JP2001216962A - Megative electrode for lithium secondary battery - Google Patents

Megative electrode for lithium secondary battery

Info

Publication number
JP2001216962A
JP2001216962A JP2000023738A JP2000023738A JP2001216962A JP 2001216962 A JP2001216962 A JP 2001216962A JP 2000023738 A JP2000023738 A JP 2000023738A JP 2000023738 A JP2000023738 A JP 2000023738A JP 2001216962 A JP2001216962 A JP 2001216962A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
lithium secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000023738A
Other languages
Japanese (ja)
Other versions
JP4752085B2 (en
Inventor
Hideyuki Nakano
秀之 中野
Yoji Takeuchi
要二 竹内
Yoshio Ukiyou
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000023738A priority Critical patent/JP4752085B2/en
Publication of JP2001216962A publication Critical patent/JP2001216962A/en
Application granted granted Critical
Publication of JP4752085B2 publication Critical patent/JP4752085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode capable of constituting a lithium secondary battery having high energy density and superior durability, by solving the problems on a lithium secondary battery using a carbon material as a negative electrode active material, which are retention, cycling deterioration and capacity decreases during high-temperature storage. SOLUTION: The carbon material as a main active material and a lithium- titanium combined oxide represented by a composition formula LixTiyO4 (0.5 <=x<=3, 1<=y<=2.5), as a subsidiary active material are used as active materials to form the negative electrode for the lithium secondary battery. Namely, the lithium-titanium oxide is subsidiarily added to the carbon material to form the negative electrode active material which is used to form the negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムの吸蔵・
脱離現象を利用したリチウム二次電池に用いることので
きる電極に関する。
TECHNICAL FIELD The present invention relates to a method for storing and storing lithium.
The present invention relates to an electrode that can be used for a lithium secondary battery utilizing a desorption phenomenon.

【0002】[0002]

【従来の技術】通信機器、情報関連機器の分野では、携
帯電話、ノートパソコン等の小型化に伴い、高エネルギ
ー密度であるという理由から、リチウム二次電池が既に
実用化され、広く普及するに至っている。一方、自動車
の分野でも、大気汚染や二酸化炭素の増加等の環境問題
により、電気自動車の早期実用化が望まれており、この
電気自動車用電源として、リチウム二次電池を用いるこ
とも検討されている。
2. Description of the Related Art In the field of communication equipment and information-related equipment, lithium secondary batteries have already been put to practical use and spread widely because of the high energy density accompanying the miniaturization of mobile phones and notebook personal computers. Has reached. On the other hand, in the field of automobiles, early commercialization of electric vehicles is desired due to environmental problems such as air pollution and an increase in carbon dioxide, and the use of lithium secondary batteries as power sources for electric vehicles has been studied. I have.

【0003】現在リチウム二次電池は、負極表面のデン
ドライトの析出がない等の安全性等の理由から、負極活
物質に炭素材料を用いたいわゆるリチウムイオン二次電
池が主流を成している。ところが、負極活物質として炭
素材料を用いたリチウム二次電池では、初回放電におい
て炭素材料中にトラップされ、以後の電池反応に寄与し
なくなるというリテンション(不可逆容量)の問題が生
じ、放電容量の低下を招く一因となっている。また、炭
素材料の酸化/還元電位がLi/Li+の電位に対して
0.1Vと低く、そのため負極表面(活物質表面)にお
いて非水電解液が分解を起こし、リチウムと反応して負
極表面にリチウム化合物が生成されるといった理由等か
ら、充放電を繰り返すにつれて充放電に寄与するリチウ
ムが失活し、放電容量が減少するというサイクル劣化の
問題をも生じている。なお、高温環境下においては、電
池反応が活性化するため、高温下にリチウム二次電池を
保存する場合はリチウムの失活量は大きくなり、やはり
容量低下を生じる 一方で、特開平6−275263号公報等に示すよう
に、構造上安定で、サイクル特性が良好な負極活物質材
料として、リチウムチタン複合酸化物を用いることも検
討されている。また、特開平10−069922号公報
に示すように、リチウムチタン複合酸化物を主たる活物
質として用い、補助的にこれより酸化/還元電位の低い
活物質材料を添加し、耐過充電、耐過放電特性を向上さ
せた負極をも検討されている。
At present, lithium ion secondary batteries using a carbon material as a negative electrode active material are mainly used for lithium secondary batteries for safety reasons such as no dendrite deposition on the negative electrode surface. However, in a lithium secondary battery using a carbon material as a negative electrode active material, a problem of retention (irreversible capacity) occurs in which the carbon material is trapped in the initial discharge and does not contribute to the subsequent battery reaction, and the discharge capacity decreases. Is one of the causes. Further, the oxidation / reduction potential of the carbon material is as low as 0.1 V with respect to the potential of Li / Li + , so that the nonaqueous electrolyte solution decomposes on the negative electrode surface (active material surface), reacts with lithium, reacts with lithium, and reacts with lithium. For example, a lithium compound is generated during the charging and discharging operation, and lithium that contributes to charging and discharging is deactivated as charging and discharging are repeated, thereby causing a problem of cycle deterioration such that the discharge capacity is reduced. In a high-temperature environment, a battery reaction is activated. Therefore, when a lithium secondary battery is stored at a high temperature, a large amount of lithium is deactivated and the capacity is reduced. As disclosed in Japanese Patent Application Laid-Open Publication No. H10-163, the use of a lithium-titanium composite oxide as a negative electrode active material that is structurally stable and has good cycle characteristics is also being studied. Further, as disclosed in JP-A-10-069922, a lithium-titanium composite oxide is used as a main active material, and an active material having a lower oxidation / reduction potential is added in an auxiliary manner, to prevent overcharge and overcharge. Negative electrodes with improved discharge characteristics are also being studied.

【0004】このようにリチウムチタン複合酸化物を主
たる負極活物質として用いて構成したリチウム二次電池
は、負極の酸化/還元電位がLi/Li+の電位に対し
て1.5Vと比較的高く、上記電解液の分解が生じにく
く、また、その結晶構造の安定さから、サイクル特性の
良好なリチウム二次電池となる。しかし、リチウムチタ
ン複合酸化物は、その単位重量当たりの容量が炭素材料
の約1/2と小さく、エネルギー密度の小さなリチウム
二次電池しか構成できないという問題を抱えていた。
[0004] In the lithium secondary battery constructed using the lithium-titanium composite oxide as the main negative electrode active material, the oxidation / reduction potential of the negative electrode is relatively high at 1.5 V with respect to the potential of Li / Li +. In addition, the decomposition of the electrolyte is unlikely to occur, and the stability of the crystal structure results in a lithium secondary battery having good cycle characteristics. However, the lithium-titanium composite oxide has a problem that its capacity per unit weight is as small as about の that of a carbon material, and only a lithium secondary battery having a low energy density can be constituted.

【0005】[0005]

【発明が解決しようとする課題】本発明は、炭素材料を
負極活物質とするリチウム二次電池が抱えるリテンショ
ン、サイクル劣化および高温保存における容量低下の問
題を解決するためにされたものであり、上記リチウムチ
タン複合酸化物の有する利点を活用すべく、リチウムチ
タン複合酸化物を炭素材料に補助的に添加して活物質と
することにより、エネルギー密度が高くかつ耐久性に優
れたリチウム二次電池を構成することのできる負極を提
供することを課題としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of retention, cycle deterioration, and capacity reduction in high-temperature storage of a lithium secondary battery using a carbon material as a negative electrode active material. In order to utilize the advantages of the above-mentioned lithium-titanium composite oxide, a lithium secondary battery having a high energy density and excellent durability is obtained by adding a lithium-titanium composite oxide to a carbon material as an active material. It is an object of the present invention to provide a negative electrode which can constitute a negative electrode.

【0006】[0006]

【課題を解決するための手段】本発明のリチウム二次電
池用負極は、主たる活物質材料となる炭素材料と、補助
的活物質材料となる組成式LixTiy4(0.5≦x
≦3、1≦y≦2.5)で表されるリチウムチタン複合
酸化物とを、活物質として有することを特徴とする。つ
まり本発明の負極は、炭素材料にリチウムチタン酸化物
を補助的に添加して負極活物質とし、この負極活物質を
用いて負極を構成するものである。
Means for Solving the Problems The negative electrode for a lithium secondary battery of the present invention comprises a carbon material as a main active material and a composition formula Li x Ti y O 4 (0.5 ≦) as an auxiliary active material. x
≦ 3, 1 ≦ y ≦ 2.5) as an active material. That is, the negative electrode of the present invention is one in which lithium titanium oxide is supplementarily added to a carbon material to form a negative electrode active material, and a negative electrode is formed using the negative electrode active material.

【0007】本発明の負極は、主たる活物質として炭素
材料を用いているため、エネルギー密度を高く保持する
ことができるという利点がある。そして、上述したよう
に、リチウムチタン複合酸化物は、結晶構造が比較的安
定な上に、負極の酸化/還元電位がLi/Li+の電位
に対して1.5Vと比較的高いことから、これを添加す
ることによって、負極全体の酸化/還元電位をある程度
高くすることができ、充放電に伴う非水電解液の分解等
に起因するリチウムの失活によるサイクル劣化を抑制す
ることができる。
[0007] The negative electrode of the present invention has an advantage that the energy density can be kept high because a carbon material is used as a main active material. As described above, the lithium-titanium composite oxide has a relatively stable crystal structure and a relatively high oxidation / reduction potential of the negative electrode of 1.5 V with respect to the potential of Li / Li + , By adding this, the oxidation / reduction potential of the entire negative electrode can be increased to some extent, and cycle deterioration due to deactivation of lithium due to decomposition of the nonaqueous electrolyte due to charge / discharge can be suppressed.

【0008】また、炭素材料はその中にリチウムがトラ
ップされて不可逆容量を発生するが、リチウムチタン複
合酸化物は炭素材料に比べこの不可逆容量が小さい。し
たがって、リチウムチタン複合酸化物を添加すること
は、負極全体の不可逆容量を減少させるように作用し、
初期の充放電によるリテンションおよびその後のサイク
ル進行に伴う容量低下を効率よく緩和できる。さらに、
高温下では、電池反応が活性化するためリチウムの失活
による容量低下は著しい、したがって高温サイクル特
性、高温保存特性についても充分に改善されることとな
る。
Further, lithium is trapped in the carbon material to generate an irreversible capacity, and the lithium titanium composite oxide has a smaller irreversible capacity than the carbon material. Therefore, the addition of the lithium-titanium composite oxide acts to reduce the irreversible capacity of the entire negative electrode,
It is possible to efficiently alleviate the retention due to the initial charge / discharge and the capacity reduction accompanying the subsequent cycle progress. further,
At high temperatures, the battery reaction is activated, so that the capacity is significantly reduced due to the deactivation of lithium. Therefore, the high-temperature cycle characteristics and the high-temperature storage characteristics are sufficiently improved.

【0009】このような作用により、リチウムチタン複
合酸化物を炭素材料に補助的に添加して活物質とした本
発明のリチウム二次電池用負極は、放電容量が大きく、
つまりエネルギー密度が高く、かつ、サイクル特性、高
温保存特性の良好な耐久性に優れた長寿命のリチウム二
次電池を構成することのできる負極となる。
Due to such an effect, the negative electrode for a lithium secondary battery according to the present invention, in which a lithium-titanium composite oxide is added to a carbon material as an active material, has a large discharge capacity,
That is, the negative electrode has a high energy density, a good cycle characteristic, a good high-temperature storage characteristic, and a long life lithium secondary battery having excellent durability.

【0010】[0010]

【発明の実施の形態】以下に、本発明のリチウム二次電
池用負極の実施形態について、主たる活物質材料となる
炭素材料、補助的な活物質材料となるリチウムチタン複
合酸化物、負極の構成および製造、本発明の負極を使用
したリチウム二次電池の順に詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a negative electrode for a lithium secondary battery according to the present invention will be described with reference to a carbon material serving as a main active material, a lithium-titanium composite oxide serving as an auxiliary active material, and a structure of a negative electrode. And the production and the lithium secondary battery using the negative electrode of the present invention will be described in detail in this order.

【0011】〈炭素材料〉本発明のリチウム二次電池用
負極において主たる活物質材料となる炭素材料は、リチ
ウム吸蔵・脱離できるものであればよく、特にその種類
を限定するものではない。用いることができる炭素材料
には、天然黒鉛、球状あるいは繊維状の人造黒鉛、難黒
鉛化性炭素、および、フェノール樹脂等の有機化合物焼
成体、コークス等の易黒鉛化性炭素の粉状体を挙げるこ
とができる。これらの炭素材料にはそれぞれの利点があ
り、作製しようとするリチウム二次電池の特性に応じて
選択すればよい。また、1種のものを単独で用いること
もでき、また、2種以上を混合して用いることもでき
る。
<Carbon Material> The carbon material serving as the main active material in the negative electrode for a lithium secondary battery of the present invention is not particularly limited as long as it can absorb and desorb lithium. Examples of carbon materials that can be used include natural graphite, spherical or fibrous artificial graphite, non-graphitizable carbon, and organic compound fired substances such as phenolic resins, and powdered substances of easily graphitizable carbon such as coke. Can be mentioned. These carbon materials have their respective advantages, and may be selected according to the characteristics of the lithium secondary battery to be manufactured. One type can be used alone, or two or more types can be used in combination.

【0012】これらのもののうち、天然および人造の黒
鉛は、真密度が高くまた導電性に優れるため、容量が大
きく(エネルギー密度の高い)、パワー特性、レート特
性の良好なリチウム二次電池を構成できるという利点が
ある。この利点を活かしたリチウム二次電池を作製する
場合、用いる黒鉛は、結晶性の高いことが望ましく、
(002)面の面間隔d002が3.4Å以下であり、c
軸方向の結晶子厚みLcが1000Å以上のものを用い
るのがよい。なお、人造黒鉛は、例えば、易黒鉛化性炭
素を2800℃以上の高温で熱処理して製造することが
できる。この場合の原料となる易黒鉛化性炭素には、コ
ークス、ピッチ類を400℃前後で加熱する過程で得ら
れる光学異方性の小球体(メソカーボンマイクロビー
ズ:MCMB)等を挙げることができる。
Of these, natural and artificial graphites have a high true density and are excellent in conductivity, so that they constitute a lithium secondary battery having a large capacity (high energy density), good power characteristics and good rate characteristics. There is an advantage that you can. When producing a lithium secondary battery taking advantage of this advantage, it is desirable that the graphite used has high crystallinity,
The plane distance d 002 of the (002) plane is 3.4 ° or less, and c
It is preferable to use one having an axial crystallite thickness Lc of 1000 ° or more. Note that artificial graphite can be produced by, for example, heat-treating graphitizable carbon at a high temperature of 2800 ° C. or higher. In this case, the easily graphitizable carbon as a raw material includes coke and optically anisotropic small spheres (mesocarbon microbeads: MCMB) obtained in the process of heating pitches at about 400 ° C. .

【0013】特に黒鉛化MCMBは、球状形態をしてお
り、比表面積が小さいことから、非水電解液の分解を最
小限に抑えることができ、かつ、負極内の充填密度の向
上に寄与できるという利点を有する。さらに、結晶子が
球状粒子の中でラメラ状に配向しており、結晶子端面が
粒子全表面に露出しているため、リチウムの吸蔵・脱離
がスムーズで、大電流放電用途にも適しており、よりパ
ワー特性、レート特性に優れたリチウム二次電池を構成
できる活物質材料となる。これらの点を考慮すれば、主
たる活物質材料にこの黒鉛化MCMBを用いるのがより
望ましい。
Particularly, the graphitized MCMB has a spherical shape and a small specific surface area, so that the decomposition of the non-aqueous electrolyte can be minimized and the packing density in the negative electrode can be improved. It has the advantage that. Furthermore, the crystallites are oriented in a lamellar shape in the spherical particles, and the crystallite end faces are exposed on the entire surface of the particles, so that lithium can be absorbed and desorbed smoothly and is suitable for large current discharge applications. Thus, it becomes an active material that can constitute a lithium secondary battery having more excellent power characteristics and rate characteristics. In consideration of these points, it is more desirable to use the graphitized MCMB as the main active material.

【0014】易黒鉛化性炭素は、一般に石油や石炭から
得られるタールピッチを原料としたもので、コークス、
MCMB、メソフェーズピッチ系炭素繊維、熱分解気相
成長炭素繊維等が挙げられる。また、フェノール樹脂等
の有機化合物焼成体をも用いることができる。易黒鉛化
性炭素は、安価な炭素材料であるため、コスト面で優れ
たリチウム二次電池を構成できる活物質材料となり得
る。これらの中でも、コークスは低コストであり比較的
容量も大きいという利点があり、この点を考慮すれば、
主たる活物質材料としてコークスを用いるのが望まし
い。コークスを用いる場合には、(002)面の面間隔
002が3.4Å以上であり、c軸方向の結晶子厚みL
cが30Å以下のものを用いるのがよい。
[0014] Graphitizable carbon is generally obtained from tar pitch obtained from petroleum or coal, and includes coke,
MCMB, mesophase pitch-based carbon fiber, pyrolytic vapor growth carbon fiber, and the like. An organic compound fired body such as a phenol resin can also be used. Since graphitizable carbon is an inexpensive carbon material, it can be an active material that can form a lithium secondary battery that is excellent in cost. Among them, coke has the advantages of low cost and relatively large capacity, and considering this point,
It is desirable to use coke as the main active material. When coke is used, the plane distance d 002 of the (002) plane is 3.4 ° or more, and the crystallite thickness L in the c-axis direction is
It is preferable to use those having c of 30 ° or less.

【0015】難黒鉛化性炭素とは、いわゆるハードカー
ボンと呼ばれるもので、ガラス状炭素に代表される非晶
質に近い構造をもつ炭素材料である。一般的に熱硬化性
樹脂を炭素化して得られる材料であり、熱処理温度を高
くしても黒鉛構造が発達しない材料である。難黒鉛化性
炭素には安全性が高く、比較的低コストであるという利
点があり、この点を考慮すれば、難黒鉛化性炭素を主た
る活物質材料として用いるのが望ましい。具体的には、
例えば、フェノール樹脂焼成体、ポリアクリロニトリル
系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂
焼成体等を用いることができる。より望ましくは、(0
02)面の面間隔d002が3.6Å以上であり、c軸方
向の結晶子厚みLcが100Å以下のものを用いるのが
よい。
[0015] The non-graphitizable carbon is a so-called hard carbon, and is a carbon material having a structure close to amorphous such as glassy carbon. Generally, it is a material obtained by carbonizing a thermosetting resin, and does not develop a graphite structure even when the heat treatment temperature is increased. Graphitic non-graphitizable carbon has the advantages of high safety and relatively low cost. In view of this, it is desirable to use non-graphitizable carbon as the main active material. In particular,
For example, a phenol resin fired body, a polyacrylonitrile-based carbon fiber, pseudo isotropic carbon, a furfuryl alcohol resin fired body, or the like can be used. More preferably, (0
02) It is preferable to use one having a plane spacing d 002 of 3.6 ° or more and a crystallite thickness Lc in the c-axis direction of 100 ° or less.

【0016】〈リチウムチタン複合酸化物〉本発明のリ
チウム二次電池用負極において、補助的な活物質材料と
なるリチウムチタン複合酸化物(以下、「本リチウムチ
タン複合酸化物」という)は、組成式LixTiy
4(0.5≦x≦3、1≦y≦2.5)で表されるリチ
ウムチタン複合酸化物である。
<Lithium-titanium composite oxide> In the negative electrode for a lithium secondary battery of the present invention, the lithium-titanium composite oxide (hereinafter referred to as “the lithium-titanium composite oxide”) as an auxiliary active material has a composition Formula Li x Ti y O
4 A lithium titanium composite oxide represented by (0.5 ≦ x ≦ 3, 1 ≦ y ≦ 2.5).

【0017】本リチウムチタン複合酸化物は、CuKα
線を用いた粉末X線回折によれば、結晶構造中の面間隔
が少なくとも4.84Å、2.53Å、2.09Å、
1.48Å(各面間とも±0.1Å)となる回折面(反
射面)において、回折ピークが存在するものを用いるの
がよい。このものは、その結晶構造がスピネル構造ある
いはそれから誘導される構造となっており、この結晶構
造をもつ本リチウムチタン複合酸化物は、結晶構造が安
定しており、充放電に伴うリチウムの吸蔵・脱離によっ
ても、体積変化がなく、これを添加することにより、負
極の膨張・収縮に伴う電極の剥がれ等を効果的に防止で
きる。また、電位もLi/Li+に対して1.5V付近
で安定していることから、電位の急激な変化を与えるも
のではなく、この点からも、よりサイクル特性の良好な
リチウム二次電池を構成できる補助的活物質材料に適し
ている。
The lithium titanium composite oxide is CuKα
According to powder X-ray diffraction using X-rays, the interplanar spacing in the crystal structure was at least 4.84 °, 2.53 °, 2.09 °,
It is preferable to use a diffraction surface (reflection surface) having a diffraction peak at 1.48 ° (± 0.1 ° between the surfaces). This crystal has a spinel structure or a structure derived from it. The lithium-titanium composite oxide having this crystal structure has a stable crystal structure. There is no change in volume due to desorption, and the addition of this can effectively prevent the electrode from peeling off due to expansion and contraction of the negative electrode. In addition, since the potential is stable at around 1.5 V with respect to Li / Li + , the potential does not suddenly change. From this point, a lithium secondary battery having better cycle characteristics can be obtained. Suitable for configurable auxiliary active material.

【0018】具体的には、組成式Li0.8Ti2.24
Li2.67Ti1.334、LiTi24、Li1.33Ti
1.674、Li1.14Ti1.714で表されるものが優れて
おり、こららのうちの1種のものを単独でまたは2種以
上のものを混合して用いることが望ましい。その中で
も、Li0.8Ti2.24、LiTi24、Li1.33Ti
1.674は、スピネル構造を有し、より結晶構造が安定
している。さらに、充放電による体積変化が小さくまた
結晶構造が最も安定しているという点からすれば、組成
式Li1.33Ti1.674で表されるものを用いることが
より望ましい。ちなみに、組成式Li0.8Ti2.24
Li2.67Ti1.334、Li1.33Ti1.674、Li1.14
Ti1.714は、それぞれ組成式Li4Ti1120、Li
2TiO3、Li 4Ti512、Li2Ti37と表すこと
もできる。
Specifically, the composition formula Li0.8Ti2.2OFour,
Li2.67Ti1.33OFour, LiTiTwoOFour, Li1.33Ti
1.67OFour, Li1.14Ti1.71OFourWhat is represented by
One or more of these may be used alone or in combination.
It is desirable to use a mixture of the above. inside that
Also Li0.8Ti2.2OFour, LiTiTwoOFour, Li1.33Ti
1.67OFourHas a spinel structure and more stable crystal structure
are doing. Furthermore, the volume change due to charge and discharge is small and
In terms of the most stable crystal structure, the composition
Formula Li1.33Ti1.67OFourIt is possible to use what is represented by
More desirable. By the way, the composition formula Li0.8Ti2.2OFour,
Li2.67Ti1.33OFour, Li1.33Ti1.67OFour, Li1.14
Ti1.71OFourIs the composition formula LiFourTi11O20, Li
TwoTiOThree, Li FourTiFiveO12, LiTwoTiThreeO7To represent
Can also.

【0019】なお、リチウムチタン複合酸化物は、その
組成により、例えばLiTi24等のように、Liを吸
蔵する方向、Liを脱離する方向の両方向に反応が進行
し得るものが存在する。このような両方向に反応が進行
するものを添加する場合、主たる活物質となる炭素材料
にリチウムがトラップされる等の原因で不可逆容量が生
じたときであっても、リチウムチタン複合酸化物が脱離
可能なLiを電池系内に放出し、この不可逆容量を補償
することができる。したがって、本発明の負極では、吸
蔵・脱離の両方向に進行するような組成をもつリチウム
チタン複合酸化物を添加することで、より効率的にLi
の失活に伴う容量低下を抑制することができる。
Depending on the composition of the lithium-titanium composite oxide, there is an oxide such as LiTi 2 O 4 which can proceed in both the direction of occluding Li and the direction of desorbing Li. . In the case of adding such a substance that progresses in both directions, the lithium-titanium composite oxide is desorbed even when irreversible capacity occurs due to, for example, trapping of lithium in the carbon material that is the main active material. Releasable Li can be released into the battery system to compensate for this irreversible capacity. Therefore, in the negative electrode of the present invention, by adding the lithium-titanium composite oxide having a composition that proceeds in both the occlusion and desorption directions, Li
Can be suppressed from being reduced due to the deactivation of.

【0020】本リチウムチタン複合酸化物はその製造方
法を特に限定するものでないが、リチウム源となるリチ
ウム化合物とチタン源となる酸化チタンとを混合し、こ
の混合物を焼成することによって容易に合成することが
できる。リチウム化合物としては、Li2CO3、Li
(OH)等を用いることができる。焼成は、酸素気流中
あるいは大気中にて行う。それぞれの原料の混合割合
は、合成しようとするリチウムチタン複合酸化物の組成
に応じた割合とすればよい。焼成は、その温度が低すぎ
ると副相として生じる酸化チタン相(TiO2相)の含
有割合が多くなることから、焼成温度は、700〜16
00℃とするのが望ましい。なお、燃費等の焼成効率を
加味すれば、800〜1100℃とすることがより望ま
しい。
The production method of the present lithium-titanium composite oxide is not particularly limited, but a lithium compound serving as a lithium source and titanium oxide serving as a titanium source are mixed, and the mixture is easily synthesized by firing. be able to. As the lithium compound, Li 2 CO 3 , Li
(OH) or the like can be used. The firing is performed in an oxygen stream or in the atmosphere. The mixing ratio of each raw material may be a ratio according to the composition of the lithium titanium composite oxide to be synthesized. If the temperature is too low, the content of the titanium oxide phase (TiO 2 phase) generated as an auxiliary phase increases, and the firing temperature is 700 to 16
Preferably, the temperature is set to 00 ° C. In consideration of firing efficiency such as fuel efficiency, the temperature is more preferably set to 800 to 1100 ° C.

【0021】副相として生じる酸化チタン相を完全に消
滅させることは困難を伴う。この酸化チタン相は、上記
リチウムチタン複合酸化物の主相と混晶状態で生成され
るため、少量存在するのであれば、活物質材料としての
充放電特性、サイクル特性を極度に悪化させるものとは
ならない。したがって、本リチウムチタン複合酸化物
は、この酸化チタンを混晶状態で含有するものであって
もよく、また本明細書において、「リチウムチタン複合
酸化物」とは、それを含むことを意味する。また、本リ
チウムチタン複合酸化物は、組成により種々のリチウム
チタン複合酸化物があり、そのうちの1種を単独で用い
ることもでき、また、2種以上を混合して用いることも
できる。
It is difficult to completely eliminate the titanium oxide phase generated as a sub phase. Since this titanium oxide phase is generated in a mixed crystal state with the main phase of the lithium-titanium composite oxide, if present in a small amount, the charge / discharge characteristics as an active material and the cycle characteristics are extremely deteriorated. Not be. Therefore, the present lithium-titanium composite oxide may contain this titanium oxide in a mixed crystal state, and in the present specification, “lithium-titanium composite oxide” means containing the same. . The present lithium-titanium composite oxide includes various lithium-titanium composite oxides depending on the composition, and one of them may be used alone, or two or more thereof may be used in combination.

【0022】〈電極の構成および製造〉本発明のリチウ
ム二次電池用負極は、主たる活物質材料となる上記炭素
材料と、補助的活物質材料となる上記リチウムチタン複
合酸化物とを、活物質として有する。つまり両者を混合
して活物質とするものである。
<Structure and Production of Electrode> The negative electrode for a lithium secondary battery of the present invention comprises the above-mentioned carbon material as a main active material and the above-mentioned lithium-titanium composite oxide as an auxiliary active material. As That is, both are mixed to form an active material.

【0023】負極中における活物質としての炭素材料と
リチウムチタン複合酸化物との存在比は本発明の負極を
用いたリチウム二次電池の特性を左右する。本発明のリ
チウム二次電池用負極では、リチウムチタン複合酸化物
を補助的に用いるため、その存在割合は、炭素材料の存
在割合に比べてある程度小さいものとなる。より具体的
に示せば、炭素材料とリチウムチタン複合酸化物との負
極中の存在比は、重量比で99:1〜94:6とするの
が望ましい。言い換えれば、炭素材料とリチウムチタン
複合酸化物の合計を100wt%とした場合に、リチウ
ムチタン複合酸化物を1wt%以上6wt%以下の割合
で混合することが望ましい。
The abundance ratio of the carbon material as the active material and the lithium-titanium composite oxide in the negative electrode determines the characteristics of the lithium secondary battery using the negative electrode of the present invention. In the negative electrode for a lithium secondary battery of the present invention, since the lithium-titanium composite oxide is used in an auxiliary manner, its existence ratio is somewhat smaller than that of the carbon material. More specifically, it is desirable that the ratio of the carbon material and the lithium-titanium composite oxide in the negative electrode be 99: 1 to 94: 6 by weight. In other words, when the total of the carbon material and the lithium-titanium composite oxide is 100 wt%, it is desirable to mix the lithium-titanium composite oxide at a ratio of 1 wt% to 6 wt%.

【0024】上記範囲を超えてリチウムチタン複合酸化
物が少なすぎる場合は、その添加効果が顕著なものとは
ならない。また逆に、上記範囲を超えてリチウムチタン
複合酸化物が多すぎる場合は、リチウムチタン複合酸化
物の容量が小さいことから、負極のエネルギー密度が低
下しすぎることとなる。また、負極自体の電位が上昇し
すぎることとなり、同じ容量を放電させようとすれば、
対向する正極の電位が高くなり、過剰なリチウムが正極
から脱離することとなり、正極活物質の結晶構造の崩壊
を招き、正極に起因する放電容量の低下が発生する可能
性があるからである。
When the amount of the lithium-titanium composite oxide is less than the above range, the effect of the addition is not remarkable. Conversely, when the amount of lithium-titanium composite oxide is too large beyond the above range, the capacity of the lithium-titanium composite oxide is small, so that the energy density of the negative electrode is too low. Also, if the potential of the negative electrode itself rises too much and it is attempted to discharge the same capacity,
This is because the potential of the facing positive electrode is increased, and excess lithium is desorbed from the positive electrode, which may cause the crystal structure of the positive electrode active material to collapse and cause a reduction in discharge capacity due to the positive electrode. .

【0025】本発明のリチウム二次電池用負極は、活物
質を除き、炭素材料のみを活物質とした一般に用いられ
ている負極の構成に従えばよく、またその製造方法も一
般の製造方法に従がえばよい。例えば、まず、上記炭素
材料と、上記リチウムチタン複合酸化物とを所望の割合
で混合し、さらにこれらを結着するための結着剤を混合
し、必要に応じ適量の溶剤(分散媒)を添加してこれを
充分に混練することで、ペースト状の負極合材を調整す
る。次いで、この負極合材を、銅等の金属箔製の集電体
表面に塗布、乾燥し、その後必要に応じプレス等によっ
て負極中の活物質の密度を高めることによってシート状
の負極を作製することができる。
The negative electrode for a lithium secondary battery according to the present invention may follow the configuration of a generally used negative electrode using only a carbon material as an active material, except for an active material. I just need to follow. For example, first, the carbon material and the lithium-titanium composite oxide are mixed at a desired ratio, and further, a binder for binding them is mixed, and if necessary, an appropriate amount of a solvent (dispersion medium) is added. By adding and kneading the mixture sufficiently, a paste-like negative electrode mixture is prepared. Next, this negative electrode mixture is applied to the surface of a current collector made of a metal foil such as copper, dried, and then, if necessary, the density of the active material in the negative electrode is increased by pressing or the like to produce a sheet-shaped negative electrode. be able to.

【0026】結着剤には、特に限定するものではなく、
既に公知のものを用いればよい。例えば、ポリテトラフ
ルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等
の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱
可塑性樹脂等を用いることができる。また、溶剤には、
N−メチル−2−ピロリドン等の有機溶剤を用いること
ができる。作製したシート状の負極は、リチウム二次電
池の仕様に応じた大きさに裁断等して用いればよい。
The binder is not particularly limited.
A known device may be used. For example, fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and thermoplastic resins such as polypropylene and polyethylene can be used. Also, in the solvent,
An organic solvent such as N-methyl-2-pyrrolidone can be used. The prepared sheet-shaped negative electrode may be cut into a size corresponding to the specification of the lithium secondary battery and used.

【0027】〈リチウム二次電池〉本発明の負極を使用
したリチウム二次電池は、本負極とそれより高い酸化/
還元電位を有する正極と対向させて構成すればよく、負
極を除き、既に公知となっているリチウム二次電池の構
成に従えばよい。例えば、本発明の負極に対向させる正
極が層状岩塩構造LiCoO2、LiNiO2、スピネル
構造LiMn24等のリチウム遷移金属複合酸化物を活
物質とするものであれば、4V級の電池電圧の高いリチ
ウム二次電池を構成できることになる。この正極の構成
および製造方法についても、一般的な構成および製造方
法に従えばよい。
<Lithium secondary battery> A lithium secondary battery using the negative electrode of the present invention is composed of the negative electrode and a higher oxidation / removal battery.
What is necessary is just to comprise so that it may oppose the positive electrode which has a reduction potential, and should just follow the structure of the already known lithium secondary battery except a negative electrode. For example, if the positive electrode facing the negative electrode of the present invention uses a lithium transition metal composite oxide such as a layered rock salt structure LiCoO 2 , LiNiO 2 , and spinel structure LiMn 2 O 4 as an active material, a battery voltage of 4 V class is obtained. A high lithium secondary battery can be constructed. The configuration and manufacturing method of this positive electrode may be in accordance with a general configuration and manufacturing method.

【0028】本発明の負極を用いたリチウム二次電池で
は、一般のリチウム二次電池と同様、正極および負極の
他に、正極と負極の間に挟装されるセパレータ、非水電
解液等を主要構成要素とする。セパレータは、正極と負
極とを分離し電解液を保持するものであり、ポリエチレ
ン、ポリプロピレン等の薄い微多孔膜を用いることがで
きる。また非水電解液は、有機溶媒に電解質であるリチ
ウム塩を溶解させたもので、有機溶媒としては、非プロ
トン性有機溶媒、例えばエチレンカーボネート、プロピ
レンカーボネート、ジメチルカーボネート、ジエチルカ
ーボネート、エチルメチルカーボネート、γ−ブチロラ
クトン、アセトニトリル、1,2−ジメトキシエタン、
テトラヒドロフラン、ジオキソラン、塩化メチレン等の
1種またはこれらの2種以上の混合液を用いることがで
きる。また、溶解させる電解質としては、LiI、Li
ClO4、LiAsF6、LiBF4、LiPF6、LiN
(CF3SO22等のリチウム塩を用いることができ
る。
In the lithium secondary battery using the negative electrode of the present invention, similarly to a general lithium secondary battery, in addition to the positive electrode and the negative electrode, a separator sandwiched between the positive electrode and the negative electrode, a non-aqueous electrolyte, and the like are used. Main components. The separator separates the positive electrode and the negative electrode and holds the electrolyte, and a thin microporous film of polyethylene, polypropylene, or the like can be used. The non-aqueous electrolyte is a solution in which a lithium salt as an electrolyte is dissolved in an organic solvent.As the organic solvent, an aprotic organic solvent, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, acetonitrile, 1,2-dimethoxyethane,
One kind of tetrahydrofuran, dioxolane, methylene chloride or the like, or a mixture of two or more kinds thereof can be used. As the electrolyte to be dissolved, LiI, LiI
ClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiN
A lithium salt such as (CF 3 SO 2 ) 2 can be used.

【0029】以上のように構成される本発明の負極を用
いたリチウム二次電池であるが、その形状は円筒型、積
層型、コイン型等、種々のものとすることができる。い
ずれの形状を採る場合であっても、正極および負極にセ
パレータを挟装させ電極体とし、それぞれの電極から外
部に通ずる正極端子および負極端子までの間を集電用リ
ード等を用いて接続し、この電極体を非水電解液ととも
に電池ケースに密閉して電池を完成することができる。
The lithium secondary battery using the negative electrode of the present invention configured as described above can have various shapes such as a cylindrical type, a laminated type, a coin type and the like. In any case, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and a connection between each electrode and the positive electrode terminal and the negative electrode terminal communicating to the outside is made using a current collecting lead or the like. The battery can be completed by sealing the electrode body together with the non-aqueous electrolyte in a battery case.

【0030】以上、本発明のリチウム二次電池用負極の
実施形態について説明したが、上述した実施形態は一実
施形態にすぎず、本発明のリチウム二次電池用負極は、
上記実施形態を始めとして、当業者の知識に基づいて種
々の変更、改良を施した種々の形態で実施することがで
きる。
The embodiment of the negative electrode for a lithium secondary battery according to the present invention has been described above. However, the above-described embodiment is merely an embodiment, and the negative electrode for a lithium secondary battery according to the present invention is:
The present invention can be implemented in various forms including various modifications and improvements based on the knowledge of those skilled in the art, including the above embodiment.

【0031】[0031]

【実施例】上記実施形態に基づいて、炭素材料を主たる
活物質材料とし、リチウムチタン複合酸化物を補助的な
活物質としたリチウム二次電池用負極を作製した。そし
て、これらの負極を用いたリチウム二次電池を作製し、
これらの二次電池の特性を評価することで、本発明のリ
チウム二次電池用負極の優秀性を確認した。以下、これ
らについて説明する。
EXAMPLE Based on the above embodiment, a negative electrode for a lithium secondary battery using a carbon material as a main active material and a lithium titanium composite oxide as an auxiliary active material was produced. Then, a lithium secondary battery using these negative electrodes was manufactured,
By evaluating the characteristics of these secondary batteries, the superiority of the negative electrode for a lithium secondary battery of the present invention was confirmed. Hereinafter, these will be described.

【0032】〈リチウム二次電池用負極の作製〉本負極
では、主たる活物質材料となる炭素材料に黒鉛化メソカ
ーボンマイクロビーズ(MCMB25−28:大阪ガス
製)(以下、「MCMB」と略す)を用いた。また補助
的な活物質材料となるリチウムチタン複合酸化物は、L
iOH・H2OとTiO2とを4:5の重量比で混合した
混合物を900℃で焼成して得られた組成式Li1.33
1.674で表されるリチウムチタン複合酸化物を用い
た。なお、このリチウムチタン複合酸化物(以下、「L
TO」と略す)は、X線回折分析の結果、スピネル構造
の略単相であることが確認できた。
<Preparation of Negative Electrode for Lithium Secondary Battery> In the present negative electrode, graphitized mesocarbon microbeads (MCMB25-28: manufactured by Osaka Gas) (hereinafter abbreviated as “MCMB”) are used as the main active material carbon material. Was used. The lithium-titanium composite oxide serving as an auxiliary active material is L
Compositional formula Li 1.33 T obtained by calcining a mixture of iOH · H 2 O and TiO 2 at a weight ratio of 4: 5 at 900 ° C.
A lithium-titanium composite oxide represented by i 1.67 O 4 was used. The lithium-titanium composite oxide (hereinafter referred to as “L
X) was confirmed by X-ray diffraction analysis to be substantially a single phase having a spinel structure.

【0033】上記MCMBと上記LTOを、重量比でそ
れぞれ89:1、85:5、80:10、70:20に
混合して、4種類の混合活物質材料を調製した。次い
で、これらの活物質材料の90重量部に対して、結着剤
としてポリフッ化ビニリデン(PVdF)を10重量部
の割合で混合し、さらに適量のN−メチル−2−ピロリ
ドン(NMP)を添加し、充分に混練してペースト状の
負極合材を調製した。そして、これらの負極合材を56
mm×500mmの銅箔製集電体の両面に塗布し、これ
を200℃で真空乾燥させてシート状の負極を作製し
た。なお、比較のため、上記TLOを混合せず、上記M
CMBのみを活物質として用い、同様の製造方法によっ
て、同様の構成の負極をも作製した MCMBのみで活物質を構成した負極をサンプルNo.
1の負極とし、また、MCMBとLTOとを89:1の
割合で混合した混合活物質材料を活物質として用いた負
極をサンプルNo.2の負極とし、以下それぞれ、8
5:5に混合したものを用いた負極をサンプルNo.3
の負極と、80:10に混合したものを用いた負極をサ
ンプルNo.4の負極と、70:20に混合したものを
用いた負極をサンプルNo.5の負極とした。(以下、
「サンプルNo.1」等は単に「No.1」等と略
す。) 〈リチウム二次電池の作製〉上記それぞれ負極に用いた
リチウム二次電池を作製した。対向させる正極は、Ni
(OH)2とLiOH・H2Oとをモル比で1:1に混合
した混合物を900℃で焼成して得られた組成式LiN
iO2で表される層状岩塩構造リチウムニッケル複合酸
化物を活物質に用いた。このリチウムニッケル複合酸化
物85重量部に、導電助材としてカーボンブラックを1
0重量部と結着剤としてポリフッ化ビニリデンを5重量
部混合し、適量のN−メチル−2−ピロリドンを添加し
て充分に混練してペースト状の正極合材を調製した。次
いで、この正極合材を54mm×450mmのアルミニ
ウム箔製集電体の両面に塗布し、これを200℃で真空
乾燥させてシート状の正極を作製した。
The MCMB and the LTO were mixed at a weight ratio of 89: 1, 85: 5, 80:10, and 70:20, respectively, to prepare four types of mixed active material. Next, polyvinylidene fluoride (PVdF) as a binder is mixed at a ratio of 10 parts by weight to 90 parts by weight of these active material materials, and an appropriate amount of N-methyl-2-pyrrolidone (NMP) is further added. Then, the mixture was sufficiently kneaded to prepare a paste-like negative electrode mixture. Then, these negative electrode mixture materials were added to 56
It was applied to both sides of a copper foil current collector having a size of 500 mm × 500 mm, and was vacuum-dried at 200 ° C. to produce a sheet-shaped negative electrode. For comparison, the TLO was not mixed and the M
A negative electrode having the same configuration was also prepared by the same manufacturing method using only CMB as an active material.
The negative electrode of Sample No. 1 was used as the negative electrode of Sample No. 1 and a mixed active material material obtained by mixing MCMB and LTO at a ratio of 89: 1 was used as the active material. 2 negative electrodes, and 8
Sample No. 5: 5 was used as the negative electrode. Three
And a negative electrode using a mixture mixed at 80:10 was sample No. Sample No. 4 and a negative electrode using a mixture of 70:20 were prepared. The negative electrode of No. 5 was used. (Less than,
“Sample No. 1” and the like are simply abbreviated as “No. 1” and the like. <Preparation of Lithium Secondary Battery> Lithium secondary batteries used as the above negative electrodes were prepared. The positive electrode to be opposed is Ni
The composition formula LiN obtained by calcining a mixture of (OH) 2 and LiOH · H 2 O at a molar ratio of 1: 1 at 900 ° C.
A lithium nickel composite oxide having a layered rock salt structure represented by iO 2 was used as an active material. To 85 parts by weight of the lithium nickel composite oxide, 1 carbon black was added as a conductive additive.
0 parts by weight and 5 parts by weight of polyvinylidene fluoride as a binder were mixed, an appropriate amount of N-methyl-2-pyrrolidone was added and kneaded sufficiently to prepare a paste-like positive electrode mixture. Next, this positive electrode mixture was applied to both surfaces of a 54 mm × 450 mm aluminum foil current collector, and this was vacuum-dried at 200 ° C. to produce a sheet-shaped positive electrode.

【0034】上記正極および上記それぞれ負極とを、ポ
リプロピレン製セパレータをそれらの間に挟装して捲回
し、ロール状の電極体を形成させた。この電極体を、正
極および負極集電用リードを付設した上で、18650
型電池ケースに挿設し、非水電解液を注入し、その後こ
の電池ケースを密閉して円筒型リチウム二次電池を作製
した。なお、非水電解液は、エチレンカーボネートをジ
エチルカーボネートとを体積比で1:1に混合した混合
溶媒にLiPF6を1Mの濃度で溶解したものを用い
た。No.1の負極を用いたリチウム二次電池をNo.
1のリチウム二次電池とし、同様にそれぞれ、No.2
〜No.5の電極を用いた二次電池をNo.2〜No.
5のリチウム二次電池とした。
The positive electrode and the negative electrode were wound with a polypropylene separator sandwiched between them to form a roll-shaped electrode body. This electrode body was provided with a positive electrode and a negative electrode current collecting lead, and then 18650
A non-aqueous electrolyte was injected into the battery case, and then the battery case was sealed to produce a cylindrical lithium secondary battery. The non-aqueous electrolyte used was a solution obtained by dissolving LiPF 6 at a concentration of 1 M in a mixed solvent obtained by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1. No. The lithium secondary battery using the negative electrode of No. 1 was No. 1.
No. 1 lithium secondary battery. 2
-No. The secondary battery using the electrode of No. 5 was No. 5. 2-No.
No. 5 lithium secondary battery.

【0035】〈リチウム二次電池に対する充放電試験〉
上記それぞれのリチウム二次電池に対して初期充放電試
験を行った。初期充放電試験の条件は、20℃の環境温
度下、充電終止電圧4.1Vまで100mAの定電流で
充電し、その後、放電終止電圧3.0Vまで100mA
の定電流で放電しするものとした。それぞれのリチウム
二次電池の充放電曲線を作成し、その時の充電容量を測
定して初期充電容量とし、放電容量を測定し初期放電容
量とした。そして初期充電容量に対する初期放電容量の
百分率をもって、初期充放電効率とした。
<Charge / Discharge Test for Lithium Secondary Battery>
An initial charge / discharge test was performed on each of the above lithium secondary batteries. The conditions for the initial charge / discharge test were as follows: at an environmental temperature of 20 ° C., charging was performed at a constant current of 100 mA up to a charge end voltage of 4.1 V, and then 100 mA up to a discharge end voltage of 3.0 V
Discharge at a constant current. A charge / discharge curve was prepared for each lithium secondary battery, the charge capacity at that time was measured to be the initial charge capacity, and the discharge capacity was measured to be the initial discharge capacity. The percentage of the initial discharge capacity relative to the initial charge capacity was defined as the initial charge / discharge efficiency.

【0036】次いでそれぞれの電池に対して、高温充放
電サイクル試験を行った。高温充放電サイクル試験は、
リチウム二次電池が実際に使用される上限温度と目され
る60℃の高温環境下で行い、その充放電サイクルの条
件は、充電終止電圧4.1Vまで972mAの定電流で
充電を行い、次いで放電終止電圧3.0Vまで9722
mAの定電流で放電を行うことを1サイクルとし、その
サイクルを500サイクルまで行うものとした。1サイ
クル目の放電容量に対する500サイクル目の放電容量
の百分率をもって、500サイクル後の容量維持率とし
た。
Next, a high-temperature charge / discharge cycle test was performed on each battery. High temperature charge / discharge cycle test
The operation is performed in a high-temperature environment of 60 ° C., which is regarded as the upper limit temperature at which the lithium secondary battery is actually used. The conditions of the charge and discharge cycle are as follows: charge at a constant current of 972 mA up to a charge end voltage of 4.1 V; 9722 up to discharge end voltage 3.0V
Discharging at a constant current of mA was defined as one cycle, and the cycle was performed up to 500 cycles. The percentage of the discharge capacity at the 500th cycle relative to the discharge capacity at the first cycle was defined as the capacity retention rate after 500 cycles.

【0037】さらに、それぞれに対して高温保存試験を
行った。まず、上記初期充放電試験の要領で放電容量を
測定しこれを保存前容量とした。次いで、20℃の温度
下、充電終止電圧4.1Vまで100mAの定電流で充
電し、充電したそれぞれの二次電池を、60℃の恒温槽
中に1ヶ月間保存した。そして、保存後、20℃の温度
下、放電終止電圧3.0Vまで100mAの定電流で放
電し、その後、上記初期充放電試験の要領で放電容量を
測定しこれを保存後容量とした。保存前容量に対する保
存後容量の百分率をもって、高温保存後の容量維持率と
した。
Further, a high-temperature storage test was performed on each of them. First, the discharge capacity was measured according to the procedure of the above initial charge / discharge test, and this was defined as the capacity before storage. Next, the battery was charged at a constant current of 100 mA to a charge termination voltage of 4.1 V at a temperature of 20 ° C., and each charged secondary battery was stored in a thermostat at 60 ° C. for one month. After storage, the battery was discharged at a constant current of 100 mA up to a discharge end voltage of 3.0 V at a temperature of 20 ° C., and then the discharge capacity was measured according to the procedure of the above initial charge / discharge test. The percentage of the capacity after storage relative to the capacity before storage was defined as the capacity retention rate after high-temperature storage.

【0038】〈リチウム二次電池の特性評価〉上記種々
の充放電試験の結果として、それぞれのリチウム二次電
池に使用した負極の活物質の構成、それぞれのリチウム
二次電池の初期充電容量、初期放電容量、初期充放電効
率、500サイクル後の容量維持率、高温保存後の容量
維持率を下記表1に示す。なお、初期充電容量および初
期放電容量は、正極活物質単位重量当たりの充電容量お
よび放電容量として表す。また、初期充放電における充
放電曲線の例示として、No.1〜No.3の二次電池
の充放電曲線を図1に示す。
<Characteristic Evaluation of Lithium Secondary Battery> As a result of the above various charge / discharge tests, the composition of the negative electrode active material used for each lithium secondary battery, the initial charge capacity of each lithium secondary battery, The discharge capacity, initial charge / discharge efficiency, capacity retention after 500 cycles, and capacity retention after high-temperature storage are shown in Table 1 below. The initial charge capacity and the initial discharge capacity are expressed as the charge capacity and the discharge capacity per unit weight of the positive electrode active material. In addition, as an example of the charge / discharge curve in the initial charge / discharge, No. 3 is used. 1 to No. FIG. 1 shows a charge / discharge curve of the secondary battery of No. 3.

【0039】[0039]

【表1】 [Table 1]

【0040】上記表1および図1から明らかなように、
リチウムチタン複合酸化物を補助的活物質材料として適
正な割合で存在させた負極を用いたNo.2およびN
o.3のリチウム二次電池は、活物質をMCMBのみで
構成した負極を用いたNo.1のリチウム二次電池より
も、初期充放電効率が高く、リテンションを効果的に緩
和していることが判る。したがって、本発明の負極を用
いたリチウム二次電池は、容量の大きな、つまりエネル
ギー密度の高いリチウム二次電池となることが確認でき
る。
As is clear from Table 1 and FIG.
No. 1 using a negative electrode in which a lithium-titanium composite oxide was present at an appropriate ratio as an auxiliary active material. 2 and N
o. The lithium secondary battery of No. 3 used the negative electrode in which the active material was composed of only MCMB. It can be seen that the initial charge / discharge efficiency is higher than that of the lithium secondary battery of No. 1 and the retention is effectively reduced. Therefore, it can be confirmed that the lithium secondary battery using the negative electrode of the present invention is a lithium secondary battery having a large capacity, that is, a high energy density.

【0041】なお、リチウムチタン複合酸化物をより多
く存在させた負極を用いたNo.4およびNo.5のリ
チウム二次電池は、初期充放電効率が低いものとなって
いる。これは、リチウムチタン複合酸化物の増加により
負極電位が上昇し、これにつれて正極電位も上昇するこ
とで、正極活物質となるリチウムニッケル複合酸化物か
ら脱離するLi量が増加し、その結晶構造が不安定とな
ることに起因するものと考えられる。ちなみに、No.
2およびNo.3の負極中における炭素材料とリチウム
チタン複合酸化物の存在比は、重量比で99:1〜9
4:6の範囲内である。
In the case of No. 3 using a negative electrode in which a larger amount of lithium-titanium composite oxide was present. 4 and no. The lithium secondary battery of No. 5 has low initial charge / discharge efficiency. This is because the potential of the negative electrode rises due to the increase in the lithium-titanium composite oxide, and the potential of the positive electrode also rises accordingly. As a result, the amount of Li desorbed from the lithium nickel composite oxide serving as the positive electrode active material increases, and the crystal structure Is considered to be caused by instability. By the way, No.
2 and No. The weight ratio of the carbon material and the lithium-titanium composite oxide in the negative electrode of No. 3 was 99: 1 to 9
4: 6.

【0042】また、表1から判るように、No.2およ
びNo.3のリチウム二次電池は、500サイクル後の
容量維持率および高温保存後の容量維持率についても高
い値を示している。このことから、本発明の負極を用い
たリチウム二次電池は、高温保存特性およびサイクル特
性、特に高温サイクル特性の良好な耐久性に優れた長寿
命なリチウム二次電池となることが確認できる。なお、
リチウムチタン複合酸化物をより多く存在させた負極を
用いたNo.4およびNo.5のリチウム二次電池は、
上述した理由により、サイクル特性および高温保存特性
についても低下するものと考えられる。
As can be seen from Table 1, No. 2 and No. The lithium secondary battery of No. 3 also shows high values for the capacity retention after 500 cycles and the capacity retention after high-temperature storage. From this, it can be confirmed that the lithium secondary battery using the negative electrode of the present invention is a long-life lithium secondary battery having excellent high-temperature storage characteristics and cycle characteristics, particularly excellent high-temperature cycle characteristics and excellent durability. In addition,
No. 3 using the negative electrode in which more lithium-titanium composite oxide was present. 4 and no. The lithium secondary battery of No. 5 is
For the reasons described above, it is considered that the cycle characteristics and the high-temperature storage characteristics also deteriorate.

【0043】[0043]

【発明の効果】本発明のリチウム二次電池用負極は、炭
素材料にリチウムチタン酸化物を補助的に添加して負極
活物質とし、この負極活物質を用いて負極を構成するも
のである。このような構成とすることにより、負極電位
をある程度高くして非水電解液の分解を抑制し、また、
リチウムチタン複合酸化物の含有するLiが負極中で失
活したLiを補うことができ、本発明の負極を用いたリ
チウム二次電池は、高エネルギー密度で、耐久性に優れ
た長寿命な二次電池となる。
The negative electrode for a lithium secondary battery according to the present invention is one in which lithium titanium oxide is supplementarily added to a carbon material to form a negative electrode active material, and this negative electrode active material is used to constitute a negative electrode. With such a configuration, the decomposition of the non-aqueous electrolyte is suppressed by increasing the negative electrode potential to some extent, and
Li contained in the lithium-titanium composite oxide can compensate for Li deactivated in the negative electrode, and a lithium secondary battery using the negative electrode of the present invention has a high energy density, excellent durability, and long life. Next battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 炭素材料を主たる活物質材料としリチウムチ
タン複合酸化物を補助的活物質材料として存在させた負
極、および、炭素材料のみで活物質を構成した負極を、
それぞれ用いたリチウム二次電池の初期充放電曲線を示
す。
FIG. 1 shows a negative electrode in which a carbon material is used as a main active material and a lithium-titanium composite oxide is used as an auxiliary active material, and a negative electrode in which an active material is composed of only a carbon material.
2 shows an initial charge / discharge curve of each of the lithium secondary batteries used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 右京 良雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 4G047 CA06 CB04 CC03 CD03 CD07 5H050 AA07 AA08 BA17 CA08 CB03 DA03 FA17 HA01 HA02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshio Ukyo F-term in Toyota Central R & D Laboratories Co., Ltd. 1 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi F-term (reference) 4G047 CA06 CB04 CC03 CD03 CD07 5H050 AA07 AA08 BA17 CA08 CB03 DA03 FA17 HA01 HA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主たる活物質材料となる炭素材料と、補
助的活物質材料となる組成式LixTiy4(0.5≦
x≦3、1≦y≦2.5)で表されるリチウムチタン複
合酸化物とを、活物質として有するリチウム二次電池用
負極。
1. A carbon material comprising as a main active material, the composition formula the auxiliary active material Li x Ti y O 4 (0.5
and a lithium-titanium composite oxide represented by the following formula: x ≦ 3, 1 ≦ y ≦ 2.5) as an active material.
【請求項2】 前記炭素材料と前記リチウムチタン複合
酸化物との負極中の存在比は、重量比で99:1〜9
4:6である請求項1に記載のリチウム二次電池用負
極。
2. A weight ratio of the carbon material and the lithium-titanium composite oxide in the negative electrode is 99: 1 to 9: 9.
The negative electrode for a lithium secondary battery according to claim 1, wherein the ratio is 4: 6.
【請求項3】 前記リチウムチタン複合酸化物は、その
組成がLi0.8Ti2.24、Li2.67Ti1.334、Li
Ti24、Li1.33Ti1.674、Li1.14Ti1.714
となるものから選ばれる1種以上のものである請求項1
または請求項2に記載のリチウム二次電池用負極。
3. The lithium-titanium composite oxide has a composition of Li 0.8 Ti 2.2 O 4 , Li 2.67 Ti 1.33 O 4 , Li
Ti 2 O 4 , Li 1.33 Ti 1.67 O 4 , Li 1.14 Ti 1.71 O 4
And at least one member selected from the group consisting of:
Alternatively, the negative electrode for a lithium secondary battery according to claim 2.
JP2000023738A 2000-02-01 2000-02-01 Negative electrode for lithium secondary battery Expired - Fee Related JP4752085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000023738A JP4752085B2 (en) 2000-02-01 2000-02-01 Negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000023738A JP4752085B2 (en) 2000-02-01 2000-02-01 Negative electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001216962A true JP2001216962A (en) 2001-08-10
JP4752085B2 JP4752085B2 (en) 2011-08-17

Family

ID=18549857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000023738A Expired - Fee Related JP4752085B2 (en) 2000-02-01 2000-02-01 Negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4752085B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502161A (en) * 2001-08-20 2005-01-20 エフエムシー・コーポレイション Positive electrode active material for secondary battery and method for producing the same
WO2007064046A1 (en) * 2005-12-02 2007-06-07 Gs Yuasa Corporation Nonaqueous electrolyte battery, and production process and use thereof
WO2007064043A1 (en) * 2005-12-02 2007-06-07 Gs Yuasa Corporation Nonaqueous electrolyte battery and process for producing the same
JP2007172954A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
WO2007100133A1 (en) 2006-03-02 2007-09-07 Cataler Corporation Carbon material for lithium battery, and lithium battery
JP2007299728A (en) * 2006-05-01 2007-11-15 Lg Chem Ltd Lithium secondary battery improved in low temperature properties
JP2008060076A (en) * 2006-08-01 2008-03-13 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008130560A (en) * 2006-11-20 2008-06-05 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
WO2009002053A2 (en) * 2007-06-22 2008-12-31 Lg Chem, Ltd. Anode material of excellent conductivity and high power secondary battery employed with the same
JP2009249216A (en) * 2008-04-04 2009-10-29 Japan Atomic Energy Agency Method for producing powder for producing lithium granulated body, lithium ceramics microsphere produced by using the method, and rolling granulation device for producing lithium ceramics microsphere
JP2010123300A (en) * 2008-11-17 2010-06-03 Toyota Central R&D Labs Inc Lithium secondary battery and using method thereof
US8623552B2 (en) 2007-06-07 2014-01-07 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery, and lithium secondary battery including same
CN104091937A (en) * 2014-07-18 2014-10-08 深圳市振华新材料股份有限公司 Lithium titanate-coated surface-treated graphite negative electrode material, preparation method and application of negative electrode material
WO2016060300A1 (en) * 2014-10-16 2016-04-21 주식회사 엘지화학 Secondary battery anode comprising additive for improving low-temperature characteristic, and secondary battery comprising same
US9444120B2 (en) 2005-12-21 2016-09-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method for manufacturing the same
WO2017213083A1 (en) * 2016-06-08 2017-12-14 昭和電工株式会社 Negative electrode for lithium ion secondary cell, and lithium ion secondary cell
WO2022030781A1 (en) * 2020-08-06 2022-02-10 삼성에스디아이 주식회사 Lithium secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190555A (en) * 1990-11-22 1992-07-08 Osaka Gas Co Ltd Lithium secondary battery
JPH07235291A (en) * 1993-12-27 1995-09-05 Haibaru:Kk Secondary battery
JPH087886A (en) * 1994-06-21 1996-01-12 Sanyo Electric Co Ltd Nonaquoeus electrolytic secondary battery and manufacture thereof
JPH08213053A (en) * 1994-12-02 1996-08-20 Canon Inc Lithium secondary battery
JPH1069922A (en) * 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte lithium secondary battery
JPH10208748A (en) * 1997-01-21 1998-08-07 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JPH1196993A (en) * 1997-09-22 1999-04-09 Toyota Motor Corp Negative electrode for lithium ion secondary battery
JPH1196995A (en) * 1997-09-22 1999-04-09 Toyota Motor Corp Manufacture of negative electrode for lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190555A (en) * 1990-11-22 1992-07-08 Osaka Gas Co Ltd Lithium secondary battery
JPH07235291A (en) * 1993-12-27 1995-09-05 Haibaru:Kk Secondary battery
JPH087886A (en) * 1994-06-21 1996-01-12 Sanyo Electric Co Ltd Nonaquoeus electrolytic secondary battery and manufacture thereof
JPH08213053A (en) * 1994-12-02 1996-08-20 Canon Inc Lithium secondary battery
JPH1069922A (en) * 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte lithium secondary battery
JPH10208748A (en) * 1997-01-21 1998-08-07 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JPH1196993A (en) * 1997-09-22 1999-04-09 Toyota Motor Corp Negative electrode for lithium ion secondary battery
JPH1196995A (en) * 1997-09-22 1999-04-09 Toyota Motor Corp Manufacture of negative electrode for lithium ion secondary battery

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856847B2 (en) * 2001-08-20 2012-01-18 ユミコア Positive electrode active material for secondary battery and method for producing the same
JP2005502161A (en) * 2001-08-20 2005-01-20 エフエムシー・コーポレイション Positive electrode active material for secondary battery and method for producing the same
JP5338074B2 (en) * 2005-12-02 2013-11-13 株式会社Gsユアサ How to use non-aqueous electrolyte batteries
WO2007064046A1 (en) * 2005-12-02 2007-06-07 Gs Yuasa Corporation Nonaqueous electrolyte battery, and production process and use thereof
US8163423B2 (en) 2005-12-02 2012-04-24 Gs Yuasa International Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
US8133617B2 (en) 2005-12-02 2012-03-13 Gs Yuasa International Ltd. Non-aqueous electrolyte battery, method of manufacturing the same and method of using the same
JP5338073B2 (en) * 2005-12-02 2013-11-13 株式会社Gsユアサ Non-aqueous electrolyte battery and manufacturing method thereof
WO2007064043A1 (en) * 2005-12-02 2007-06-07 Gs Yuasa Corporation Nonaqueous electrolyte battery and process for producing the same
US9444120B2 (en) 2005-12-21 2016-09-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method for manufacturing the same
JP2007172954A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
WO2007100133A1 (en) 2006-03-02 2007-09-07 Cataler Corporation Carbon material for lithium battery, and lithium battery
JP2007299728A (en) * 2006-05-01 2007-11-15 Lg Chem Ltd Lithium secondary battery improved in low temperature properties
JP2013058495A (en) * 2006-05-01 2013-03-28 Lg Chem Ltd Lithium secondary battery excellent in low-temperature output characteristics
US8110308B2 (en) 2006-05-01 2012-02-07 Lg Chem, Ltd. Lithium secondary battery of improved low-temperature power property
JP2008060076A (en) * 2006-08-01 2008-03-13 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008130560A (en) * 2006-11-20 2008-06-05 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
US8137845B2 (en) 2006-11-20 2012-03-20 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US8623552B2 (en) 2007-06-07 2014-01-07 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery, and lithium secondary battery including same
WO2009002053A2 (en) * 2007-06-22 2008-12-31 Lg Chem, Ltd. Anode material of excellent conductivity and high power secondary battery employed with the same
WO2009002053A3 (en) * 2007-06-22 2009-02-26 Lg Chemical Ltd Anode material of excellent conductivity and high power secondary battery employed with the same
US9034521B2 (en) 2007-06-22 2015-05-19 Lg Chem, Ltd. Anode material of excellent conductivity and high power secondary battery employed with the same
JP2009249216A (en) * 2008-04-04 2009-10-29 Japan Atomic Energy Agency Method for producing powder for producing lithium granulated body, lithium ceramics microsphere produced by using the method, and rolling granulation device for producing lithium ceramics microsphere
JP2010123300A (en) * 2008-11-17 2010-06-03 Toyota Central R&D Labs Inc Lithium secondary battery and using method thereof
CN104091937A (en) * 2014-07-18 2014-10-08 深圳市振华新材料股份有限公司 Lithium titanate-coated surface-treated graphite negative electrode material, preparation method and application of negative electrode material
WO2016060300A1 (en) * 2014-10-16 2016-04-21 주식회사 엘지화학 Secondary battery anode comprising additive for improving low-temperature characteristic, and secondary battery comprising same
CN105849949A (en) * 2014-10-16 2016-08-10 株式会社Lg化学 Secondary battery anode comprising additive for improving low-temperature characteristic, and secondary battery comprising same
JP2016536737A (en) * 2014-10-16 2016-11-24 エルジー・ケム・リミテッド Negative electrode for secondary battery containing additive for improving low temperature characteristics and secondary battery containing the same
US9859551B2 (en) 2014-10-16 2018-01-02 Lg Chem, Ltd. Anode for secondary battery comprising additive for improving low-temperature characteristics, and secondary battery having the same
CN105849949B (en) * 2014-10-16 2019-09-13 株式会社Lg 化学 Secondary battery cathode comprising the additive for improving low-temperature characteristics and the secondary cell with the cathode
WO2017213083A1 (en) * 2016-06-08 2017-12-14 昭和電工株式会社 Negative electrode for lithium ion secondary cell, and lithium ion secondary cell
JPWO2017213083A1 (en) * 2016-06-08 2018-08-23 昭和電工株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2022030781A1 (en) * 2020-08-06 2022-02-10 삼성에스디아이 주식회사 Lithium secondary battery

Also Published As

Publication number Publication date
JP4752085B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
US5612155A (en) Lithium ion secondary battery
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
US9748574B2 (en) Anode and secondary battery
CN105576279B (en) Lithium secondary battery
JP3173225B2 (en) Non-aqueous electrolyte secondary battery
JP4752085B2 (en) Negative electrode for lithium secondary battery
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
JP2001126733A (en) Nonaqueous electrolytic material
JP2001006683A (en) Active material for lithium battery
JP2001006737A (en) Electrolyte for lithium secondary battery and lithium secondary battery using it
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JP2000353525A (en) Nonaqueous electrolyte secondary battery
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP2000340262A (en) Aging treatment method for lithium secondary battery
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
TWI622199B (en) Lithium secondary battery
JP3236400B2 (en) Non-aqueous secondary battery
JP2000260479A (en) Lithium ion secondary battery
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JP2000200624A (en) Nonaqueous electrolyte secondary battery
JP2002151154A (en) Lithium secondary battery
JP2000268878A (en) Lithium ion secondary battery
JP2000123835A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery using the same as negative electrode active material
JP4240275B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees