positive and negative electrode plates, a seven-palate plate to prevent contact between these electrode plates, and a non-flowable electrolyte with ionic conductivity.

ゲル化は、下記の方法tζよって行なわれている:(イ
)水ガラス(Na20XSi02)溶液を希硫酸と混合
する; (ロ)硅素酸化物コミイドゾルを希硫酸と混合する;ま
たは (ハ)コロイド粒子レベルの径を有する無水硅酸を希硫
酸中に分散させる。
Gelation is carried out by the following method tζ: (a) mixing a water glass (Na20 Disperse silicic anhydride having a diameter of about 100 ml in dilute sulfuric acid.

これらの方法によって調製されたゲルを電解質として使
用した場合、前記した様な欠点が生じるわけであるが、
その理由は下記の様に考えられる。
When gels prepared by these methods are used as electrolytes, the disadvantages mentioned above arise.
The reason may be as follows.

従来の方法(イ)により、水ガラスを直接希硫酸と混合
させた場合は多量にNaイオンが存在するため、必然的
に硫酸ナトリウムを多量に副生じ、蓄電池性能および寿
命に悪い影響を与える。また、硅素酸化物コロイドゾル
を用いる方法(ロ)では出発時のコロイド粒子径が粗大
にすぎ、また安定なゾルとするための添加剤の影響によ
り蓄電池の性能および寿命に悪影響を与える。最後に、
コロイド粒子レベルの無水硫酸粉末を希硫酸中に分散さ
せる方法(ハ)によれば、副生物質の生成は無いがやは
り出発時のコロイド粒子径が粗大にすぎ蓄電池の性能を
低下させる。
When water glass is directly mixed with dilute sulfuric acid using the conventional method (a), since a large amount of Na ions are present, a large amount of sodium sulfate is inevitably produced as a by-product, which adversely affects the performance and life of the storage battery. In addition, in the method (b) using a silicon oxide colloidal sol, the colloidal particle size at the start is too coarse, and the additives used to make the sol stable have an adverse effect on the performance and life of the storage battery. lastly,
According to method (c), in which anhydrous sulfuric acid powder at the level of colloidal particles is dispersed in dilute sulfuric acid, no by-products are produced, but the colloidal particle size at the start is too coarse, which deteriorates the performance of the storage battery.

一方、本発明者による研究の結果、硫酸モノマーの溶液
を調製し、これを希硫酸と混合すること?でよって形成
されたゲルがコロイド蓄電池の電解液としてすぐれた特
性を有することが判った。
On the other hand, as a result of research by the present inventor, it was found that a solution of sulfuric acid monomer was prepared and mixed with dilute sulfuric acid. It has been found that the gel thus formed has excellent properties as an electrolyte for colloidal storage batteries.

すなわち、本発明によれば、出発原料として硅葉酸化物
の安定なアルカリ水溶液、例えば水ガラス、硅酸ナトリ
ウム、硅酸カリウム、または無水硅酸粉末をアルカリに
よって水溶性としたもの等を使用するが、これをそのま
ま希硫酸と混合するのではなく、原料水溶液中のアルカ
リ金属イオンをイオン交換、透析、電気透析などの手段
で除去(脱アルカリ処理)して珪酸上ツマ−のみの水溶
液とし、これをコロイド化して電解質を製造するもので
ある。
That is, according to the present invention, a stable alkaline aqueous solution of silica folate, such as water glass, sodium silicate, potassium silicate, or silicic anhydride powder made water-soluble with an alkali, is used as a starting material. Instead of directly mixing this with dilute sulfuric acid, the alkali metal ions in the raw material aqueous solution are removed by means such as ion exchange, dialysis, and electrodialysis (dealalkalization treatment) to create an aqueous solution containing only silicic acid. The electrolyte is produced by colloidizing the

ここで出発原料の硅素酸化物のアルカリ性水溶液中には
単量体の形の硅酸の外に二量体、三量体などの多量体の
形の硅酸が存在しており、これらはアルカリ金属イオン
によって安定化されているが、この溶液を脱アルカリ処
理すると硅酸はすべて不安定な単量体の形で水溶液を形
成する。本発明においては、この単量体硫酸の水溶液を
硅酸モノマー水溶液と呼ぶ。
In the alkaline aqueous solution of silicon oxide, which is the starting material, in addition to monomeric silicic acid, multimeric forms such as dimers and trimers are present, and these are alkaline. Although stabilized by metal ions, when this solution is dealkalized, all silicic acid forms an aqueous solution in the form of unstable monomers. In the present invention, this aqueous solution of monomeric sulfuric acid is referred to as a silicic acid monomer aqueous solution.

この方法によれば、ゲルを形成させても好ましからざる
物質の副生は少く、蓄電池の性能も従来の方法によるコ
ロイド蓄電池に比較して大巾に増加させることが出来る
According to this method, even if a gel is formed, there are few undesirable by-products, and the performance of the storage battery can be greatly increased compared to colloidal storage batteries made by conventional methods.

出発原料の下限濃度としては、得られる硅酸モノマー水
溶液中の硅酸濃度が低すぎれば形成されるゲル強度が不
足するので、出発原料水溶液中のSiO2濃度が1重量
%以上であることが必要である。また、出発原料濃度の
上限としては、SiO2濃度が高すぎれば脱アルカリも
環中あるいは処現後速やかに固化してしまうため、出発
原料水溶液中のSiO□濃度が9′IL量%であること
が望ましい。
As for the lower limit concentration of the starting material, if the silicic acid concentration in the resulting silicic acid monomer aqueous solution is too low, the strength of the gel formed will be insufficient, so the SiO2 concentration in the starting material aqueous solution must be 1% by weight or more. It is. In addition, the upper limit of the starting material concentration is that if the SiO2 concentration is too high, the dealkalization will solidify in the ring or quickly after treatment, so the SiO□ concentration in the starting material aqueous solution should be 9'IL amount %. is desirable.

つまり液中にSin、濃度として1〜996含有する硅
酸のアルカリ性水溶液を脱アルカリ処理して硅酸モノマ
ー水溶液とし、これを希硫酸と混合してゲルを形成させ
ることに特徴を有するものである。
In other words, it is characterized by dealkalizing an alkaline aqueous solution of silicic acid containing 1 to 996 Sin in concentration to form an aqueous silicic acid monomer solution, which is then mixed with dilute sulfuric acid to form a gel. .

また、本発明による電解質中に向上剤としてアルミニウ
ム、マグネシウム、バリウム、ジルコニウム、ゲルマニ
ウム、ニオブ、バナジウム、チタニウム、示つ素、リン
の単独あるいは2M1以上を組み合わせて金属イオンの
形あるいはこれら金属の酸化物、硫化物の微粉末の形で
電解質に対して0.01%〜0.596添加するとゲル
の収縮が起りにく(なり、離疑を防止し、また水分の減
少社を少くできることが判明した。そしてこれらの金属
は自動車用エンジン始動に必要な程度の高率放電特性に
も明らかでは無いが、良い影魯を与える。
Further, in the electrolyte according to the present invention, aluminum, magnesium, barium, zirconium, germanium, niobium, vanadium, titanium, aluminum, and phosphorus may be used alone or in combination with 2M1 or more in the form of metal ions or oxides of these metals. It has been found that adding 0.01% to 0.596% of sulfide to the electrolyte in the form of fine powder prevents gel shrinkage, prevents separation, and reduces water loss. These metals also provide a good influence on the high rate discharge characteristics necessary for starting automobile engines, although this is not obvious.

この際電解質中に前記金属の酸化物・硫化物などの微粉
末を混入するに当って分散させやすくするためにラウリ
ル硫酸ナトリウム(C,□H250503Na)等の界
面活性剤を電解質に対して重量で0.00196〜0.
5%程度添加しても良い。ただし金属イオンの形で添加
する場合は界面活性剤の必要はなく、まな酸化物・硫化
物の粉末においても分散性のすぐれた物もあるので界面
活性剤の添加は必須の条件では無い。
At this time, when mixing fine powders such as oxides and sulfides of the metals into the electrolyte, a surfactant such as sodium lauryl sulfate (C, □H250503Na) is added to the electrolyte in order to facilitate dispersion. 0.00196-0.
It may be added in an amount of about 5%. However, if it is added in the form of metal ions, there is no need for a surfactant, and some oxide/sulfide powders have excellent dispersibility, so the addition of a surfactant is not an essential condition.

またこの電解質に結合剤として硅酸粉末、カオリン(H
,At2S 120B・H,O)、セオライト(N畿2
0At203(SiOρ工・(H2O)の、硅酸アルミ
ニウム(At (Ats 1Os))〇−硅酸マグネシ
ウム(Mg、SiO,)、m−硫酸マグネシウム(Mg
Si02)および珪藻土の粉末のうちの1種あるいは2
種以上を組み合わせて電解質に対し重量で0.596〜
5%添加すればゲル強度が上がり、ゲルの破壊が生じに
くくなる。
In addition, silicic acid powder, kaolin (H
, At2S 120B・H,O), Theolite (Nki2
0At203 (SiOρ work・(H2O), aluminum silicate (At (Ats 1Os)) 〇-magnesium silicate (Mg, SiO,), m-magnesium sulfate (Mg
One or two of Si02) and diatomaceous earth powder
0.596 to 0.596 by weight for the electrolyte in combination of species or more
Adding 5% increases the gel strength and makes it difficult for the gel to break.

以下の実施例によって本発明を更に具体的に説明する。The present invention will be explained in more detail with reference to the following examples.

実施例1 四硅酸カリウムー水化物(K2Si040g・H2O)
 220gを蒸留水に溶解し、全量を3000gとし、
これをH型強酸性イオン交換樹脂 アンパーツイトIR
−1208Stで処理し硅酸モノマー溶液とした。イオ
ン交換操作は吸引濾過してできるだけ水分を除去したイ
オン交換樹脂を用い、ビーカー中で四硅酸カリウム水溶
液と混ぜ合わせるバッチ方式によって行なった。
Example 1 Potassium tetrasilicate hydrate (K2Si040g・H2O)
Dissolve 220g in distilled water to make a total amount of 3000g,
This is H-type strong acidic ion exchange resin Ampartite IR.
-1208St to prepare a silicic acid monomer solution. The ion exchange operation was carried out using an ion exchange resin that had been suction filtered to remove as much water as possible, and was carried out in a batch method by mixing it with an aqueous potassium tetrasilicate solution in a beaker.

廻理後得られた硅酸モノマー溶液中に含有されるSiO
□量を分析したところ4.94%であった。別に959
6濃硫酸4.13kgと蒸留水&87 kgとを混合し
た硫酸を水冷・攪拌しておき、これに硅酸モノマー溶液
2kgをゆつ(りと加えて電解質とした。
SiO contained in the silicic acid monomer solution obtained after rotation
□Amount analysis revealed that it was 4.94%. Separately 959
A sulfuric acid mixture of 4.13 kg of concentrated sulfuric acid and 87 kg of distilled water was water-cooled and stirred, and 2 kg of a silicic acid monomer solution was slowly added thereto to prepare an electrolyte.

液の混合が終了しに時点ではまたゲル化は開始されず非
常に流動し易すい状態であった。この混合液をN70Z
サイズで、内部は乾燥状態にある即用蓄電池に極板上部
まで充填し、−夜放置したところゲル化した電解質とな
っていた。これを通常の方法によって充電した。
When the mixing of the liquids was completed, gelation did not start again and the liquid was in a very fluid state. Add this mixture to N70Z
When a ready-made storage battery with a dry interior was filled to the top of the electrode plates and left overnight, the electrolyte turned into a gel. This was charged in the usual way.

こうして得た蓄電池を1t2Aの定電流で放電させてI
Q、5Vまでの放電持続時間を測定するJIS  D 
5301  (自動車用蓄電池)に規定された方法によ
って容量を測定したところ+19Ahであった。次に同
じ(JIS D 5301に規定された高率放電特性を
測定するため、該蓄電池を完全に充電した後、庫内温度
マイナス15°0の冷凍庫内に70時間放置し、しかる
後600Aの定電流放電を行い端子電圧6vとなるまで
の放電持続時間と放電開始後5秒目および600秒目電
圧を測定した。その結果は放電持続時間263秒、5秒
目電圧はρaov13o秒目電圧は975vであった。
The storage battery obtained in this way was discharged at a constant current of 1t2A, and I
Q. JIS D for measuring discharge duration up to 5V
The capacity was measured by the method specified in 5301 (Storage Batteries for Automobiles) and found to be +19 Ah. Next, in order to measure the high rate discharge characteristics specified in the same method (JIS D 5301), after the storage battery was fully charged, it was left in a freezer with an internal temperature of -15°0 for 70 hours, and then a constant 600A We conducted a current discharge and measured the discharge duration until the terminal voltage reached 6V and the voltage at the 5th and 600th seconds after the start of discharge.The results showed that the discharge duration was 263 seconds, the voltage at the 5th second was ρaov, and the voltage at the 13th second was 975V. Met.

実施例2 SiO2濃度5重量%となるようにJIS1号水ガラス
を蒸留水で希釈し、そのloogをH型強酸性イオン交
換樹脂アンバーライト IR−120Bを充填しにカラ
ムを通し硅酸モノマー溶液とした。
Example 2 JIS No. 1 water glass was diluted with distilled water so that the SiO2 concentration was 5% by weight, and the LOOG was passed through a column filled with H-type strongly acidic ion exchange resin Amberlite IR-120B and mixed with a silicic acid monomer solution. did.

以下便宜上これをA液と呼ぶ。A液中のSiO□濃度は
49296であった。別に9596H2So、 4. 
I S kg。
Hereinafter, this will be referred to as liquid A for convenience. The SiO□ concentration in Solution A was 49,296. Separately 9596H2So, 4.
IS kg.

水&87kg、i酸アルミニウム10g、ill化ジル
コニウム20g、ラウリル硫酸ナトリウム5g、消泡剤
としてシリコンオイル2gを合わせた液を用意しな。こ
れをB液と呼ぶ。B液を水冷・攪拌しつつA液2kgを
ゆっくりと加え電解質とした。A液とB液の混合が終了
した時点ではまだゲル化は開始されず非常に流動しやす
い状態であった。この混合液をN70Zサイズで、内部
は乾燥状態にある即用蓄電池に極板上部まで充填し、−
夜放置したところゲル化した電解質となっていた。これ
を通常の方法によって充電した。
Prepare a solution consisting of 87 kg of water, 10 g of aluminum acid, 20 g of zirconium chloride, 5 g of sodium lauryl sulfate, and 2 g of silicone oil as an antifoaming agent. This is called liquid B. While cooling and stirring Solution B with water, 2 kg of Solution A was slowly added thereto to form an electrolyte. At the time when the mixing of liquids A and B was completed, gelation had not yet started and the mixture was in a very fluid state. Fill this mixed solution into a ready-to-use storage battery of N70Z size, which is dry inside, up to the top of the electrode plate, and -
When I left it for the night, the electrolyte turned into a gel. This was charged in the usual way.

この蓄電池を実施例1と同じ<11.2Aの定電流にて
放電し容量を測定したところ6t、5Ahであつな。
When this storage battery was discharged at the same constant current of <11.2 A as in Example 1 and the capacity was measured, it was 6 t and 5 Ah.

次にこの蓄電池を完全に充電後、庫内温度マイナス15
°0の冷凍庫内に70時間放置し600Aで端子電圧6
vとなるまで放電させたところ、放電持続時間は265
秒、5秒目電圧は9.90V、500秒目電圧9.85
 Vであった。
Next, after fully charging this storage battery, the temperature inside the refrigerator will be -15
Leave it in the freezer at °0 for 70 hours and the terminal voltage will be 600A.
When discharged until v, the discharge duration was 265
Seconds, 5th second voltage is 9.90V, 500th second voltage is 9.85
It was V.

実施例3 S i 02粉末(約100メツシユ)150gに約2
tの蒸留水を加え、攪拌機で攪拌を行いSiO□の分散
を持ってKOH251)gを加えた。攪拌を継続しなが
ら加熱してSiO□を完全に溶解さゼ、さらに蒸留水を
加えて全量を6000gとした。冷却後、Hfi強酸性
イオン交換樹脂アンバーライ)IR−120Bを充填し
たカラムを通し、硅酸モノマー水溶液とした。この硅酸
モノマー水溶液1500gにカオリン(HlAl、 S
 j OH・H2O)の粉末100gを添加、分散させ
た。これをC液と呼ぶ。別に95%濃硫酸&88kg、
蒸留水462kg、酸化ジルコニウム15g、@酸チタ
ニウム6096水溶液100g、ラクリル硫酸ナトリウ
ム5g、消泡剤としてシリコンオイル2gを混合した液
を用意しておく。これをD液と呼ぶ。D液を水冷、攪拌
しつつC液をゆつく秒と加え電解質とした。混合が終了
した時点ではまだゲル化は開始されず非常に流動しやす
い状態であった。この混合液をN70Zサイズで、内部
は乾燥状態にある即用蓄電池に極板上部まで充填し、−
夜放置したところゲル化した電解質となっていた。これ
を通常の方法によって充電した。
Example 3 About 2 to 150 g of S i 02 powder (about 100 meshes)
t of distilled water was added, stirred with a stirrer, and 251) g of KOH was added to disperse SiO□. The mixture was heated while stirring to completely dissolve the SiO□, and then distilled water was added to bring the total amount to 6000 g. After cooling, the mixture was passed through a column filled with Hfi (strongly acidic ion exchange resin Amberly) IR-120B to obtain a silicic acid monomer aqueous solution. Kaolin (HlAl, S
100 g of powder of OH・H2O) was added and dispersed. This is called liquid C. Separately, 95% concentrated sulfuric acid & 88 kg,
A mixture of 462 kg of distilled water, 15 g of zirconium oxide, 100 g of an aqueous solution of titanium oxide 6096, 5 g of sodium lacryl sulfate, and 2 g of silicone oil as an antifoaming agent is prepared in advance. This is called liquid D. Solution D was cooled with water, and while stirring, solution C was added slowly for a few seconds to form an electrolyte. At the end of the mixing, gelation had not yet started and the mixture was in a very fluid state. Fill this mixed solution into a ready-to-use storage battery of N70Z size, which is dry inside, up to the top of the electrode plate, and -
When I left it for the night, the electrolyte turned into a gel. This was charged in the usual way.

この蓄電池を実施例1と同じ<11.2Aの定電流で放
電させ容量を測定したところ60.4Ahであつに0 次にこの蓄電池を完全に充電後、庫内温度マイナス15
°0の冷凍庫内に70時間放置し、600Aで端子電圧
6vとなるまで放置させたところ、放電持続時間は25
0秒、5秒目電圧は9.75V、1秒目電圧は?、 7
0 Vであった。
This storage battery was discharged at the same constant current of <11.2A as in Example 1, and the capacity was measured.
When left in a freezer at °0 for 70 hours and left at 600A until the terminal voltage reached 6V, the discharge duration was 25
The voltage at 0 seconds and 5 seconds is 9.75V, and what is the voltage at 1 second? , 7
It was 0V.

比較例 本発明による蓄電池と従来技術によって作られたコロイ
ド蓄電池とを比較し、本発明の効果を明らかにするため
、硅素酸化物コロイドゾルを用いてコロイド蓄電池を製
作し六〇 自動車エンジンの始動を行なえる程度の高率放電特性を
有する市販のコロイド蓄電池は存在しないので、実施例
に記載されたと同一のN70Z即用蓄電池で製作した。
Comparative Example In order to compare the storage battery according to the present invention with a colloidal storage battery made by the conventional technology and to clarify the effects of the present invention, a colloidal storage battery was manufactured using silicon oxide colloidal sol and 60 automobile engines were started. Since there are no commercially available colloidal batteries with such high rate discharge characteristics, the same N70Z ready-to-use batteries as described in the examples were used.

使用した硅素酸化物コロイトシルは硅素酸化物含有量2
0%、コロイド粒子径は約zoooXであった。
The silicon oxide coroitosil used had a silicon oxide content of 2.
0%, and the colloid particle size was about zooooX.

最初に9596111硫酸415kgと蒸留水547k
gを混合した希硫酸を用意し、これを水冷、攪拌しつつ
コロイドゾル500gをゆっくりと加えて電解質とした
。混合が終了した時点ではまだゲル化せず、非常に流動
しやすい状態であった。この混合液をN70Zサイズの
、内部は乾燥状態にある即用蓄電池に極板上部まで充填
し一夜放置したところ粘性が高まりゲル化が始まってい
た。kだし振動、衝撃により容易に流動化するチキント
ロピー性ヲ有していた。これを通常の状態により充電し
た。
First, 415 kg of 9596111 sulfuric acid and 547 kg of distilled water.
A dilute sulfuric acid mixed with 500 g of colloidal sol was prepared, and 500 g of colloidal sol was slowly added to the mixture while cooling with water and stirring to obtain an electrolyte. At the end of the mixing, the mixture had not yet gelled and was in a very fluid state. When this mixed solution was filled into an N70Z-sized ready-made storage battery with a dry interior up to the top of the electrode plates and left overnight, the viscosity increased and gelation began. However, it had chicken-tropic properties that made it easily fluidized by vibration or impact. This was charged under normal conditions.

この蓄電池を実施例1と同様に11.2Aの定電流で放
電して容量を測定したところ結果は49.5Ahの容量
であった。次にこの蓄電池を完全に充電後、庫内温度マ
イナス15°0の冷凍庫内に70時間放置し600Aの
定電流で端子電圧6vとなるまで放電させ高率放電特性
の測定を行ったところ、放電持続時間95秒、5秒目電
圧は&80V。
This storage battery was discharged at a constant current of 11.2 A in the same manner as in Example 1, and the capacity was measured, and the result was a capacity of 49.5 Ah. Next, after fully charging this storage battery, it was left in a freezer with an internal temperature of -15°0 for 70 hours, and discharged at a constant current of 600A until the terminal voltage reached 6V.The high rate discharge characteristics were measured. Duration: 95 seconds, voltage at 5th second: &80V.

600秒目電圧8.45Vであった。The voltage at the 600th second was 8.45V.

この比較例の結果と前記の実施例1ないし3の結果とを
表にまとめると次の通りである。
The results of this comparative example and the results of Examples 1 to 3 described above are summarized in the following table.

表 上記の表から、いずれの性能I/でおいても本発明によ
る蓄電池の方が従来技術によるコロイドゾル使用の蓄電
池よりすぐれていることがわかる。
From the table above, it can be seen that the storage battery according to the present invention is superior to the storage battery using colloidal sol according to the prior art in any performance I/.

ゲルからの離漿については、本発明による実施例1の電
解質においてわずかな離漿が見られたが、従来技術のコ
はイドゾル使用のもの程顕著ではなかった。
Regarding syneresis from the gel, slight syneresis was observed with the electrolyte of Example 1 according to the present invention, but the syneresis of the prior art was not as pronounced as that using Idosol.

ゲルの被破壊強度を比較するために実施例1ないしるに
より製作された電解質およびコロイドゾルを希硫酸と混
合することによって得られた電解質を調製後それぞれ直
ちに500mtビーカーに200mt充填しゲル化させ
た。 これらのゲルが入ったビーカー4個を1枚の合板
に固定し往復の振動を与えることによりゲル強度を比較
した。その結果、コロイドゾル使用のゲル、実施例1の
ゲル、実施例2のゲルがほぼ同時に流動化したが、実施
例6のゲルはその後さらに振動をはげしくするまで破壊
されなかった。
In order to compare the fracture strength of the gels, the electrolytes prepared in Examples 1 to 1 and the electrolytes obtained by mixing the colloidal sol with dilute sulfuric acid were each immediately filled in 200 mt into a 500 mt beaker and gelled. Four beakers containing these gels were fixed to a sheet of plywood and subjected to reciprocating vibration to compare the gel strengths. As a result, the gel using colloidal sol, the gel of Example 1, and the gel of Example 2 were fluidized almost simultaneously, but the gel of Example 6 was not destroyed until the vibration was further increased.

次にこれらの蓄電池を完全に充電後さらに1.5Aの電
流を通じ過充電の状態とし、その重量の減少分を測定す
ることにより水の減少量を比較した。
Next, after these batteries were completely charged, a current of 1.5 A was applied to overcharge them, and the weight loss was measured to compare the amount of water lost.

その結果を図1に示す。図1のグラフの縦軸には重量の
減少量、横軸には過充電電気量を取っである。ここで図
中の記号、■、■、■はそれぞれ実数例1.2.5に対
応するものであり、■はコロイドゾルを用いて製作され
た比較例のものである。
The results are shown in Figure 1. The vertical axis of the graph in FIG. 1 shows the amount of weight reduction, and the horizontal axis shows the amount of overcharged electricity. Here, the symbols ■, ■, and ■ in the figure correspond to actual examples 1, 2, and 5, respectively, and ■ corresponds to a comparative example manufactured using colloidal sol.

この図から判かるように、本発明によ゛る電解質を用い
た蓄電池、特に実施例2と実施例3の電解質を用いた蓄
電池におσ)て重量の減少量が少くなっている。つまり
水分の減少量も少いと考えられる。
As can be seen from this figure, the amount of weight loss is smaller in the storage batteries using the electrolyte according to the present invention, especially in the storage batteries using the electrolytes of Examples 2 and 3. In other words, it is thought that the amount of moisture loss is also small.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明によれば、従来のコ四イド蓄電
池よりも格段にすぐれた性能の蓄電池が得られ、金属イ
オンあるいは酸化物あるいは硫化物を添加することによ
って電解質の離漿が無くなり、水分の減少量は少(なり
、高率放電特性も向上する。また硅酸塩の粉末を添加す
ることによりゲル強度が増加し流動化も発生しにくくな
る。
As described above, according to the present invention, a storage battery with significantly superior performance than conventional cotetraid storage batteries can be obtained, and syneresis of the electrolyte is eliminated by adding metal ions, oxides, or sulfides. The amount of moisture loss is small, and the high rate discharge characteristics are also improved.Additionally, by adding silicate powder, the gel strength increases and fluidization becomes less likely to occur.

【図面の簡単な説明】[Brief explanation of the drawing]

図は蓄電池を過充電させた時の蓄電池inの減少量の変
化をあられしたグラフである。 (ほか6名)
The figure is a graph showing the change in the amount of decrease in the storage battery in when the storage battery is overcharged. (6 others)

Claims (1)

【特許請求の範囲】 1、硅素酸化物の1〜9重量%アルカリ性水溶液を脱ア
ルカリ処理し、こうして得た硅酸モノマー水溶液に希硫
酸を添加してゲル化させることを特徴とするコロイド蓄
電池用電解質の製造方法。 2、硅素酸化物の1〜9重量%アルカリ性水溶液を脱ア
ルカリ処理し、こうして得た硅酸モノマー水溶液に希硫
酸および向上剤を添加してゲル化させることを特徴とす
るコロイド蓄電池用電解質の製造方法。 3、硅素酸化物の1〜9重量%アルカリ性水溶液を脱ア
ルカリ処理し、こうして得た硅酸モノマー水溶液に希硫
酸、向上剤および結合剤を添加してゲル化させることを
特徴とするコロイド蓄電池用電解質の製造方法。
[Claims] 1. For a colloidal storage battery, characterized in that a 1 to 9% by weight alkaline aqueous solution of silicon oxide is dealkalized, and dilute sulfuric acid is added to the thus obtained aqueous silicic acid monomer solution to gel it. Method of manufacturing electrolyte. 2. Production of an electrolyte for a colloidal storage battery, which is characterized by dealkalizing a 1 to 9% by weight alkaline aqueous solution of silicon oxide, and adding dilute sulfuric acid and an improver to the thus obtained aqueous silicic acid monomer solution to gel it. Method. 3. For colloidal storage batteries characterized by dealkalizing a 1 to 9% by weight alkaline aqueous solution of silicon oxide, and adding dilute sulfuric acid, an improver, and a binder to the thus obtained aqueous silicic acid monomer solution to form a gel. Method of manufacturing electrolyte.
JP60113201A 1985-05-28 1985-05-28 Manufacture of electrolyte for colloid storage battery Pending JPS61271756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60113201A JPS61271756A (en) 1985-05-28 1985-05-28 Manufacture of electrolyte for colloid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60113201A JPS61271756A (en) 1985-05-28 1985-05-28 Manufacture of electrolyte for colloid storage battery

Publications (1)

Publication Number Publication Date
JPS61271756A true JPS61271756A (en) 1986-12-02

Family

ID=14606114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60113201A Pending JPS61271756A (en) 1985-05-28 1985-05-28 Manufacture of electrolyte for colloid storage battery

Country Status (1)

Country Link
JP (1) JPS61271756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185743A (en) * 2004-12-27 2006-07-13 Furukawa Battery Co Ltd:The Control valve type lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185743A (en) * 2004-12-27 2006-07-13 Furukawa Battery Co Ltd:The Control valve type lead-acid battery

Similar Documents

Publication Publication Date Title
EP0374187B1 (en) Alkali metal polysilica gel electrolyte lead-acid battery and method for making the same
JPS61271756A (en) Manufacture of electrolyte for colloid storage battery
US20100304210A1 (en) Lead acid battery having lightly gelled electrolyte
WO2023138528A1 (en) Silicon negative electrode material and high-capacity fast-charging battery using same
US4863816A (en) Alkali metal polysilica gel electrolyte lead-acid battery and method for making the same
JPS6322027B2 (en)
JPH11185810A (en) Electrolyte for lithium battery and its manufacture
US3716412A (en) Electric storage batteries
KR100433470B1 (en) Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte
US724619A (en) Electric accumulator.
JP2559610B2 (en) Method for manufacturing sealed lead acid battery
JPH0883622A (en) Sealed lead-acid battery
JPS62264571A (en) Electrolyte-containing gel
KR100477616B1 (en) Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte
CN1066937A (en) A kind of silica-gel accumulator and preparation method thereof
JPS60211777A (en) Manufacture of battery
JP2559633B2 (en) Sealed lead acid battery
JPS6030064A (en) Manufacture of sealed type lead-acid battery
JP5618260B2 (en) Control valve type lead-acid battery and manufacturing method thereof
JP2573094B2 (en) Manufacturing method of sealed lead-acid battery
JP2581237B2 (en) Manufacturing method of sealed lead-acid battery
RU2570173C1 (en) Sulphurous gel electrolyte for valve-regulated batteries and method of its manufacturing
TWI354390B (en) Lead acid battery having lightly gelled electrolyt
JPH01189864A (en) Manufacture of positive electrode plate for clad type lead-acid battery
JP2002110219A (en) Lead-acid battery