JPH087886A - Nonaquoeus electrolytic secondary battery and manufacture thereof - Google Patents

Nonaquoeus electrolytic secondary battery and manufacture thereof

Info

Publication number
JPH087886A
JPH087886A JP6138944A JP13894494A JPH087886A JP H087886 A JPH087886 A JP H087886A JP 6138944 A JP6138944 A JP 6138944A JP 13894494 A JP13894494 A JP 13894494A JP H087886 A JPH087886 A JP H087886A
Authority
JP
Japan
Prior art keywords
lithium
metal oxide
containing metal
secondary battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6138944A
Other languages
Japanese (ja)
Other versions
JP3192874B2 (en
Inventor
Yoshinori Kida
佳典 喜田
Mikiya Yamazaki
幹也 山崎
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13894494A priority Critical patent/JP3192874B2/en
Publication of JPH087886A publication Critical patent/JPH087886A/en
Application granted granted Critical
Publication of JP3192874B2 publication Critical patent/JP3192874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make voltage change in the final stage of discharge gently to easily detect the remaining capacity by using a mixture of graphite and a lithium-containing metal oxide in a negative electrode capable of absorbing/ desorbing lithium. CONSTITUTION:By adding a lithium-containing metal oxide to graphite, deintercalation (release) of lithium from the metal oxide is generated in the final stage of discharge and sharp rising in negative potential, or sharp drop in battery voltage is retarded. As a result, since battery voltage gently drops in the final stage of discharge while battery capacity and potential flatness are maintained, by detecting voltage in this part, the remaining capacity is easily detected. By controlling the mixing ratio of the lithium-containing metal oxide to 0.1-30wt.%, discharge capacity at 2.75-3.5V is increased, and the remaining capacity is easily detected. In addition, by limiting to 1-10wt.%, battery performance obtained by the complete discharge is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極材料として黒鉛を
用いた非水系二次電池に係わり、詳しくは、黒鉛を負極
に用いた電池の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery using graphite as a negative electrode material, and more particularly to improvement of a battery using graphite as a negative electrode.

【0002】[0002]

【従来の技術】近年、天然黒鉛、人造黒鉛等の黒鉛が、
高容量、電位の平坦性、更にはサイクル特性に優れる等
の理由から、非水系電解質二次電池の負極材料として注
目されている。
2. Description of the Related Art Recently, graphite such as natural graphite and artificial graphite has been
It has attracted attention as a negative electrode material for non-aqueous electrolyte secondary batteries because of its high capacity, potential flatness, and excellent cycle characteristics.

【0003】この黒鉛を負極に使用することは、公知の
コークス、難黒鉛性炭素等と比較して、電位の平坦性に
優れた電池が提供できるといえる。即ち、黒鉛負極を有
する電池は、電池電圧の変化が少ないことになる。然し
乍ら、放電末期において負極電位が急激に上昇し、電池
電圧が急激に下降するため、電池残存容量の検知が困難
であった。この結果、電池機器の使用途中において、突
然、電池容量がなくなってしまい、機器の停止に至ると
いう問題がある。
It can be said that the use of this graphite in the negative electrode makes it possible to provide a battery excellent in flatness of potential as compared with known coke, non-graphitizable carbon and the like. That is, the battery having the graphite negative electrode has a small change in battery voltage. However, at the end of discharge, the negative electrode potential sharply rises and the battery voltage sharply drops, making it difficult to detect the remaining battery capacity. As a result, there is a problem that the battery capacity suddenly runs out during use of the battery device, and the device is stopped.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上の問題
点に鑑みなされたものであって、その目的とするところ
は電池容量、電位の平坦性を維持しつつ、放電末期にお
いて電圧変化を緩やかに生じさせ、残存容量の検知が容
易な非水系電解質二次電池を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to maintain the flatness of the battery capacity and the potential while maintaining the voltage change at the end of discharge. (EN) It is intended to provide a non-aqueous electrolyte secondary battery which is caused gently and whose remaining capacity is easily detected.

【0005】更に、サイクル特性の向上を計った二次電
池の提供を目的としている。
Further, another object of the present invention is to provide a secondary battery having improved cycle characteristics.

【0006】[0006]

【課題を解決するための手段】本発明において、請求項
1に記載された非水系電解質二次電池は、黒鉛とリチウ
ム含有金属酸化物からなる混合体を、リチウムを吸蔵・
放出可能な負極として用いたことを特徴とする。
In the present invention, the non-aqueous electrolyte secondary battery according to claim 1 stores a lithium mixture containing graphite and a lithium-containing metal oxide.
It is characterized in that it is used as a dischargeable negative electrode.

【0007】また、請求項8に記載された非水系電解質
二次電池の製造方法は、リチウムを吸蔵させた状態のリ
チウム含金属酸化物と、黒鉛とを混合して混合体を得、
この混合物の水分を除去するような熱処理をして、リチ
ウムを吸蔵・放出可能な負極としたことを特徴とする。
Further, in the method for producing a non-aqueous electrolyte secondary battery according to claim 8, a lithium-containing metal oxide in a state of occluding lithium and graphite are mixed to obtain a mixture,
It is characterized in that the negative electrode capable of absorbing and desorbing lithium is subjected to a heat treatment for removing the water content of this mixture.

【0008】ここで混合体は、前記リチウム含有金属酸
化物を0.1重量%以上30重量%以下の範囲、特には1
重量%以上10重量%以下の範囲で添加、含有するのが
好ましい。
Here, the mixture contains the above-mentioned lithium-containing metal oxide in the range of 0.1% by weight to 30% by weight, particularly 1% by weight.
It is preferable to add and contain it in the range of not less than 10% by weight.

【0009】そして、前記リチウム含有金属酸化物とし
ては、LiNbO3、LiVO3、LiTi2O4、Li 2TiO3、Li2WO4から
なる群より選択された少なくとも1種のものが使用され
る。
Then, as the lithium-containing metal oxide,
LiNbO3, LiVO3, LiTi2OFour, Li 2TiO3, Li2WOFourFrom
At least one selected from the group consisting of
It

【0010】更に、正極材料(活物質)としてはLiCo
O2、LiNiO2、LiMn2O4、LiFeO2、LiM1XM2YOZで表される
化合物(XYZは任意の実数であり、M1、M2は遷移
金属)が好適なものとして挙げられる。
Further, LiCo is used as the positive electrode material (active material).
Compounds represented by O 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 , and LiM 1X M 2Y O Z ( X , Y , and Z are arbitrary real numbers, M 1 and M 2 are transition metals) are preferable. It is mentioned as a thing.

【0011】また、使用可能な溶媒として、例えば、エ
チレンカーボネート(EC)、ブチレンカーボネート
(BC)、ビニレンカーボネート(VC)、γ−ブチロ
ラクトン(γ−BL)、ジメチルカーボネート(DM
C)、ジエチルカーボネート(DEC)、メチルエチル
カーボネート(MEC)、ジメトキシエタン(DM
E)、テトラヒドロフラン(THF)、ジオキソラン
(DOXL)、1,2-ジエトキシエタン(DEE)等が使
用でき、電池設計に応じてこれらの混合溶媒が適宜使用
可能である。特に好ましいのは、実施例で示した如く、
エチレンカーボネート(EC)とジメトキシエタン(D
ME)との混合溶媒である。
Further, usable solvents include, for example, ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), γ-butyrolactone (γ-BL), dimethyl carbonate (DM).
C), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), dimethoxyethane (DM)
E), tetrahydrofuran (THF), dioxolane (DOXL), 1,2-diethoxyethane (DEE) and the like can be used, and a mixed solvent thereof can be appropriately used depending on the battery design. Particularly preferred is, as shown in the examples,
Ethylene carbonate (EC) and dimethoxyethane (D
ME) is a mixed solvent.

【0012】また、使用可能な溶質としては、LiPF6、L
iCF3SO3、LiBF4、LiAsF6、LiClO4を挙げることができる
が、二次電池のサイクル特性を考慮すれば、LiPF6、LiC
F3SO 3が特に好ましい。この溶質を0.7〜1.5M(モ
ル/リットル)、就中1M程度の割合で溶かした溶液が
最適である。また、固体電解質を用いてもよい。
Also, as a solute that can be used, LiPF6, L
iCF3SO3, LiBFFour, LiAsF6, LiClOFourCan mention
However, considering the cycle characteristics of the secondary battery, LiPF6, LiC
F3SO 3Is particularly preferable. This solute is added to 0.7-1.5M
The solution dissolved at a ratio of about 1M
Optimal. Moreover, you may use a solid electrolyte.

【0013】また、請求項5に記載された本発明の非水
系電解質二次電池は、LiNbO3、LiVO 3、LiTi2O4、Li2TiO
3、Li2WO4からなる群より選択された少なくとも一つの
リチウム含有金属酸化物と、黒鉛との混合体からなる負
極と、LiCoO2、LiNiO2、LiMn 2O4、LiFeO2、LiM1XM2YOZ
で表される化合物(XYZは任意の実数であり、M1
2は遷移金属)からなる群より選択された少なくとも
一つの材料からなる正極と、エチレンカーボネート(E
C)、ブチレンカーボネート(BC)、ビニレンカーボ
ネート(VC)、γ−ブチロラクトン(γ−BL)、ジ
メチルカーボネート(DMC)、ジエチルカーボネート
(DEC)、メチルエチルカーボネート(MEC)、ジ
メトキシエタン(DME)、テトラヒドロフラン(TH
F)、ジオキソラン(DOXL)、1,2-ジエトキシエタ
ン(DEE)からなる群より選択された少なくとも一つ
の非水電解液溶媒と、LiPF6、LiCF3SO3、LiBF4、LiAs
F6、LiClO4からなる群より選択された溶質とからなるこ
とを特徴とする。
Further, the non-water of the present invention according to claim 5
-Based electrolyte secondary battery is LiNbO3, LiVO 3, LiTi2OFour, Li2TiO
3, Li2WOFourAt least one selected from the group consisting of
Negative consisting of a mixture of lithium-containing metal oxide and graphite
Pole and LiCoO2, LiNiO2, LiMn 2OFour, LiFeO2, LiM1XM2YOZ
The compound represented byX,Y,ZIs any real number and M1,
M2Is at least a transition metal)
A positive electrode made of one material and ethylene carbonate (E
C), butylene carbonate (BC), vinylene carbo
Nate (VC), γ-butyrolactone (γ-BL), di
Methyl carbonate (DMC), diethyl carbonate
(DEC), methyl ethyl carbonate (MEC), di
Methoxyethane (DME), tetrahydrofuran (TH
F), dioxolane (DOXL), 1,2-diethoxyethane
At least one selected from the group consisting of
Non-aqueous electrolyte solvent and LiPF6, LiCF3SO3, LiBFFour, LiAs
F6, LiClOFourAnd a solute selected from the group consisting of
And are characterized.

【0014】ここにおいて、エチレンカーボネート(E
C)とジメトキシエタン(DME)との混合溶媒が好ま
しい。
Here, ethylene carbonate (E
A mixed solvent of C) and dimethoxyethane (DME) is preferred.

【0015】また溶質としては、LiPF6、LiCF3SO3から
なる群より選ばれた少なくとも一つのものが好適であ
る。また濃度としては0.7〜1.5M(モル/リット
ル)、就中1M程度の割合で溶かした溶液が最適であ
る。
As the solute, at least one selected from the group consisting of LiPF 6 and LiCF 3 SO 3 is suitable. The optimum concentration is 0.7 to 1.5 M (mol / liter), especially about 1 M.

【0016】そして更に、ここで使用される黒鉛として
は、黒鉛を粉砕した粉末をそのまま用いてもよく、精製
処理、加熱処理(500〜3700℃)、酸処理、アル
カリ処理、膨張化処理等の前処理を施したものを使用し
ても良い。
Further, as the graphite used here, powder obtained by pulverizing graphite may be used as it is, and it may be subjected to purification treatment, heat treatment (500 to 3700 ° C.), acid treatment, alkali treatment, expansion treatment and the like. You may use what performed the pretreatment.

【0017】尚、セパレータ(液体電解質を使用する場
合)などの電池を構成する他の部材については、従来の
非水系電池として実用され、或いは提案されている種々
の材料を特に制限なく使用することが可能である。
For other members constituting the battery such as a separator (when a liquid electrolyte is used), various materials that have been practically used or proposed as conventional non-aqueous batteries are used without particular limitation. Is possible.

【0018】[0018]

【作用】本発明においては、負極の黒鉛にリチウム含有
金属酸化物を加えることにより、放電末期に、金属酸化
物からのリチウムのデインターカレーション(放出)が
生じ、負極電位の急激な上昇、即ち電池電圧の急激な低
下を抑制することができる。この結果、電池容量、電位
平坦性を維持しつつ、放電末期に緩やかに電池電圧が低
下するので、この部分を検出することによって、残存容
量の検知を容易に行うことができる。
In the present invention, by adding a lithium-containing metal oxide to graphite of the negative electrode, deintercalation (release) of lithium from the metal oxide occurs at the end of discharge, resulting in a rapid increase in the negative electrode potential. That is, it is possible to suppress a rapid decrease in battery voltage. As a result, the battery voltage gradually decreases at the end of discharge while maintaining the battery capacity and potential flatness. Therefore, the remaining capacity can be easily detected by detecting this portion.

【0019】また、リチウム含有金属酸化物の混合割合
を、0.1重量%以上30重量%以下にしているのは、こ
の範囲において、2.75V以上3.5V以下における電池の
放電容量が大きくなり、残存容量の検知が容易にできる
為である。
Further, the mixing ratio of the lithium-containing metal oxide is set to 0.1% by weight or more and 30% by weight or less, because in this range, the discharge capacity of the battery at 2.75 V or more and 3.5 V or less becomes large, and the remaining capacity becomes This is because it can be easily detected.

【0020】そして、上記特性に加えて、特に1重量%
以上10重量%以下に設定することによって、電池をほ
とんど完全に放電させるまでの電池容量を向上させるこ
とができる。
In addition to the above characteristics, especially 1% by weight
By setting the content to 10% by weight or less, the battery capacity until the battery is almost completely discharged can be improved.

【0021】本発明電池では、負極の製造時に、リチウ
ム含有金属酸化物を混合、使用するため、初期充電にお
いて酸化物へのリチウム吸蔵がなく、放電のみに関与さ
せることができる。このため、初期充放電効率の低下が
なく、無添加時と比較して容量低下がほとんど観察され
ない。
In the battery of the present invention, since the lithium-containing metal oxide is mixed and used at the time of manufacturing the negative electrode, there is no lithium occlusion in the oxide during the initial charge and it can be involved only in the discharge. Therefore, there is no decrease in initial charge / discharge efficiency, and almost no decrease in capacity is observed as compared with the case of no addition.

【0022】[0022]

【実施例】以下、本発明を実施例に基づいて詳細に説明
するが、本発明は下記実施例に何ら限定されるものでは
なく、その要旨を変更しない範囲において適宜変更して
実施することが可能である。 (実施例1) 〔負極の作製〕炭素塊(d002=3.356Å、Lc>1
000Å)に空気流を噴射・粉砕(ジェット粉砕)して
得られた黒鉛粉末と、リチウム含有金属酸化物としての
LiNbO3を重量比95:5で混合し、負極合剤を作製し
た。ここで、リチウム含有金属酸化物は、LiNbO3の組成
式で示されるものを添加混合しており、このようにリチ
ウムを吸蔵させた状態のものが本発明においては使用で
きる。
EXAMPLES The present invention will be described below in detail based on examples. However, the present invention is not limited to the following examples, and various modifications may be made without departing from the scope of the invention. It is possible. (Example 1) [Production of negative electrode] Carbon lump (d 002 = 3.356Å, Lc> 1)
Graphite powder obtained by jetting and crushing (1000 Å) an air stream and jetting it as a lithium-containing metal oxide.
LiNbO 3 was mixed at a weight ratio of 95: 5 to prepare a negative electrode mixture. Here, as the lithium-containing metal oxide, a compound represented by a composition formula of LiNbO 3 is added and mixed, and a state in which lithium is occluded in this way can be used in the present invention.

【0023】次に、結着剤であるポリフッ化ビニリデン
を、N−メチル−2−ピロリドン(NMP)に5重量%
溶解させ、NMP溶液を調製した。上記負極合剤とポリ
フッ化ビニリデンとの重量比が95:5になるように、
負極合剤とNMP溶液とを混練して、スラリーを調製し
た。このスラリーを負極集電体としての銅箔の両面に、
ドクターブレード法により塗布し、150℃で2時間、
真空乾燥して、負極を作製した。
Next, polyvinylidene fluoride as a binder was added to N-methyl-2-pyrrolidone (NMP) in an amount of 5% by weight.
It was made to melt | dissolve and the NMP solution was prepared. So that the weight ratio of the negative electrode mixture and polyvinylidene fluoride is 95: 5,
The negative electrode mixture and the NMP solution were kneaded to prepare a slurry. This slurry on both sides of the copper foil as a negative electrode current collector,
Apply by doctor blade method, 150 ℃ for 2 hours,
It was vacuum dried to prepare a negative electrode.

【0024】尚、この真空乾燥は、水分とNMPを除去
するための熱処理である。この熱処理は、80℃から1
80℃の温度範囲で30分から5時間程度、適宜、水分
とNMPの除去状態を考慮して設定すべきである。 〔正極の作製〕正極活物質としてのLiCoO2と導電剤とし
ての人造黒鉛とを、重量比9:1で混合し、正極合剤を
作製した。また、結着剤であるポリフッ化ビニリデン
を、NMPに5重量%溶解させ、NMP溶液を調製し
た。そして、正極合剤とポリフッ化ビニリデンとの重量
比が95:5になるように、正極合剤とNMP溶液を混
練してスラリーを調製した。このスラリーを正極集電体
としてのアルミニウム箔の両面にドクターブレード法に
より塗布し、150℃で2時間、真空乾燥して、正極を
作製した。 〔電解液の調製〕エチレンカーボネート(EC)と1,2-
ジメトキシエタン(DME)との等体積混合溶媒に、Li
PF6(ヘキサフルオロリン酸リチウム)を1モル/リット
ルの濃度で溶かして、非水系電解液を調製した。 〔電池の組立〕以上の正、負極及び電解液を用いて、A
Aサイズ(単3型)の本発明電池Aを作製した。尚、セ
パレータとしては、イオン透過性のポリプロピレン製の
微多孔膜を用いている。
The vacuum drying is a heat treatment for removing water and NMP. This heat treatment is from 80 ℃ to 1
It should be set in the temperature range of 80 ° C. for about 30 minutes to 5 hours, appropriately considering the removal state of water and NMP. [Production of Positive Electrode] LiCoO 2 as a positive electrode active material and artificial graphite as a conductive agent were mixed at a weight ratio of 9: 1 to produce a positive electrode mixture. Further, polyvinylidene fluoride, which is a binder, was dissolved in 5% by weight in NMP to prepare an NMP solution. Then, the positive electrode mixture and the NMP solution were kneaded to prepare a slurry so that the weight ratio of the positive electrode mixture and polyvinylidene fluoride was 95: 5. This slurry was applied on both sides of an aluminum foil as a positive electrode current collector by the doctor blade method and vacuum dried at 150 ° C. for 2 hours to produce a positive electrode. [Preparation of Electrolyte Solution] Ethylene carbonate (EC) and 1,2-
In an equal volume mixed solvent with dimethoxyethane (DME), Li
PF 6 (lithium hexafluorophosphate) was dissolved at a concentration of 1 mol / liter to prepare a non-aqueous electrolyte solution. [Battery assembly] Using the above positive and negative electrodes and electrolyte solution,
A size A battery (AA type) of the present invention A was manufactured. As the separator, an ion-permeable polypropylene microporous film is used.

【0025】図1は作製した本発明電池Aを模式的に示
す断面図である。図1に示すように、本発明電池Aは、
正極1及び負極2、これら両極を離間するセパレータ
3、負極缶4、負極リード5、正極リード6、正極外部
端子7、絶縁パッキング8などから構成される。正極1
及び負極2は、非水系電解液を注入、保持させたセパレ
ータ3を介して渦巻状に巻き取られた状態で渦巻電極体
を構成している。この電極体は、負極缶4内に収容され
ている。正極1は正極リード6を介して正極外部端子7
に、また負極2は負極リード5を介して負極缶4に接続
され、電池A内部で生じた化学エネルギーを電気エネル
ギーとして外部に取り出し得るようになっている。絶縁
パッキング8は、正極外部端子7と負極缶4とを絶縁、
密閉している。 (実施例2)負極の主材料として、黒鉛粉末とリチウム
含有金属酸化物LiVO3とを、重量比95:5で混合し負
極合剤を作製したこと以外は実施例1と同様にして、本
発明電池A2を組み立てた。 (実施例3)負極の主材料として、黒鉛粉末とリチウム
含有金属酸化物LiTi2O4とを、重量比95:5で混合し
負極合剤を作製したこと以外は実施例1と同様にして、
本発明電池A3を組み立てた。 (実施例4)負極の主材料として、黒鉛粉末とリチウム
含有金属酸化物Li2TiO3とを、重量比95:5で混合し
負極合剤を作製したこと以外は実施例1と同様にして、
本発明電池A4を組み立てた。 (実施例5)負極の主材料として、黒鉛粉末とリチウム
含有金属酸化物Li2WO4とを、重量比95:5で混合し負
極合剤を作製したこと以外は実施例1と同様にして、本
発明電池A5を組み立てた。 (比較例)負極の主材料として、リチウム含有金属酸化
物を添加混合せずに、黒鉛粉末をそのまま負極合剤とし
て用いたこと以外は実施例1と同様にして、比較電池X
を組み立てた。 〔充放電特性〕このようにして得た本発明電池A1〜A
5及び比較電池Xを用いて、充放電容量と、電池電圧の
関係について調べた。この時の実験条件は、各電池を、
200mAで充電終止電圧4.2Vまで充電した後、2
00mAで放電終止電圧2.75Vまで放電して、このとき
の充放電特性を調査するというものである。この結果
を、図2に示す。
FIG. 1 is a sectional view schematically showing the manufactured battery A of the present invention. As shown in FIG. 1, the battery A of the present invention is
It is composed of a positive electrode 1 and a negative electrode 2, a separator 3 separating these two electrodes, a negative electrode can 4, a negative electrode lead 5, a positive electrode lead 6, a positive electrode external terminal 7, an insulating packing 8, and the like. Positive electrode 1
The negative electrode 2 and the negative electrode 2 form a spiral electrode body in a state of being spirally wound via the separator 3 in which the nonaqueous electrolytic solution is injected and held. The electrode body is housed in the negative electrode can 4. The positive electrode 1 is connected to the positive electrode external terminal 7 via the positive electrode lead 6.
In addition, the negative electrode 2 is connected to the negative electrode can 4 via the negative electrode lead 5 so that the chemical energy generated inside the battery A can be taken out as electric energy to the outside. The insulating packing 8 insulates the positive electrode external terminal 7 from the negative electrode can 4,
It is sealed. As a main material (Example 2) the negative electrode, and a graphite powder and a lithium-containing metal oxide LiVO 3, a weight ratio of 95: except prepared were mixed in 5 negative electrode mixture in the same manner as in Example 1, the Invention battery A2 was assembled. (Example 3) As in Example 1, except that graphite powder and lithium-containing metal oxide LiTi 2 O 4 were mixed at a weight ratio of 95: 5 as a main material of the negative electrode to prepare a negative electrode mixture. ,
The present invention battery A3 was assembled. (Example 4) As in Example 1, except that graphite powder and lithium-containing metal oxide Li 2 TiO 3 were mixed at a weight ratio of 95: 5 as a main material of the negative electrode to prepare a negative electrode mixture. ,
The present invention battery A4 was assembled. As a main material (Example 5) anode, a graphite powder and a lithium-containing metal oxides Li 2 WO 4, the weight ratio of 95: except were mixed in a 5 to form anode mixture in the same manner as in Example 1 The present invention battery A5 was assembled. (Comparative Example) Comparative battery X was prepared in the same manner as in Example 1 except that graphite powder was directly used as the negative electrode mixture without adding and mixing the lithium-containing metal oxide as the main material of the negative electrode.
Assembled. [Charge / Discharge Characteristics] The present invention batteries A1 to A thus obtained
Using 5 and Comparative Battery X, the relationship between charge / discharge capacity and battery voltage was investigated. The experimental conditions at this time are as follows:
After charging at a final voltage of 4.2V at 200mA, 2
This is to discharge to a discharge end voltage of 2.75 V at 00 mA and investigate the charge / discharge characteristics at this time. The result is shown in FIG.

【0026】図2は、各電池の充放電特性を、横軸に電
池容量(mAh)を、縦軸に電池電圧(V)をとって示
したグラフである。図2より、リチウム含有金属酸化物
を加えた本発明電池A1〜A5は、従来の比較電池Xに
比し、電位平坦性を維持し、且つ放電末期の電圧降下が
緩やかになり、残量検知が容易になっていることが分か
る。
FIG. 2 is a graph showing the charge / discharge characteristics of each battery, with the horizontal axis representing the battery capacity (mAh) and the vertical axis representing the battery voltage (V). From FIG. 2, the batteries A1 to A5 of the present invention to which the lithium-containing metal oxide is added maintain the potential flatness and have a gradual voltage drop at the end of discharge as compared with the conventional comparative battery X, and detect the remaining amount. You can see that it has become easier.

【0027】また、本発明電池A1〜A5では、負極の
初期充放電効率の低下がないため、リチウムを含有しな
い金属酸化物を負極に使用した電池に対して、容量が大
きいといえる。 〔サイクル特性〕次にこれらの本発明電池A1〜A5及
び比較電池Xを用いて、サイクル数と、電池の放電容量
の関係について調べた。この時の実験条件は、各電池
を、200mAで充電終止電圧4.2Vまで充電した
後、200mAで放電終止電圧2.75Vまで放電し、サイ
クル特性の検討を行った。この結果を、図3に示す。
Further, in the batteries A1 to A5 of the present invention, since the initial charge / discharge efficiency of the negative electrode does not decrease, it can be said that the capacity is larger than the battery using a metal oxide containing no lithium in the negative electrode. [Cycle characteristics] Next, using the present batteries A1 to A5 and the comparative battery X, the relationship between the number of cycles and the discharge capacity of the battery was examined. Regarding the experimental conditions at this time, each battery was charged at 200 mA to a charge end voltage of 4.2 V, then discharged at 200 mA to a discharge end voltage of 2.75 V, and the cycle characteristics were examined. The result is shown in FIG.

【0028】図3は、各電池のサイクル特性を、横軸に
サイクル数(回)を、縦軸に電池容量(mAh)をプロ
ットして示したグラフである。図3より、本発明電池A
1〜A5は、比較電池Xに比べて、サイクル特性が優れ
ていることが理解できる。 〔放電特性〕特に、本発明電池A1を基にして、負極合
材中のリチウム含有金属酸化物LiNbO3の添加、混合割合
を変化させ、各電池の特性変化を調べた。この時の実験
条件は、上記サイクル特性の充放電条件と同様とし、4
00サイクル目の電池容量(mAh)を左軸に、そして
400サイクル目であって特に2.75〜3.5V間の電池容
量(mAh)を右軸にプロットした。この結果を、図4
に示す。
FIG. 3 is a graph showing the cycle characteristics of each battery by plotting the number of cycles (times) on the horizontal axis and the battery capacity (mAh) on the vertical axis. From FIG. 3, the battery A of the present invention
It can be understood that 1 to A5 have excellent cycle characteristics as compared with the comparative battery X. [Discharge Characteristics] In particular, based on the battery A1 of the present invention, the addition and mixing ratio of the lithium-containing metal oxide LiNbO 3 in the negative electrode mixture were changed, and the change in the characteristics of each battery was investigated. The experimental conditions at this time are the same as the charge / discharge conditions of the cycle characteristics described above.
The battery capacity (mAh) at the 00th cycle is plotted on the left axis, and the battery capacity (mAh) at the 400th cycle, particularly between 2.75 and 3.5V, is plotted on the right axis. This result is shown in FIG.
Shown in

【0029】これより、リチウム含有金属酸化物の混合
割合を、0.1重量%以上30重量%以下にすることによ
って、2.75V以上3.5V以下における電池容量を向上さ
せることができる。
From the above, by setting the mixing ratio of the lithium-containing metal oxide to 0.1% by weight or more and 30% by weight or less, the battery capacity at 2.75 V or more and 3.5 V or less can be improved.

【0030】尚、ここで2.75V以上3.5V以下における
電池容量とは、黒鉛のみを負極に用いた電池の放電末期
では殆ど観察されない容量ではあるが、リチウム含有金
属酸化物を添加することによって放電末期に顕著に増加
し、観察される容量のことである。
The battery capacity at 2.75 V or more and 3.5 V or less is a capacity that is hardly observed at the end of discharge of a battery using only graphite for the negative electrode, but discharge by adding a lithium-containing metal oxide. It is the volume that is significantly increased and observed at the end stage.

【0031】そして、特に混合割合を1重量%以上10
重量%以下に設定することによって、上記の効果に加え
て、電池をほとんど完全に放電させるまでの電池容量が
向上していることが理解できる。
In particular, the mixing ratio is 1% by weight or more and 10
It can be understood that by setting the content to be less than or equal to wt%, in addition to the above effects, the battery capacity until the battery is almost completely discharged is improved.

【0032】この実験例ではリチウム含有金属酸化物と
してLiNbO3を使用しているが、これ以外のLiVO3、LiTi2
O4、Li2TiO3、Li2WO4を用いても放電特性、添加割合に
ついては、上記と同様の傾向が観察された。
In this experimental example, LiNbO 3 was used as the lithium-containing metal oxide, but other LiVO 3 and LiTi 2 were used.
Even when O 4 , Li 2 TiO 3 , and Li 2 WO 4 were used, the same tendency was observed in the discharge characteristics and the addition ratio.

【0033】上述したとおり、実施例では円筒型のもの
を例示したが、本発明電池はその形状に特に制限はな
く、扁平型、角型など、他の種々の形状の非水系電解質
電池に適用し得るものである。
As described above, the cylindrical type is illustrated in the examples, but the battery of the present invention is not particularly limited in its shape, and is applied to various other types of non-aqueous electrolyte batteries such as flat type and rectangular type. It is possible.

【0034】[0034]

【発明の効果】本発明電池では、リチウム含有金属酸化
物を混合した炭素粉末を負極材料として使用しているの
で、放電末期における負極電位の急激な上昇が抑制され
る。つまり、電池として観察すれば、急激な電圧降下が
抑制されることになる。即ち、、放電末期における残存
容量検知が容易となる。更に、この種電池のサイクル特
性を向上させることができ、その工業的価値は極めて大
きい。
In the battery of the present invention, carbon powder mixed with a lithium-containing metal oxide is used as a negative electrode material, so that a rapid increase in the negative electrode potential at the end of discharge can be suppressed. That is, when observed as a battery, a rapid voltage drop is suppressed. That is, it becomes easy to detect the remaining capacity at the end of discharge. Furthermore, the cycle characteristics of this type of battery can be improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で作製した本発明電池の断面図である。FIG. 1 is a cross-sectional view of a battery of the present invention manufactured in an example.

【図2】本発明電池と比較電池の、電池容量と電池電圧
の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the battery capacity and the battery voltage of the battery of the present invention and the comparative battery.

【図3】本発明電池と比較電池の、サイクル特性比較図
である。
FIG. 3 is a comparison diagram of cycle characteristics of a battery of the present invention and a comparative battery.

【図4】負極合材中におけるリチウム含有金属酸化物の
添加割合と、電池容量、2.75〜3.5V間の電池容量の関
係を示す図である。
FIG. 4 is a diagram showing the relationship between the addition ratio of a lithium-containing metal oxide in a negative electrode mixture, the battery capacity, and the battery capacity between 2.75 and 3.5V.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 負極缶 5 負極リード 6 正極リード 7 正極外部端子 8 絶縁パッキング A1〜A5 本発明電池 X 比較電池 1 Positive electrode 2 Negative electrode 3 Separator 4 Negative electrode can 5 Negative electrode lead 6 Positive electrode lead 7 Positive electrode external terminal 8 Insulation packing A1 to A5 Inventive battery X Comparative battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 齋藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Saito 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛とリチウム含有金属酸化物からなる
混合体を、リチウムを吸蔵・放出可能な負極として用い
たことを特徴とする非水系電解質二次電池。
1. A non-aqueous electrolyte secondary battery characterized by using a mixture of graphite and a lithium-containing metal oxide as a negative electrode capable of inserting and extracting lithium.
【請求項2】 前記混合体は、前記リチウム含有金属酸
化物を0.1重量%以上30重量%以下の範囲で含有する
ことを特徴とする請求項1記載の非水系電解質二次電
池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the mixture contains the lithium-containing metal oxide in a range of 0.1% by weight or more and 30% by weight or less.
【請求項3】 前記混合体は、前記リチウム含有金属酸
化物を1重量%以上10重量%以下の範囲で含有するこ
とを特徴とする請求項2記載の非水系電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 2, wherein the mixture contains the lithium-containing metal oxide in a range of 1% by weight or more and 10% by weight or less.
【請求項4】 前記リチウム含有金属酸化物が、LiNb
O3、LiVO3、LiTi2O4、Li2TiO3、Li2WO4からなる群より
選択された少なくとも1種のものであることを特徴とす
る請求項1記載の非水系電解質二次電池。
4. The lithium-containing metal oxide is LiNb
The non-aqueous electrolyte secondary battery according to claim 1, which is at least one selected from the group consisting of O 3 , LiVO 3 , LiTi 2 O 4 , Li 2 TiO 3 , and Li 2 WO 4. .
【請求項5】 LiNbO3、LiVO3、LiTi2O4、Li2TiO3、Li2
WO4からなる群より選択された少なくとも一つのリチウ
ム含有金属酸化物と、黒鉛との混合体からなる負極と、 LiCoO2、LiNiO2、LiMn2O4、LiFeO2、LiM1XM2YOZで表さ
れる化合物(XYZは任意の実数であり、M1、M2
遷移金属)からなる群より選択された少なくとも一つの
材料からなる正極と、 エチレンカーボネート(EC)、ブチレンカーボネート
(BC)、ビニレンカーボネート(VC)、γ−ブチロ
ラクトン(γ−BL)、ジメチルカーボネート(DM
C)、ジエチルカーボネート(DEC)、メチルエチル
カーボネート(MEC)、ジメトキシエタン(DM
E)、テトラヒドロフラン(THF)、ジオキソラン
(DOXL)、1,2-ジエトキシエタン(DEE)からな
る群より選択された少なくとも一つの非水電解液溶媒
と、 LiPF6、LiCF3SO3、LiBF4、LiAsF6、LiClO4からなる群よ
り選択された少なくとも一つの溶質とからなることを特
徴とする非水系電解質二次電池。
5. LiNbO 3 , LiVO 3 , LiTi 2 O 4 , Li 2 TiO 3 , Li 2
At least one lithium-containing metal oxide selected from the group consisting of WO 4 , and a negative electrode composed of a mixture of graphite, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 , LiM 1X M 2Y O Z A positive electrode made of at least one material selected from the group consisting of compounds ( X , Y , and Z are arbitrary real numbers and M 1 and M 2 are transition metals), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), γ-butyrolactone (γ-BL), dimethyl carbonate (DM
C), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), dimethoxyethane (DM)
E), tetrahydrofuran (THF), dioxolane (DOXL), at least one non-aqueous electrolyte solvent selected from the group consisting of 1,2-diethoxyethane (DEE), LiPF 6 , LiCF 3 SO 3 , and LiBF 4 , LiAsF 6 , and LiClO 4 and at least one solute selected from the group consisting of LiClO 4 and a non-aqueous electrolyte secondary battery.
【請求項6】 前記溶媒が、エチレンカーボネート(E
C)とジメトキシエタン(DME)との混合溶媒である
ことを特徴とする請求項5記載の非水系電解質二次電
池。
6. The solvent is ethylene carbonate (E
The non-aqueous electrolyte secondary battery according to claim 5, which is a mixed solvent of C) and dimethoxyethane (DME).
【請求項7】 前記溶質が、LiPF6、LiCF3SO3からなる
群より選ばれた少なくとも一つであることを特徴とする
請求項5記載の非水系電解質二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 5, wherein the solute is at least one selected from the group consisting of LiPF 6 and LiCF 3 SO 3 .
【請求項8】 リチウムを吸蔵させた状態のリチウム含
有金属酸化物と、黒鉛とを混合して混合体を得、この混
合物を熱処理して、リチウムを吸蔵・放出可能な負極と
したことを特徴とする非水系電解質二次電池の製造方
法。
8. A negative electrode capable of occluding / releasing lithium is obtained by mixing a lithium-containing metal oxide in a state of occluding lithium with graphite to obtain a mixture, and heat-treating the mixture. And a method for manufacturing a non-aqueous electrolyte secondary battery.
【請求項9】 前記混合体は、前記リチウム含有金属酸
化物を0.1重量%以上30重量%以下の範囲で含有する
ことを特徴とする請求項8記載の非水系電解質二次電池
の製造方法。
9. The method for producing a non-aqueous electrolyte secondary battery according to claim 8, wherein the mixture contains the lithium-containing metal oxide in a range of 0.1% by weight or more and 30% by weight or less.
【請求項10】 前記混合体は、前記リチウム含有金属
酸化物を1重量%以上10重量%以下の範囲で含有する
ことを特徴とする請求項9記載の非水系電解質二次電池
の製造方法。
10. The method for producing a non-aqueous electrolyte secondary battery according to claim 9, wherein the mixture contains the lithium-containing metal oxide in a range of 1% by weight or more and 10% by weight or less.
【請求項11】 前記リチウム含有金属酸化物が、LiNb
O3、LiVO3、LiTi2O4、Li2TiO3、Li2WO4からなる群より
選択された少なくとも1種のものであることを特徴とす
る請求項8記載の非水系電解質二次電池の製造方法。
11. The lithium-containing metal oxide is LiNb
The non-aqueous electrolyte secondary battery according to claim 8, which is at least one selected from the group consisting of O 3 , LiVO 3 , LiTi 2 O 4 , Li 2 TiO 3 , and Li 2 WO 4. Manufacturing method.
JP13894494A 1994-06-21 1994-06-21 Non-aqueous electrolyte secondary battery and method of manufacturing the same Expired - Fee Related JP3192874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13894494A JP3192874B2 (en) 1994-06-21 1994-06-21 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13894494A JP3192874B2 (en) 1994-06-21 1994-06-21 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH087886A true JPH087886A (en) 1996-01-12
JP3192874B2 JP3192874B2 (en) 2001-07-30

Family

ID=15233809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13894494A Expired - Fee Related JP3192874B2 (en) 1994-06-21 1994-06-21 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3192874B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216962A (en) * 2000-02-01 2001-08-10 Toyota Central Res & Dev Lab Inc Megative electrode for lithium secondary battery
JP2006008472A (en) * 2004-06-29 2006-01-12 Hitachi Powdered Metals Co Ltd Nano-structured graphite, its composite material, conductive material and catalyst material using them
JP2007172954A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2007299728A (en) * 2006-05-01 2007-11-15 Lg Chem Ltd Lithium secondary battery improved in low temperature properties
EP2405523A3 (en) * 2004-12-07 2012-04-25 LG Chem, Ltd. Nonaqueous electrolyte comprising oxyanions and lithium secondary battery using the same
JP2013235653A (en) * 2012-05-02 2013-11-21 Toyota Motor Corp Sealed nonaqueous electrolyte secondary battery
WO2015159331A1 (en) * 2014-04-14 2015-10-22 株式会社日立製作所 Solid-state battery, electrode for solid-state battery, and production processes therefor
JP2016500463A (en) * 2013-03-15 2016-01-12 エルジー・ケム・リミテッド High capacity negative electrode active material and lithium secondary battery including the same
JP2016081691A (en) * 2014-10-16 2016-05-16 日立化成株式会社 Lithium ion secondary battery, negative electrode and battery system using these
US9444120B2 (en) 2005-12-21 2016-09-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method for manufacturing the same
JP2016201223A (en) * 2015-04-09 2016-12-01 株式会社Gsユアサ Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017045537A (en) * 2015-08-24 2017-03-02 トヨタ自動車株式会社 Manufacturing method of negative electrode for lithium ion secondary battery and negative electrode for lithium ion secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216962A (en) * 2000-02-01 2001-08-10 Toyota Central Res & Dev Lab Inc Megative electrode for lithium secondary battery
JP2006008472A (en) * 2004-06-29 2006-01-12 Hitachi Powdered Metals Co Ltd Nano-structured graphite, its composite material, conductive material and catalyst material using them
EP2405523A3 (en) * 2004-12-07 2012-04-25 LG Chem, Ltd. Nonaqueous electrolyte comprising oxyanions and lithium secondary battery using the same
US8597826B2 (en) 2004-12-07 2013-12-03 Lg Chem, Ltd. Nonaqueous electrolyte comprising oxyanion and lithium secondary battery using the same
US9444120B2 (en) 2005-12-21 2016-09-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method for manufacturing the same
JP2007172954A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2007299728A (en) * 2006-05-01 2007-11-15 Lg Chem Ltd Lithium secondary battery improved in low temperature properties
JP2013058495A (en) * 2006-05-01 2013-03-28 Lg Chem Ltd Lithium secondary battery excellent in low-temperature output characteristics
JP2013235653A (en) * 2012-05-02 2013-11-21 Toyota Motor Corp Sealed nonaqueous electrolyte secondary battery
JP2016500463A (en) * 2013-03-15 2016-01-12 エルジー・ケム・リミテッド High capacity negative electrode active material and lithium secondary battery including the same
US10074850B2 (en) 2013-03-15 2018-09-11 Lg Chem, Ltd. High-capacity negative electrode active material and lithium secondary battery including the same
WO2015159331A1 (en) * 2014-04-14 2015-10-22 株式会社日立製作所 Solid-state battery, electrode for solid-state battery, and production processes therefor
JP2016081691A (en) * 2014-10-16 2016-05-16 日立化成株式会社 Lithium ion secondary battery, negative electrode and battery system using these
JP2016201223A (en) * 2015-04-09 2016-12-01 株式会社Gsユアサ Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017045537A (en) * 2015-08-24 2017-03-02 トヨタ自動車株式会社 Manufacturing method of negative electrode for lithium ion secondary battery and negative electrode for lithium ion secondary battery

Also Published As

Publication number Publication date
JP3192874B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
JP3685500B2 (en) Nonaqueous electrolyte secondary battery
JPH0652887A (en) Lithium secondary battery
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JPH08195220A (en) Manufacture of nonaqueous polymer battery and of polymer film for use in same
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JPH07122296A (en) Non-aqueous electrolyte secondary battery
JPH1140156A (en) Nonaqueous electrolyte secondary battery
JP2005135775A (en) Lithium ion secondary battery
JP3192874B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH11111332A (en) Nonaqueous electrolyte battery
JPH0878052A (en) Lithium secondary battery
JP2002358961A (en) Non-aqueous electrolyte secondary battery
JPH09147910A (en) Lithium secondary battery
JPH09306541A (en) Nonaqueous electrolyte battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP2000260475A (en) Lithium secondary battery
JPH08306386A (en) Manaqueous electrolyte secondary battery
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP3426900B2 (en) Non-aqueous electrolyte battery
JP3610898B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JPH09147864A (en) Nonaqueous electrolyte battery and its manufacture
JPH117977A (en) Non-aqueous electrolyte battery
JPH09237624A (en) Lithium battery
JP3072049B2 (en) Lithium secondary battery
JP4356127B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees