JPH11185810A - Electrolyte for lithium battery and its manufacture - Google Patents

Electrolyte for lithium battery and its manufacture

Info

Publication number
JPH11185810A
JPH11185810A JP9363237A JP36323797A JPH11185810A JP H11185810 A JPH11185810 A JP H11185810A JP 9363237 A JP9363237 A JP 9363237A JP 36323797 A JP36323797 A JP 36323797A JP H11185810 A JPH11185810 A JP H11185810A
Authority
JP
Japan
Prior art keywords
electrolyte
exchange resin
free acid
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9363237A
Other languages
Japanese (ja)
Inventor
Hiroshi Furukawa
寛 古川
Satoshi Asano
聡 浅野
Hiroyuki Inagaki
裕之 稲垣
Masatoshi Horii
政利 堀井
Tadashi Niwa
正 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP9363237A priority Critical patent/JPH11185810A/en
Publication of JPH11185810A publication Critical patent/JPH11185810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively remove a free acid from an electrolyte without changing the design of a battery and adding a new component to the battery by including a process bringing the electrolyte into contact with anion exchange resin and specifying the concentration of a free acid obtained in this production process to the specified value or less conversion in terms of hydrofluoric acid. SOLUTION: The concentration of free acid obtained in a process bringing an electrolyte into contact with anion exchange resin is made 10 ppm or less converted in terms of hydrofluoric acid. The electrolyte is prepared by dissolving a lithium electrolyte in the specified nonaqueous solvent or its mixture in an inert gas atmosphere so that the concentration of the lithium electrolyte becomes about 0.5-2.0 mole/l, preferably 0.8-1.2 mole/l. As an organic polymer resin compound series ion exchange resin, preferably, a gelled type or macroporous type ion exchange resin of styrene divinyl benzene copolymer is used. The removing efficiency of the free acid is enhanced, and the solvent can continuously be treated by using a column process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム電池用電
解液に関し、より詳細には電解液に含まれている酸性不
純物を除去する方法及び該方法によって得られる電解液
に関する。
The present invention relates to an electrolyte for a lithium battery, and more particularly to a method for removing acidic impurities contained in the electrolyte and an electrolyte obtained by the method.

【0002】[0002]

【従来の技術】リチウム電池では、有機非水溶媒に六フ
ッ化リン酸リチウム(LiPF6 )などのリチウム系電
解質を溶解させた非水電解液が電解液として用いられて
いる。しかし、溶媒及び電解質には微量の水分が残留す
る。この水分は、フッ素を含有する電解質、例えばLi
PF6 など、が用いられた場合に、それらの電解質と反
応するため、フッ酸等の生成を引き起こす。このフッ酸
等は電池容量や充放電のサイクル特性を低下させ、ま
た、電池内部の腐食を引き起こすという問題がある。
2. Description of the Related Art In a lithium battery, a non-aqueous electrolyte obtained by dissolving a lithium-based electrolyte such as lithium hexafluorophosphate (LiPF 6 ) in an organic non-aqueous solvent is used as an electrolyte. However, a small amount of water remains in the solvent and the electrolyte. This water is an electrolyte containing fluorine, for example, Li
When PF 6 or the like is used, it reacts with those electrolytes, causing the generation of hydrofluoric acid or the like. This hydrofluoric acid and the like have the problems of lowering the battery capacity and charge / discharge cycle characteristics and causing corrosion inside the battery.

【0003】電解液中の酸性不純物、特にフッ酸等の遊
離酸を除去する方法としては、酸化アルミニウム等の吸
着剤を電池に内蔵させ、吸着除去する方法(特開平4−
284372号、特開平5−315006号)、アンモ
ニウム塩等の添加剤を電解液に溶解等して除去する方法
(特開平第3−119667号)、水酸化リチウム、水
素化リチウム等のアルカリ処理剤(特開平4−2825
63号)で中和して除去する方法、金属フッ化物(特開
平8−321326号)を使用する方法がある。
As a method for removing acidic impurities in an electrolytic solution, particularly a free acid such as hydrofluoric acid, a method of incorporating an adsorbent such as aluminum oxide into a battery and adsorbing and removing the adsorbent (Japanese Patent Laid-Open No. Hei.
284372, JP-A-5-315006), a method of dissolving or removing an additive such as an ammonium salt in an electrolytic solution (JP-A-3-119667), an alkali treating agent such as lithium hydroxide and lithium hydride. (JP-A-4-2825
63) and a method using a metal fluoride (JP-A-8-321326).

【0004】[0004]

【発明が解決しようとする課題】しかし、酸化アルミニ
ウム等の固体粉末吸着剤を電池に内臓させることによっ
て電解液中の遊離酸を除去する方法は、電池の設計変更
が必要となるためあまり好ましくない。モレキュラーシ
ーブ等による吸着法は効果が小さい。また、電解液に添
加剤を加える方法は、電池性能を低下させるおそれがあ
る。
However, a method of removing a free acid from an electrolytic solution by incorporating a solid powder adsorbent such as aluminum oxide into a battery is not preferable because the design of the battery needs to be changed. . An adsorption method using a molecular sieve or the like has a small effect. In addition, the method of adding an additive to the electrolytic solution may reduce battery performance.

【0005】そこで本発明は、電池の設計変更を要する
こと無く、且つ電池に新たな成分を加えることなく、電
解液から遊離酸を効率的に除去する方法及び該方法を用
いて遊離酸の含有量が低い電解液を提供することを目的
とする。
Accordingly, the present invention provides a method for efficiently removing free acid from an electrolyte without requiring a battery design change and without adding a new component to the battery, and a method for containing free acid using the method. It is intended to provide a low amount of electrolyte.

【0006】[0006]

【課題を解決するための手段】本発明は、(1)リチウ
ム系電解質を有機溶媒に溶解させることを含むリチウム
電池用電解液の製造方法において、該電解液を陰イオン
交換樹脂に接触させる工程を含むことを特徴とするリチ
ウム電池用電解液の製造方法に関する。
According to the present invention, there is provided (1) a method for producing an electrolyte for a lithium battery, comprising dissolving a lithium-based electrolyte in an organic solvent, wherein the step of contacting the electrolyte with an anion exchange resin is carried out. And a method for producing an electrolyte solution for a lithium battery.

【0007】又、本発明は、(2)リチウム系電解質を
有機溶媒に溶解してなるリチウム電池用電解液におい
て、請求項1記載の製造方法によって得られるところ
の、遊離酸の濃度がフッ酸換算で10ppm以下である
ことを特徴とするリチウム電池用電解液に関する。
Further, the present invention provides (2) a lithium battery electrolyte obtained by dissolving a lithium-based electrolyte in an organic solvent, wherein the concentration of free acid obtained by the production method according to claim 1 is hydrofluoric acid. The present invention relates to an electrolyte for a lithium battery, which has a conversion of 10 ppm or less.

【0008】さらに本発明においては、(3)電解液
を、陰イオン交換樹脂で充填されたカラムを通過させる
ことが好ましい。
Further, in the present invention, it is preferable that (3) the electrolytic solution is passed through a column filled with an anion exchange resin.

【0009】あるいは、(4)所定量の陰イオン交換樹
脂を電解液に浸漬し、所定時間撹拌等による処理を行う
ことが好ましい。
Alternatively, (4) It is preferable that a predetermined amount of anion exchange resin is immersed in the electrolytic solution and a treatment such as stirring is performed for a predetermined time.

【0010】[0010]

【発明の実施の形態】本発明の電解液を用いるリチウム
電池の構成については、特に制限は無く、公知のリチウ
ム2次電池の構成を有することができる。負極活物質と
しては、例えばリチウム金属、黒鉛等の炭素材料、正極
活物質としては、LiCoO2 等のリチウムイオン含有
金属酸化物を用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a lithium battery using the electrolytic solution of the present invention is not particularly limited, and may have a known structure of a lithium secondary battery. As the negative electrode active material, for example, a carbon material such as lithium metal or graphite can be used, and as the positive electrode active material, a lithium ion-containing metal oxide such as LiCoO 2 can be used.

【0011】リチウム系電解質としては、LiPF6
LiClO4 、LiBF4 、LiAsF6 、LiSbF
6 、LiAlCl4 、LiCF3 SO3 など公知のもの
が使用される。なかでも電池の性能の点からLiPF6
が好ましい。
As the lithium-based electrolyte, LiPF 6 ,
LiClO 4 , LiBF 4 , LiAsF 6 , LiSbF
6 , known materials such as LiAlCl 4 and LiCF 3 SO 3 are used. Among them, from the viewpoint of battery performance, LiPF 6
Is preferred.

【0012】また、電解質を溶解させる有機溶媒として
は、エチレンカーボネート、γ−ブチロラクトン、スル
ホラン、ジメチルカーボネート、ジエチルカーボネー
ト、メチルエチルカーボネート、プロピレンカーボネー
ト、1,2−ジメトキシエタン、1,2−ジエトキシエ
タン、1,2−ジブトキシエタン、エトキシメトキシエ
タン等の非水溶媒が、単独であるいは混合して用いられ
る。溶媒の誘電率及び粘度の点からジメチルカーボネー
トとプロピレンカーボネートを体積比1:9〜9:1、
好ましくは4:6で混合したものが用いられる。
The organic solvent for dissolving the electrolyte includes ethylene carbonate, γ-butyrolactone, sulfolane, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, propylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane. Non-aqueous solvents such as 1,2-dibutoxyethane and ethoxymethoxyethane are used alone or as a mixture. From the viewpoint of the dielectric constant and viscosity of the solvent, dimethyl carbonate and propylene carbonate are mixed in a volume ratio of 1: 9 to 9: 1,
Preferably, a mixture of 4: 6 is used.

【0013】電解液は、所定の非水溶媒またはそれらの
混合溶媒に、リチウム系電解質を約0.5〜2.0モル
/l、好ましくは0.8〜1.2モル/lの濃度になる
ように、不活性ガス雰囲気下で溶解させて調製する。
The electrolyte is prepared by adding a lithium-based electrolyte to a predetermined non-aqueous solvent or a mixed solvent thereof at a concentration of about 0.5 to 2.0 mol / l, preferably 0.8 to 1.2 mol / l. It is prepared by dissolving in an inert gas atmosphere.

【0014】本発明で使用する陰イオン交換樹脂として
は、上記に掲げた有機溶媒に侵されない樹脂であれば、
広く公知の陰イオン交換樹脂を使用することができる。
好ましくは、有機高分子樹脂化合物系のイオン交換樹
脂、より好ましくはスチレン・ジビニルベンゼン共重合
体のゲル型又はマクロポーラス型が使用される。
As the anion exchange resin used in the present invention, any resin which is not affected by the above-mentioned organic solvents can be used.
Widely known anion exchange resins can be used.
Preferably, an organic polymer resin compound-based ion exchange resin, more preferably a gel type or macroporous type of a styrene / divinylbenzene copolymer is used.

【0015】陰イオン交換樹脂のイオン交換基は、塩基
性の陰イオン交換基であり、好ましくはアミノ基もしく
は置換アミノ基である。
The ion exchange group of the anion exchange resin is a basic anion exchange group, and is preferably an amino group or a substituted amino group.

【0016】陰イオン交換樹脂のサイズは特に限定され
ないが、直径約0.3mm以上、好ましくは0.4mm
以上のものを用いる。また、全イオン交換容量として
は、1.0meq/ml樹脂以上であることが好まし
く、より好ましくは1.2meq/ml樹脂以上のもの
が用いられる。
The size of the anion exchange resin is not particularly limited, but the diameter is about 0.3 mm or more, preferably 0.4 mm
Use the above. Further, the total ion exchange capacity is preferably 1.0 meq / ml resin or more, and more preferably 1.2 meq / ml resin or more.

【0017】イオン交換処理は、バッチ法、カラム法の
いずれにより行ってもよい。バッチ法の場合には、陰イ
オン交換樹脂をイオン交換水で洗浄後、約80℃、減圧
下にて乾燥する。上記洗浄・乾燥した樹脂を、処理すべ
き電解液に対して0.1〜20重量%、好ましくは1〜
10重量%添加し、5〜120時間撹拌後、イオン交換
樹脂を濾過して取り除く。
The ion exchange treatment may be performed by either a batch method or a column method. In the case of the batch method, the anion exchange resin is washed with ion exchange water, and then dried at about 80 ° C. under reduced pressure. The washed and dried resin is used in an amount of 0.1 to 20% by weight, preferably 1 to
After adding 10% by weight and stirring for 5 to 120 hours, the ion exchange resin is removed by filtration.

【0018】カラム法による場合は、上記洗浄・乾燥し
た樹脂を、予め処理すべき電解液の非水溶媒で膨潤した
後、カラムに充填する。常法に従い逆洗・押出し操作等
を行った後、処理すべき電解液をSV(流量/イオン交
換樹脂体積比)1〜10hr-1、好ましくは2〜5hr
-1で通液する。
In the case of using a column method, the washed and dried resin is swelled with a nonaqueous solvent of an electrolyte to be treated in advance, and then packed into a column. After performing a backwashing / extrusion operation or the like according to a conventional method, the electrolytic solution to be treated is subjected to SV (flow rate / ion exchange resin volume ratio) of 1 to 10 hr -1 , preferably 2 to 5 hr.
Pass through at -1 .

【0019】使用した樹脂の再生は、アルカリ洗浄によ
り酸を除去することにより行う。再生された樹脂は、上
記乾燥等の処理を行うことによって再度使用に供するこ
とができる。
The regeneration of the used resin is carried out by removing acid by alkali washing. The regenerated resin can be reused by performing the above-mentioned treatment such as drying.

【0020】[0020]

【実施例】以下、実施例により本発明をより具体的に説
明する。
The present invention will be described more specifically with reference to the following examples.

【0021】遊離酸の定量方法 実施例及び比較例において、遊離酸含有量の定量は、試
料20gを採り、指示薬0.1%ブロモチモールブルー
/エタノール溶液を数滴加え、0.01規定のナトリウ
ムメトキシド/メタノール溶液を用いて中和滴定により
行い、得られた酸当量をフッ酸量濃度に換算した。
Method for Quantifying Free Acid In Examples and Comparative Examples, the content of free acid was determined by taking 20 g of a sample, adding a few drops of a 0.1% bromothymol blue / ethanol solution of an indicator, and adding 0.01 N sodium hydroxide. Neutralization titration was performed using a methoxide / methanol solution, and the obtained acid equivalent was converted into a hydrofluoric acid concentration.

【0022】実施例1 ジメチルカーボネートとプロピレンカーボネートを体積
比4:6で混合した溶媒に六フッ化リン酸リチウムを1
モル/lの濃度になるように溶解させて電解液を調製し
た。該電解液を電解液−Aとした。電解液−Aの水分含
有量は20ppmであり、又遊離酸含有量(フッ酸換
算)は24ppmであった。
Example 1 Lithium hexafluorophosphate was added to a solvent obtained by mixing dimethyl carbonate and propylene carbonate at a volume ratio of 4: 6.
An electrolytic solution was prepared by dissolving to a concentration of mol / l. The electrolytic solution was designated as electrolytic solution-A. The water content of the electrolyte solution-A was 20 ppm, and the free acid content (in terms of hydrofluoric acid) was 24 ppm.

【0023】陰イオン交換樹脂(スチレン系アミン型)
は、イオン交換水で洗浄後、約80℃、減圧下にて乾燥
した。
Anion exchange resin (styrene-based amine type)
Was washed with ion-exchanged water and then dried at about 80 ° C. under reduced pressure.

【0024】電解液−A500mlに、上記の陰イオン
交換樹脂を5重量%添加し、窒素雰囲気下、室温で48
時間撹拌した。陰イオン交換樹脂を濾別して取り除き、
遊離酸の含有量を測定したところ、8ppmであった。
5% by weight of the above-mentioned anion exchange resin was added to 500 ml of electrolyte solution-A, and the solution was added at room temperature under a nitrogen atmosphere at room temperature.
Stirred for hours. The anion exchange resin is removed by filtration,
The content of the free acid was measured and found to be 8 ppm.

【0025】比較例1 電解液−Aに、活性アルミナ(窒素雰囲気下、500℃
で焼成したもの)を5重量%添加し、窒素雰囲気下、室
温で48時間撹拌した。得られた電解液の遊離酸含有量
は22ppmであった。
Comparative Example 1 Activated alumina (500 ° C. under a nitrogen atmosphere)
5% by weight) and stirred at room temperature under a nitrogen atmosphere for 48 hours. The free acid content of the obtained electrolytic solution was 22 ppm.

【0026】比較例2 電解液−Aに、活性炭(窒素雰囲気下、500℃で焼成
したもの)を5重量%添加し、窒素雰囲気下、室温で4
8時間撹拌した。得られた電解液の遊離酸含有量は12
ppmであった。
COMPARATIVE EXAMPLE 2 5% by weight of activated carbon (calcined at 500 ° C. in a nitrogen atmosphere) was added to electrolyte solution-A.
Stir for 8 hours. The free acid content of the obtained electrolyte was 12
ppm.

【0027】比較例3 電解液−Aに、モレキュラーシーブ(窒素雰囲気下、5
00℃で焼成したもの)を5重量%添加し、窒素雰囲気
下、室温で48時間撹拌した。得られた電解液の遊離酸
含有量は16ppmであった。
Comparative Example 3 A molecular sieve (5% under a nitrogen atmosphere)
(Fired at 00 ° C.) was added at 5% by weight, and the mixture was stirred at room temperature under a nitrogen atmosphere for 48 hours. The free acid content of the obtained electrolytic solution was 16 ppm.

【0028】[0028]

【発明の効果】本発明によれば、電池の設計変更を要す
ること無く、また電池への新たな成分を添加すること無
く、遊離酸を除去することができる。さらに、従来の吸
着剤に比べ除去効率が高い。また、イオン交換樹脂は再
生により何度でも使用することが可能であり、特にカラ
ム法を使用すれば、溶媒を連続処理することができ、イ
オン交換樹脂を溶媒から除去する必要もない。
According to the present invention, the free acid can be removed without changing the design of the battery and without adding new components to the battery. Furthermore, the removal efficiency is higher than the conventional adsorbent. In addition, the ion exchange resin can be used as many times as possible by regeneration. Particularly, if the column method is used, the solvent can be continuously treated, and there is no need to remove the ion exchange resin from the solvent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 裕之 埼玉県入間郡大井町西鶴ヶ岡一丁目3番1 号 東燃株式会社総合研究所内 (72)発明者 堀井 政利 埼玉県入間郡大井町西鶴ヶ岡一丁目3番1 号 東燃株式会社総合研究所内 (72)発明者 丹羽 正 埼玉県入間郡大井町西鶴ヶ岡一丁目3番1 号 東燃株式会社総合研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroyuki Inagaki 1-3-1 Nishitsurugaoka, Oi-machi, Iruma-gun, Saitama Prefecture Tonen Co., Ltd. (72) Inventor Masatoshi Horii 1-3-1 Oka, Tonen Co., Ltd. (72) Inventor Tadashi Niwa 1-3-1, Nishi Tsurugaoka, Oi-machi, Iruma-gun, Saitama

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム系電解質を有機溶媒に溶解させ
ることを含むリチウム電池用電解液の製造方法におい
て、該電解液を陰イオン交換樹脂に接触させる工程を含
むことを特徴とするリチウム電池用電解液の製造方法。
1. A method for producing an electrolyte for a lithium battery, comprising dissolving a lithium-based electrolyte in an organic solvent, comprising the step of contacting the electrolyte with an anion exchange resin. Liquid production method.
【請求項2】 リチウム系電解質を有機溶媒に溶解して
なるリチウム電池用電解液において、請求項1記載の製
造方法によって得られるところの、遊離酸の濃度がフッ
酸換算で10ppm以下であることを特徴とするリチウ
ム電池用電解液。
2. In a lithium battery electrolyte obtained by dissolving a lithium-based electrolyte in an organic solvent, the concentration of free acid obtained by the production method according to claim 1 is 10 ppm or less in terms of hydrofluoric acid. An electrolyte solution for a lithium battery.
JP9363237A 1997-12-16 1997-12-16 Electrolyte for lithium battery and its manufacture Pending JPH11185810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9363237A JPH11185810A (en) 1997-12-16 1997-12-16 Electrolyte for lithium battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9363237A JPH11185810A (en) 1997-12-16 1997-12-16 Electrolyte for lithium battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH11185810A true JPH11185810A (en) 1999-07-09

Family

ID=18478842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9363237A Pending JPH11185810A (en) 1997-12-16 1997-12-16 Electrolyte for lithium battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH11185810A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080345A1 (en) * 2000-04-17 2001-10-25 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery
WO2003007416A1 (en) * 2001-07-10 2003-01-23 Mitsubishi Chemical Corporation Non-aqueous electrolyte and secondary cell using the same
JP2007207630A (en) * 2006-02-03 2007-08-16 Sumitomo Metal Mining Co Ltd Method for separating and recovering hexafluorophosphoric ion
WO2020075529A1 (en) * 2018-10-11 2020-04-16 オルガノ株式会社 Apparatus for producing non-aqueous electrolytic solution and method for producing non-aqueous electrolytic solution
JP2020068107A (en) * 2018-10-24 2020-04-30 オルガノ株式会社 Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution
JP2020068106A (en) * 2018-10-24 2020-04-30 オルガノ株式会社 Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution
WO2020085001A1 (en) * 2018-10-24 2020-04-30 オルガノ株式会社 Device for producing nonaqueous electrolytic solution and method of producing nonaqueous electrolytic solution
WO2021090640A1 (en) * 2019-11-07 2021-05-14 オルガノ株式会社 Apparatus for producing nonaqueous electrolyte solution and method for producing nonaqueous electrolyte solution

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080345A1 (en) * 2000-04-17 2001-10-25 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery
WO2003007416A1 (en) * 2001-07-10 2003-01-23 Mitsubishi Chemical Corporation Non-aqueous electrolyte and secondary cell using the same
EP1317013A1 (en) * 2001-07-10 2003-06-04 Mitsubishi Chemical Corporation Non-aqueous electrolyte and secondary cell using the same
US6942948B2 (en) 2001-07-10 2005-09-13 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and secondary battery employing the same
EP1317013A4 (en) * 2001-07-10 2009-01-21 Mitsubishi Chem Corp Non-aqueous electrolyte and secondary cell using the same
JP2007207630A (en) * 2006-02-03 2007-08-16 Sumitomo Metal Mining Co Ltd Method for separating and recovering hexafluorophosphoric ion
CN112771706A (en) * 2018-10-11 2021-05-07 奥加诺株式会社 Apparatus for producing nonaqueous electrolyte solution and method for producing nonaqueous electrolyte solution
WO2020075529A1 (en) * 2018-10-11 2020-04-16 オルガノ株式会社 Apparatus for producing non-aqueous electrolytic solution and method for producing non-aqueous electrolytic solution
JP2020061288A (en) * 2018-10-11 2020-04-16 オルガノ株式会社 Non-aqueous electrolyte production equipment and non-aqueous electrolyte production method
KR20210068113A (en) * 2018-10-11 2021-06-08 오르가노 코포레이션 Non-aqueous electrolyte manufacturing apparatus and non-aqueous electrolyte manufacturing method
JP2020068107A (en) * 2018-10-24 2020-04-30 オルガノ株式会社 Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution
WO2020085001A1 (en) * 2018-10-24 2020-04-30 オルガノ株式会社 Device for producing nonaqueous electrolytic solution and method of producing nonaqueous electrolytic solution
KR20210060616A (en) * 2018-10-24 2021-05-26 오르가노 코포레이션 Non-aqueous electrolyte manufacturing device and non-aqueous electrolyte manufacturing method
CN112889170A (en) * 2018-10-24 2021-06-01 奥加诺株式会社 Apparatus for producing nonaqueous electrolyte solution and method for producing nonaqueous electrolyte solution
JP2020068106A (en) * 2018-10-24 2020-04-30 オルガノ株式会社 Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution
US20210384557A1 (en) * 2018-10-24 2021-12-09 Organo Corporation Apparatus for producing non-aqueous electrolytic solution and method for producing non-aqueous electrolytic solution
WO2021090640A1 (en) * 2019-11-07 2021-05-14 オルガノ株式会社 Apparatus for producing nonaqueous electrolyte solution and method for producing nonaqueous electrolyte solution
CN114502279A (en) * 2019-11-07 2022-05-13 奥加诺株式会社 Apparatus for producing nonaqueous electrolyte solution and method for producing nonaqueous electrolyte solution

Similar Documents

Publication Publication Date Title
JP6367313B2 (en) Spherical particles, their production and methods of using them
JP4231411B2 (en) Electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
EP2436066B1 (en) Titanium system composite and the preparing method of the same
JP3439082B2 (en) Non-aqueous electrolyte secondary battery
JP2008539536A5 (en)
JPH11506721A (en) Improved manganese dioxide for lithium batteries
KR20120103640A (en) Purifier for removing hydrogen fluoride from electrolytic solution
TW201702178A (en) Method for purifying difluorophosphate
JPH11185810A (en) Electrolyte for lithium battery and its manufacture
JP2001126766A (en) Nonaqueous electrolyte secondary battery
JPS5981869A (en) Manufacture of lithium battery
JP3087956B2 (en) Electrolyte for lithium secondary battery, method for producing the same, and lithium secondary battery using the electrolyte
JP2005187282A (en) Lithium-nickel-manganese composite oxide and its manufacturing method as well as its use
JPH087886A (en) Nonaquoeus electrolytic secondary battery and manufacture thereof
JP2023116810A (en) Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution
JP2003257488A (en) Polymer gel electrolyte
JP6307127B2 (en) Method for producing lithium phosphate positive electrode active material
CN111697233B (en) Positive electrode of lithium-manganese battery and lithium-manganese battery
JP2000357537A (en) Magnesium oxide for purification of nonaqueous electrolyte and its preparation
KR100454017B1 (en) Method for manufacturing organic electrolytic solution and anode of lithium secondary battery and lithium secondary battery having organic electrolytic solution and anode manufactured by the same
JP2001307772A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JPH11185811A (en) Electrolytic solution for lithium battery and its manufacture
JPH09147864A (en) Nonaqueous electrolyte battery and its manufacture
WO2022230850A1 (en) Metal ion–containing nonaqueous solvent production material and metal ion–containing nonaqueous solvent production method
JP2000058119A (en) Manufacture of nonaqueous electrolyte for secondary battery