JP2581237B2 - Manufacturing method of sealed lead-acid battery - Google Patents
Manufacturing method of sealed lead-acid batteryInfo
- Publication number
- JP2581237B2 JP2581237B2 JP1303725A JP30372589A JP2581237B2 JP 2581237 B2 JP2581237 B2 JP 2581237B2 JP 1303725 A JP1303725 A JP 1303725A JP 30372589 A JP30372589 A JP 30372589A JP 2581237 B2 JP2581237 B2 JP 2581237B2
- Authority
- JP
- Japan
- Prior art keywords
- sulfuric acid
- battery
- powder
- sealed lead
- fine powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002253 acid Substances 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 72
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 68
- 239000000843 powder Substances 0.000 claims description 57
- 239000000377 silicon dioxide Substances 0.000 claims description 34
- 239000003792 electrolyte Substances 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 125000006850 spacer group Chemical group 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- 229910001882 dioxygen Inorganic materials 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 239000010419 fine particle Substances 0.000 claims 1
- 230000000717 retained effect Effects 0.000 claims 1
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 239000008151 electrolyte solution Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000005484 gravity Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/08—Selection of materials as electrolytes
- H01M10/10—Immobilising of electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池の改良に関するものである。Description: TECHNICAL FIELD The present invention relates to an improvement in a sealed lead-acid battery.
従来の技術とその課題 電池の充電中に発生する酸素ガスを負極で吸収させる
タイプの密閉形鉛蓄電池にはリテーナ式とゲル式の二種
類がある。リテーナ式は正極板と負極板との間に微細ガ
ラス繊維を素材とするマット状セパレータ(ガラスセパ
レータ)を挿入し、これによって放電に必要な硫酸電解
液の保持と両極の隔離を行っており、無保守、無漏液、
ポジションフリーなどの特徴を生かして、近年、ポータ
ブル機器やコンピューターのバックアップ電源として広
く用いられるようになってきた。しかし、反面ガラスセ
パレータが高価なことや極板群を強く圧迫する必要から
電槽の強度も大きくしなければならないなど電池の製造
コストが高くなる要因が多く、さらに従来の液式電池に
比べて低率放電性能が劣るなどの欠点があって、この種
の密閉電池の普及に障害となっている。2. Description of the Related Art There are two types of sealed lead-acid batteries of a type in which oxygen gas generated during charging of a battery is absorbed by a negative electrode, a retainer type and a gel type. In the retainer type, a mat-like separator (glass separator) made of fine glass fiber is inserted between the positive electrode plate and the negative electrode plate, thereby holding the sulfuric acid electrolyte required for discharge and isolating the two electrodes. No maintenance, no leakage,
In recent years, it has become widely used as a backup power source for portable devices and computers, taking advantage of its features such as position-free. However, on the other hand, there are many factors that increase the manufacturing cost of the battery, such as the expensive glass separator and the need to strongly press the electrode plate group, so that the strength of the battery case must be increased. There are drawbacks such as poor low-rate discharge performance, which has hindered the spread of this type of sealed battery.
一方、ゲル式はリテーナ式よりも安価であるが、電池
性能が液式やリテーナ式に劣るという欠点があった。そ
こでこれらの欠点を解消するために、微細ガラス繊維を
用いるリテーナ式でもなくゲル状の電解液を用いるゲル
式でもない密閉形鉛蓄電池が提案されている。これは電
解液の保持材としてシリカの微粉体[正確には含水二酸
化珪素(SiO2・nH2O)であるが、ここでは単にシリカ微
粉体と略す]を使用するもので、正極板と負極板との間
隙および極板群の周囲に上記シリカ微粉体を充填した構
成の電池である。シリカ微粉体は大量に生産され、市販
されている安価な材料であり、耐酸性や電解液の保持力
も優れているので、密閉形鉛蓄電池の電解液保持材とし
て優れた新素材である。ところがこの新規な密閉形鉛蓄
電池にも次のような問題点があった。すなわち、シリカ
微粉体は非常にバルキーな細かい粉体であるため、極間
や極板群の周囲に密に充填するのが困難なことおよび充
填した粉体層に電解液を注液するのに長時間を要するこ
とである。On the other hand, the gel type is less expensive than the retainer type, but has a drawback that the battery performance is inferior to the liquid type and the retainer type. Therefore, in order to solve these drawbacks, a sealed lead-acid battery that is neither a retainer type using fine glass fibers nor a gel type using a gel electrolyte has been proposed. This uses silica fine powder (accurately, hydrated silicon dioxide (SiO 2 · nH 2 O), but here abbreviated as silica fine powder) as a holding material for the electrolytic solution. A battery having a configuration in which the above silica fine powder is filled in a gap with a plate and around an electrode plate group. Silica fine powder is an inexpensive material that is mass-produced and commercially available, and has excellent acid resistance and excellent electrolyte retention ability, and is therefore a new material that is excellent as an electrolyte retention material for sealed lead-acid batteries. However, this new sealed lead-acid battery also has the following problems. In other words, since the silica fine powder is a very bulky fine powder, it is difficult to densely fill the gap between the electrodes and the periphery of the electrode group, and it is difficult to pour the electrolyte solution into the filled powder layer. It takes a long time.
課題を解決するための手段 本発明は上述した従来の密閉形鉛蓄電池の欠点を除去
し、優れた放電性能を有する安価な密閉形鉛蓄電池を提
供するもので、シリカ微粉体は硫酸を非常によく吸収す
るという特性を利用することを発明の骨子とする。この
シリカ微粉体は一次粒子が10〜40ミリミクロンと細か
く、比表面積も大きいので、多量の硫酸電解液を加えて
も、粉体の状態を維持し、電槽内への粉体の充填が容易
になるばかりでなく、あらかじめ硫酸電解液を吸収させ
ておけるので、最終的に注液する電解液量を少なくでき
るとともに、電解液を吸収させたシリカ粉体は液の浸透
性も良いため、結果的に粉体の充填や注液に要する時間
を大幅に短縮できることがわかった。以下本発明を実施
に基づいて説明する。Means for Solving the Problems The present invention eliminates the above-mentioned drawbacks of the conventional sealed lead-acid battery, and provides an inexpensive sealed lead-acid battery having excellent discharge performance. The gist of the invention is to utilize the property of absorbing well. This silica fine powder has fine primary particles of 10 to 40 millimicrons and a large specific surface area, so even if a large amount of sulfuric acid electrolyte solution is added, the state of the powder is maintained, and the filling of the powder in the battery case is possible. Not only is it easy, but also because the sulfuric acid electrolyte can be absorbed in advance, the amount of electrolyte finally injected can be reduced, and the silica powder that has absorbed the electrolyte has good liquid permeability, As a result, it was found that the time required for filling and pouring the powder can be significantly reduced. Hereinafter, the present invention will be described based on embodiments.
実施例 本実施例では一次粒子径が10〜40ミリミクロンの市販
シリカ微粉体を用いた。この微粉体は一次粒子が凝集し
て50〜200ミクロンの二次または三次粒子を形成してお
り、比表面積が大きく、硫酸の吸収能も高いバルキーな
粉体である。珪酸ソーダと硫酸を反応させると Na2SiO3+H2SO4 →SiO2・H2O+Na2SO4 のように含水二酸化珪素として簡単に製造できるので、
安価な工業材料として大量に生産されているものであ
る。そこで上記シリカ微粉体に電解液としての硫酸水溶
液を加え、硫酸を含浸させた状態での粉体を試作した。
その作り方は極めて簡単で、シリカ微粉体と硫酸を混合
するだけでよい。すなわち、シリカ微粉体に硫酸を加え
ると、加えた硫酸はシリカ微粉体に吸収されて塊状とな
るが、攪拌することによって容易にこわれ、均一な粉体
となる。ただし、ここで注意しなければならないこと
は、加えた硫酸量が多い場合攪拌が激しすぎると粉状と
はならずペースト状となってしまうことである。とくに
すりつぶすような力が働くと、粉体に吸収された硫酸が
にじみ出てきてペースト状となるので、このような攪拌
方法は避けなければならない。軽くかき混ぜる程度が最
も好ましい。Example In this example, a commercially available silica fine powder having a primary particle diameter of 10 to 40 mm was used. This fine powder is a bulky powder in which primary particles are aggregated to form secondary or tertiary particles of 50 to 200 microns, and have a large specific surface area and a high ability to absorb sulfuric acid. When sodium silicate and sulfuric acid are reacted, it can be easily produced as hydrated silicon dioxide like Na 2 SiO 3 + H 2 SO 4 → SiO 2 · H 2 O + Na 2 SO 4 ,
It is produced in large quantities as an inexpensive industrial material. Therefore, an aqueous sulfuric acid solution as an electrolytic solution was added to the silica fine powder, and a powder impregnated with sulfuric acid was experimentally manufactured.
The method of making is very simple, it is only necessary to mix silica fine powder and sulfuric acid. That is, when sulfuric acid is added to the silica fine powder, the added sulfuric acid is absorbed by the silica fine powder to form a lump, but is easily broken by stirring to form a uniform powder. However, what should be noted here is that if the amount of sulfuric acid added is too large and the stirring is too intense, the mixture does not turn into powder but paste. If a crushing force is applied, the sulfuric acid absorbed by the powder oozes out and becomes a paste, so that such a stirring method must be avoided. Light stirring is most preferred.
そこで、上述のようにしてシリカ微粉体と比重1.30の
希硫酸とを用いて硫酸含浸シリカ微粉体を作製した。作
製した粉体の性状は、シリカ微粉体1g当り硫酸1.78ml含
浸まではさらさらした粉状であったが、1.92mlではやや
湿った状態となり、さらさらした感じはなくなった。Thus, a sulfuric acid-impregnated silica fine powder was prepared using the silica fine powder and dilute sulfuric acid having a specific gravity of 1.30 as described above. The properties of the prepared powder were powdery until 1.78 ml of sulfuric acid per 1 g of fine silica powder was impregnated. However, at 1.92 ml, the powder became slightly moist and the feeling of dryness disappeared.
つぎに、これらの硫酸含浸シリカ微粉体を用いて、密
閉形鉛蓄電池を作製した。電池は、公称容量4.5Ahで、
化成して乾燥した正極板3枚と負極板4枚から構成され
ており、極間には幅2mm、厚さ1.5mm耐酸性合成樹脂のス
ペサーを2本ずつ挿入した。そこで第1表に示す硫酸含
浸シリカ微粉体を極間および極板群の周囲に充填した。Next, a sealed lead-acid battery was manufactured using these sulfuric acid-impregnated silica fine powders. The battery has a nominal capacity of 4.5Ah,
It consisted of three positive and negative electrode plates which had been formed and dried, and two spacers each of 2 mm wide and 1.5 mm thick acid resistant synthetic resin were inserted between the electrodes. Then, the sulfuric acid-impregnated silica fine powder shown in Table 1 was filled between the electrodes and around the electrode plates.
第1図は本発明密閉形鉛蓄電池の縦断面模式図であ
る。図において1は正極板、2は負極板、3は硫酸含浸
粉体、4は電槽、5は液口である。また第2表に微粉体
を振動の強さ2G,振幅0.5mm,振動数60回毎秒の条件で電
槽内へ充填した際の充填時間を示す。 FIG. 1 is a schematic vertical sectional view of the sealed lead-acid battery of the present invention. In the figure, 1 is a positive electrode plate, 2 is a negative electrode plate, 3 is a sulfuric acid impregnated powder, 4 is a battery case, and 5 is a liquid port. Table 2 shows the filling time when the fine powder was filled into the battery case under the conditions of a vibration intensity of 2 G, an amplitude of 0.5 mm, and a vibration frequency of 60 times per second.
硫酸含浸シリカ微粉体の充填量は元原料のシリカ微粉
体がいずれも15gとなるように充填した。例えば、電池
Dでは、シリカ微粉体100gに比重1.30の希硫酸を115g含
浸させたので、硫酸含浸シリカ微粉体の充填量は 15+(15/100)×115×1.30=37.4gとなる。 The filling amount of the sulfuric acid-impregnated silica fine powder was such that the raw material silica fine powder was 15 g in all cases. For example, in Battery D, since 100 g of silica fine powder was impregnated with 115 g of dilute sulfuric acid having a specific gravity of 1.30, the filling amount of sulfuric acid-impregnated silica fine powder was 15+ (15/100) × 115 × 1.30 = 37.4 g.
第2表から明らかなように、シリカ微粉体に含浸させ
た比重1.30の希硫酸量が多くなるほど充填時間は短くな
り、充填しやすくなることがわかる。しかし、硫酸含浸
量が最も多いNo.7の粉体になると逆に充填時間が長くな
り、硫酸含浸量に限界があるようである。これは、第1
表に示したように、No.6の粉体まではさらさらした粉状
であったがNo.7になるとやや湿った粉状となったことか
ら、充填性が低下したものと思われる。As is clear from Table 2, the filling time becomes shorter and the filling becomes easier as the amount of the diluted sulfuric acid having a specific gravity of 1.30 impregnated in the silica fine powder increases. However, when the powder of No. 7 with the largest amount of sulfuric acid impregnation is used, the filling time becomes longer, and the sulfuric acid impregnation amount seems to be limited. This is the first
As shown in the table, up to No. 6 powder was in a powdery state, but in No. 7, it became a slightly moist powder, and it is considered that the filling property was reduced.
シリカ微粉体を充填した試験電池は、比重1.30の希硫
酸を注液したのち、0.6Aで18h初充電したのち容量試験
を行った。第3表に比重1.30希硫酸の注液量および注液
に要した時間を、第4表に容量試験の結果を示す。The test battery filled with the silica fine powder was injected with dilute sulfuric acid having a specific gravity of 1.30, charged for the first time at 0.6 A for 18 hours, and then subjected to a capacity test. Table 3 shows the injection amount and the time required for injection of 1.30 diluted sulfuric acid, and Table 4 shows the results of the capacity test.
第3表において希硫酸の注液は次のようにした。電池
Aはシリカ微粉体の元原料を使用したもので、この電池
の注液量を46mlとしたので、硫酸含浸シリカ微粉体を充
填したB〜Gの電池についても総注液電解液量を46mlと
した。したがって、B〜Gの電池ではあらかじめシリカ
微粉体に電解液を含浸させてあるので、その分注液量は
少なくて良いことになる。例えば、電池Dでは、充填し
た硫酸含浸シリカ微粉体37.4g中には硫酸電解液が {115/(100+115×1.30)}×37.4=17.3 存在するので、注液硫酸量としては46−17.3=28.8mlで
よいことになる。In Table 3, the diluted sulfuric acid was injected as follows. Battery A uses the raw material of the silica fine powder. Since the injection amount of this battery was 46 ml, the total injection electrolyte amount of the batteries B to G filled with the sulfuric acid impregnated silica fine powder was 46 ml. And Therefore, in the batteries B to G, since the electrolytic solution is impregnated in the silica fine powder in advance, the amount of the dispensed liquid may be small. For example, in the battery D, the sulfuric acid electrolyte is {115 / (100 + 115 × 1.30)} × 37.4 = 17.3 in 37.4 g of the filled sulfuric acid-impregnated silica fine powder, so the amount of sulfuric acid injected is 46-17.3 = 28.8. ml will do just fine.
第3表において注液に要した時間は、注液した希硫酸
が完全にシリカ微粉体に吸収されて遊離の希硫酸がなく
なるまでの時間である。測定の結果は、第3表に示すよ
う、A、B、C…の順にGが最も早く注液できた。これ
はあらかじめシリカ微粉体に希硫酸を含浸させたので、
注液硫酸量が少なくてよいだけでなく希硫酸の浸透速度
が速かったためである。これは例えば電池AとEの注液
に要した時間を比較すればわかる。すなわち電池Eは注
液量が22.9mlで、硫酸を含浸させてない元原料のシリカ
微粉体を充填した電池Aの注液量46mlの約2分の1であ
るが、注液に要した時間は、電池Aの35分に対して6.8
分と約5分の1に短縮されている。 In Table 3, the time required for injection is the time required for the diluted dilute sulfuric acid to be completely absorbed by the fine silica powder and free dilute sulfuric acid to disappear. As a result of the measurement, as shown in Table 3, G could be injected first in the order of A, B, C. This is because silica fine powder was impregnated with dilute sulfuric acid in advance,
This is because not only the amount of injected sulfuric acid was small, but also the permeation rate of dilute sulfuric acid was high. This can be understood, for example, by comparing the time required for injecting the batteries A and E. That is, the injection amount of the battery E is 22.9 ml, which is about one half of the injection amount of 46 ml of the battery A filled with the raw material silica fine powder not impregnated with sulfuric acid. Is 6.8 for 35 minutes of battery A
Minutes and about one-fifth.
容量試験はA〜Gの電池以外に従来品であるリテーナ
式密閉形鉛電池についても行った。この電池には勿論A
〜Gの電池と同じ正、負極板を用いている。第4表の電
池Hがそれである。A〜Gの電池の0.2C放電容量は従来
品Hと比較して10%程度向上した。また、30Aで行った
ハイレート放電でも従来品の1分32秒を14〜27%上回る
放電容量が得られた。なお、本実施例では極間に合成樹
脂製のスペーサーを挿入したが、一般的に用いられる鉛
蓄電池用のセパレータを挿入してもよい。とくにリブ付
きや波付きのセパレータであれば極間に一定の間隙を設
けることができるので好都合である。The capacity test was performed on the conventional sealed lead battery of the retainer type in addition to the batteries A to G. Of course this battery has A
To G, the same positive and negative electrodes were used. That is the battery H in Table 4. The 0.2 C discharge capacity of the batteries A to G was improved by about 10% as compared with the conventional product H. In addition, even with a high-rate discharge performed at 30 A, a discharge capacity 14 to 27% higher than that of the conventional product at 1 minute and 32 seconds was obtained. In this embodiment, a spacer made of a synthetic resin is inserted between the poles. However, a commonly used separator for a lead storage battery may be inserted. In particular, a ribbed or corrugated separator is advantageous because a certain gap can be provided between the poles.
本発明は上記実施例に限らず、例えば、あらかじめ該
微粉体に適量の水を含浸させた粉体を電槽内へ充填し、
その後電池の放電に必要かつ充分な量の硫酸電解液を注
液する方法においては、粉体の充填や電解液の注液が容
易になるという利点が認められ、種々の応用が考えられ
る。 The present invention is not limited to the above embodiment, for example, filling the battery case with a powder previously impregnated with an appropriate amount of water into the fine powder,
Thereafter, in the method of injecting a sufficient amount of sulfuric acid electrolyte necessary and necessary for discharging the battery, there is an advantage that the filling of the powder and the injection of the electrolyte are facilitated, and various applications are considered.
発明の効果 上述したように本発明によれば、電解液保持材として
のシリカ微粉体にあらかじめ硫酸あるいは水を含浸させ
た粉体を充填することにより、粉体の充填や注液時間を
大幅に短縮でき、しかも従来品よりも放電性能の優れた
密閉形鉛蓄電池を安価に製造でき、工業的価値は大であ
る。Advantageous Effects of the Invention As described above, according to the present invention, the filling and pouring time of the powder is greatly reduced by filling the silica fine powder as the electrolyte holding material with the powder impregnated with sulfuric acid or water in advance. A sealed lead-acid battery that can be shortened and has better discharge performance than conventional products can be manufactured at low cost, and has a great industrial value.
第1図は本発明密閉形鉛蓄電池の縦断面模式図である。 1……正極板、2……負極板、3……硫酸含浸粉体、4
……電槽、5……液口FIG. 1 is a schematic vertical sectional view of the sealed lead-acid battery of the present invention. 1 ... Positive electrode plate, 2 ... Negative electrode plate, 3 ... Sulfuric acid impregnated powder, 4
…… Battery case, 5… Liquid port
Claims (1)
吸収させる密閉形鉛蓄電池において、スペーサーまたは
セパレータを介して組み合わせた正極板と負極板との間
隙および極板群の周囲に、一次粒子が10〜40ミリミクロ
ンの含水二酸化珪素の微粉体が凝集して50〜200ミクロ
ンの二次または三次粒子を形成した粉体にあらかじめ硫
酸電解液の一部または水を含浸させた粉体を充填、配置
し、さらに希硫酸を注液することにより、充放電に必要
な電解液を保持させたことを特徴とする密閉形鉛蓄電池
の製造方法。In a sealed lead-acid battery in which oxygen gas generated during charging of a battery is absorbed by a negative electrode, a primary space is formed around a gap between a positive electrode plate and a negative electrode plate combined through a spacer or a separator and around an electrode plate group. A powder in which a part of sulfuric acid electrolyte or water impregnated in advance with a powder in which fine particles of hydrous silicon dioxide having a particle size of 10 to 40 μm are aggregated to form secondary or tertiary particles of 50 to 200 μm is added. A method for producing a sealed lead-acid battery, characterized in that an electrolyte required for charging and discharging is retained by filling, disposing, and injecting dilute sulfuric acid.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1303725A JP2581237B2 (en) | 1989-11-22 | 1989-11-22 | Manufacturing method of sealed lead-acid battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1303725A JP2581237B2 (en) | 1989-11-22 | 1989-11-22 | Manufacturing method of sealed lead-acid battery |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH03165466A JPH03165466A (en) | 1991-07-17 |
| JP2581237B2 true JP2581237B2 (en) | 1997-02-12 |
Family
ID=17924515
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1303725A Expired - Lifetime JP2581237B2 (en) | 1989-11-22 | 1989-11-22 | Manufacturing method of sealed lead-acid battery |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2581237B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2566917B (en) * | 2017-04-21 | 2021-02-24 | Reckitt Benckiser Health Ltd | An Exfoliation Brush and Device |
-
1989
- 1989-11-22 JP JP1303725A patent/JP2581237B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH03165466A (en) | 1991-07-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA1121446A (en) | Silica separator plates for lead storage batteries | |
| JP2782749B2 (en) | Sealed clad type lead battery | |
| JP2581237B2 (en) | Manufacturing method of sealed lead-acid battery | |
| JP3388265B2 (en) | Lead-acid battery separator | |
| JP2559633B2 (en) | Sealed lead acid battery | |
| JP2559610B2 (en) | Method for manufacturing sealed lead acid battery | |
| JPS5882472A (en) | Lead storage battery and manufacture thereof | |
| JP2952374B2 (en) | Sealed lead-acid battery | |
| JP2573094B2 (en) | Manufacturing method of sealed lead-acid battery | |
| JPH0794206A (en) | Sealed lead acid battery | |
| JP2591975B2 (en) | Sealed clad type lead battery | |
| JPH01235166A (en) | Manufacture of sealed clad type lead-acid battery | |
| JP2958790B2 (en) | Sealed lead-acid battery | |
| JPS6217946A (en) | Enclosed lead storage battery | |
| JP4009820B2 (en) | Method for producing dispersion of granular silica and dilute sulfuric acid | |
| JP2001126752A (en) | Paste-type sealed lead-acid battery and manufacturing method therefor | |
| JP2855677B2 (en) | Sealed lead-acid battery | |
| JP2794588B2 (en) | Sealed lead-acid battery | |
| JPH0479111B2 (en) | ||
| JPH04149968A (en) | Sealed-type lead secondary battery | |
| JP2002305020A (en) | Sealed lead-acid battery | |
| JPH04149967A (en) | Sealed-type lead secondary battery | |
| JPH03252063A (en) | Sealed type lead storage battery | |
| JPH04118854A (en) | Gel type lead storage battery | |
| JPH03145067A (en) | Manufacture of sealed lead-acid battery |