JPH09306541A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH09306541A
JPH09306541A JP8146680A JP14668096A JPH09306541A JP H09306541 A JPH09306541 A JP H09306541A JP 8146680 A JP8146680 A JP 8146680A JP 14668096 A JP14668096 A JP 14668096A JP H09306541 A JPH09306541 A JP H09306541A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
negative electrode
silicate
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8146680A
Other languages
Japanese (ja)
Other versions
JP3223111B2 (en
Inventor
Nobumichi Nishida
伸道 西田
Maruo Jinno
丸男 神野
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14668096A priority Critical patent/JP3223111B2/en
Publication of JPH09306541A publication Critical patent/JPH09306541A/en
Application granted granted Critical
Publication of JP3223111B2 publication Critical patent/JP3223111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the characteristics; of a cycle, the shelf life, and a load; in a nonaqueous electrolyte battery using solute, containing fluroline-containing lithium salt, for a nonaqueous electrolyte. SOLUTION: In a nonaqueous electrolyte battery equipped with a positive electrode 1, a negative electrode 2: using carbon material, and a nonaqueous electrolyte: containing fluroline-containing lithium salt in solute; at least one kind silicate, shown in any formula of xML2 O.ySiO2 , xM2O.ySiO2 , and xM 32 .ySiO2 : (in the formulas, M1-M3: a metallic element selected from K, Na, Mg, Ca, Fe, and Al, x:1-2, and y:1-4); is contained into the negative electrode and/or the nonaqueous eletrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、正極と、炭素材
料を用いた負極と、溶質に含フッ素リチウム塩を含む非
水電解液とを備えた非水電解質電池において、サイクル
特性、保存特性及び負荷特性が良好な非水電解質電池に
関するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte battery comprising a positive electrode, a negative electrode using a carbon material, and a non-aqueous electrolyte solution containing a fluorine-containing lithium salt as a solute. The present invention relates to a non-aqueous electrolyte battery having good load characteristics.

【0002】[0002]

【従来の技術】近年、高出力,高エネルギー密度の新型
電池として、電解液に非水電解液を用い、リチウムの酸
化,還元を利用して放電や充電を行なうようにした非水
電解質電池が利用されるようになった。
2. Description of the Related Art In recent years, as a new battery with high output and high energy density, there has been a non-aqueous electrolyte battery which uses a non-aqueous electrolyte solution as an electrolyte solution and discharges and charges by utilizing oxidation and reduction of lithium. It came to be used.

【0003】そして、このような非水電解質電池として
は、様々な種類のものが存在し、その一つとして、負極
にリチウムイオン等の吸蔵,放出が行なえる炭素材料を
用いると共に、非水電解液における溶質にLiPF6
LiBF4 等の含フッ素リチウム塩を用いたもの等が知
られている。
There are various types of such non-aqueous electrolyte batteries, one of which is a carbon material capable of absorbing and desorbing lithium ions or the like for the negative electrode and the non-aqueous electrolyte battery. LiPF 6 as the solute in the liquid,
Those using a fluorine-containing lithium salt such as LiBF 4 are known.

【0004】しかし、このように負極に炭素材料を用い
ると共に非水電解液に含フッ素リチウム塩を含む溶質を
用いた非水電解質電池においては、サイクル特性や充電
保存特性が悪く、また一般に高い電流で放電を行なった
場合に放電容量が低下し、負荷特性も悪いという問題も
あった。
However, in such a non-aqueous electrolyte battery using a carbon material for the negative electrode and a solute containing a fluorine-containing lithium salt in the non-aqueous electrolyte, the cycle characteristics and the charge storage characteristics are poor, and generally a high current is used. There is also a problem that the discharge capacity is reduced when the discharge is carried out at 1, and the load characteristics are poor.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記のよ
うに負極に炭素材料を用いると共に、非水電解液に含フ
ッ素リチウム塩を含む溶質を用いた非水電解質電池にお
ける上記のような様々な問題を解決することを課題とす
るものであり、上記のような非水電解質電池において、
サイクル特性や保存特性や負荷特性に優れた非水電解質
電池が得られるようにすることを課題とするものであ
る。
DISCLOSURE OF THE INVENTION The present invention provides various kinds of non-aqueous electrolyte batteries using a carbon material for the negative electrode as described above and a solute containing a fluorine-containing lithium salt for the non-aqueous electrolyte. The problem is to solve various problems, in the non-aqueous electrolyte battery as described above,
It is an object to obtain a non-aqueous electrolyte battery having excellent cycle characteristics, storage characteristics and load characteristics.

【0006】そして、本発明者等は、上記の非水電解質
電池において保存特性等が低下する原因について検討し
たところ、非水電解液に溶質として含有させた含フッ素
リチウム塩の分解によってフッ化水素HFが発生し、こ
のHFがリチウムを吸蔵した状態にある炭素等と反応
し、これによって充放電反応に関与するリチウム等が消
費されて、上記の非水電解質電池における保存特性等が
悪くなると考え、この発明を完成するに至ったのであ
る。
Then, the present inventors examined the cause of the deterioration of the storage characteristics and the like in the above non-aqueous electrolyte battery. As a result, hydrogen fluoride was decomposed by decomposition of the fluorine-containing lithium salt contained as a solute in the non-aqueous electrolyte. It is considered that HF is generated, and this HF reacts with carbon or the like in a state in which lithium is occluded, thereby consuming lithium or the like involved in the charge / discharge reaction and deteriorating the storage characteristics and the like in the nonaqueous electrolyte battery. The present invention has been completed.

【0007】[0007]

【課題を解決するための手段】この発明においては、上
記のような課題を解決するため、正極と、炭素材料を用
いた負極と、溶質に含フッ素リチウム塩を含む非水電解
液とを備えた非水電解質電池において、上記の負極及び
/又は非水電解液に対してxM12 O・ySiO2 、x
M2O・ySiO2 、xM323 ・ySiO2 (式
中、M1〜M3はK,Na,Mg,Ca,Fe,Alか
ら選択される金属元素であり、xは1〜2、yは1〜4
である。)の何れかの式で示される少なくとも一種類の
ケイ酸塩を含有させるようにしたのである。
In order to solve the above problems, the present invention comprises a positive electrode, a negative electrode using a carbon material, and a nonaqueous electrolytic solution containing a fluorine-containing lithium salt as a solute. In the non-aqueous electrolyte battery, xM1 2 O · ySiO 2 , x with respect to the above negative electrode and / or the non-aqueous electrolyte solution.
M2O · ySiO 2 , xM3 2 O 3 · ySiO 2 (In the formula, M1 to M3 are metal elements selected from K, Na, Mg, Ca, Fe and Al, x is 1 to 2 and y is 1 to 1). Four
It is. ) At least one kind of silicate represented by any one of the formulas is included.

【0008】そして、この発明における非水電解質電池
のように、上記のケイ酸塩を負極や非水電解液中に含有
させると、このケイ酸塩が非水電解液の溶質に用いた含
フッ素リチウム塩の分解生成物であるHFと反応してH
Fが消費され、これによりリチウムを吸蔵した状態にあ
る炭素等がHFと反応するのが抑制され、この非水電解
質電池における保存特性やサイクル特性の劣化が抑制さ
れるようになる。
When the silicate is contained in the negative electrode or the non-aqueous electrolyte as in the non-aqueous electrolyte battery of the present invention, the fluorinated silicate used as the solute of the non-aqueous electrolyte is used. H by reacting with HF which is a decomposition product of a lithium salt
F is consumed, and as a result, carbon or the like in the state of occluding lithium is suppressed from reacting with HF, and deterioration of storage characteristics and cycle characteristics in this non-aqueous electrolyte battery is suppressed.

【0009】また、上記のようなケイ酸塩を非水電解液
中に含有させると、電極に対する非水電解液の浸透性が
向上して負荷特性も良くなり、高い電流で放電を行なっ
た場合における放電容量の低下も抑制されるものと考え
られる。
When the silicate as described above is contained in the non-aqueous electrolytic solution, the permeability of the non-aqueous electrolytic solution into the electrode is improved and the load characteristics are improved. It is considered that the reduction of the discharge capacity at the time is suppressed.

【0010】ここで、この非水電解質電池において、負
極に用いる炭素材料としては、公知の炭素材料を使用す
ることができるが、特に、炭素材料として、C6 Liま
でリチウムが吸蔵される充電特性に優れた黒鉛を用いた
場合に対して有効である。
Here, in this non-aqueous electrolyte battery, a known carbon material can be used as the carbon material used for the negative electrode. In particular, as the carbon material, charging characteristics in which lithium is absorbed up to C 6 Li. This is effective when using excellent graphite.

【0011】また、上記のケイ酸塩を非水電解液中に含
有させる場合、その量が少ないと、含フッ素リチウム塩
の分解生成物であるHFを十分に消費させることができ
ず、サイクル特性や充電保存特性を十分に向上させるこ
とができなくなる一方、このケイ酸塩の量が多くなりす
ぎると、この非水電解液におけるイオン伝導性が悪くな
ったり、この非水電解液が正極材料と反応したりして、
保存特性が劣化するため、好ましくは、上記のケイ酸塩
が非水電解液中に0.1〜10重量%含有されるように
する。
Further, when the above-mentioned silicate is contained in the non-aqueous electrolytic solution, if the amount thereof is small, HF which is a decomposition product of the fluorine-containing lithium salt cannot be sufficiently consumed and the cycle characteristics are deteriorated. While it becomes impossible to sufficiently improve the charge storage characteristics and the charge storage characteristics, if the amount of the silicate is too large, the ionic conductivity in the non-aqueous electrolytic solution becomes poor, or the non-aqueous electrolytic solution becomes a positive electrode material. Reacting,
Since the storage characteristics deteriorate, the silicate is preferably contained in the non-aqueous electrolyte in an amount of 0.1 to 10% by weight.

【0012】また、上記のケイ酸塩を負極中に含有させ
る場合には、前記のHFとの反応を十分に抑制すると共
に、負極における特性が低下するのを抑制するため、前
記のケイ酸塩が負極材料である炭素材料に対して0.1
〜5重量%の範囲で含有されるようにすることが好まし
い。
When the above-mentioned silicate is contained in the negative electrode, the reaction with the above-mentioned HF is sufficiently suppressed and the characteristics of the negative electrode are prevented from being deteriorated. Is 0.1 with respect to the carbon material that is the negative electrode material
It is preferable that the content is in the range of 5 wt%.

【0013】ここで、この発明における非水電解質電池
において、非水電解液に含有させる含フッ素リチウム塩
の溶質としては、例えば、LiPF6 、LiBF4 、L
iAsF6 、LiCF3 SO3 、LiN(CF3 SO
22 、LiSbF6 、LiSiF6 、LiAlF4
LiC(CF3 SO23 、LiN(C25 SO2
2 等が存在し、またこのような含フッ素リチウム塩とそ
れ以外の溶質を合わせて用いた場合においても有効であ
る。
Here, in the non-aqueous electrolyte battery according to the present invention, the solute of the fluorine-containing lithium salt contained in the non-aqueous electrolyte is, for example, LiPF 6 , LiBF 4 , L.
iAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO
2) 2, LiSbF 6, LiSiF 6, LiAlF 4,
LiC (CF 3 SO 2) 3 , LiN (C 2 F 5 SO 2)
2 and the like exist, and it is also effective when such a fluorine-containing lithium salt and a solute other than that are used together.

【0014】また、この非水電解液における溶媒として
は、公知のものを使用することができ、例えば、プロピ
レンカーボネート、エチレンカーボネート、γ−ブチロ
ラクトン、ジメチルカーボネート、ジメチルスルホキシ
ド、アセトニトリル、ブチレンカーボネート、1,2−
ジメトキシエタン、ジエチルカーボネート等の有機溶媒
を1種又は2種以上組み合わせて使用することができ
る。
As the solvent in this non-aqueous electrolytic solution, known solvents can be used, for example, propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate, dimethyl sulfoxide, acetonitrile, butylene carbonate, 1, 2-
Organic solvents such as dimethoxyethane and diethyl carbonate can be used alone or in combination of two or more.

【0015】また、この発明における非水電解質電池に
おける正極においても公知の正極材料を使用することが
でき、リチウムを活物質とする場合、リチウムを吸蔵,
放出することができる材料、例えば、マンガン,コバル
ト,ニッケル,鉄,バナジウム,ニオブの少なくとも1
種を含むリチウム遷移金属複合酸化物等を使用すること
ができ、より具体的には、LiCoO2 、LiNiO
2 、LiMnO2 、LiFeO2 等の材料を使用するこ
とができる。
Also, a known positive electrode material can be used for the positive electrode in the non-aqueous electrolyte battery according to the present invention. When lithium is used as the active material, lithium is occluded,
A material capable of being released, eg at least one of manganese, cobalt, nickel, iron, vanadium, niobium
A lithium transition metal composite oxide containing a seed can be used, and more specifically, LiCoO 2 , LiNiO 2 , and the like.
Can be used 2, LiMnO 2, LiFeO 2 or the like materials.

【0016】[0016]

【実施例】以下、この発明に係る非水電解質電池につい
て、実施例を挙げて具体的に説明すると共に、比較例を
挙げて、この実施例に係る非水電解質電池がサイクル特
性や保存特性や負荷特性の点で優れていることを明らか
にする。なお、この発明における非水電解質電池は下記
の実施例に示したものに限定されるものではなく、その
要旨を変更しない範囲において適宜変更して実施できる
ものである。
EXAMPLES Hereinafter, the non-aqueous electrolyte battery according to the present invention will be specifically described with reference to Examples, and comparative examples will be given to show that the non-aqueous electrolyte battery according to this example has cycle characteristics and storage characteristics. It is clarified that it is superior in terms of load characteristics. The non-aqueous electrolyte battery according to the present invention is not limited to those shown in the following examples, but can be implemented by appropriately changing the scope of the invention without changing its gist.

【0017】(実施例1)この実施例1においては、下
記のようにして作製した正極と負極とを用いると共に、
下記のようにして調製した非水電解液を用い、図1に示
すようなAAサイズの円筒型の非水電解質二次電池を作
製した。
(Example 1) In Example 1, the positive electrode and the negative electrode produced as follows were used, and
Using the non-aqueous electrolyte solution prepared as described below, an AA size cylindrical non-aqueous electrolyte secondary battery as shown in FIG. 1 was produced.

【0018】[正極の作製]正極を作製するにあたって
は、正極材料として、リチウムコバルト複合酸化物Li
CoO2 を使用し、このLiCoO2 粉末と、導電剤で
ある人造黒鉛粉末と、結着剤であるポリフッ化ビニリデ
ンを溶解させた5重量%N−メチルピロリドン溶液とを
加え、LiCoO2 粉末90重量部に対して、人造黒鉛
粉末が5重量部、ポリフッ化ビニリデンが5重量部の割
合になるようにし、これらを混練してスラリーを調製し
た。そして、このスラリーを正極集電体であるアルミニ
ウム箔の両面にドクターブレード法により塗布し、これ
を150℃で2時間真空乾燥させて正極を作製した。
[Production of Positive Electrode] In producing the positive electrode, a lithium cobalt composite oxide Li is used as a positive electrode material.
Using CoO 2 , this LiCoO 2 powder, artificial graphite powder that is a conductive agent, and a 5 wt% N-methylpyrrolidone solution in which polyvinylidene fluoride that is a binder is dissolved are added, and 90 wt% of LiCoO 2 powder is added. 5 parts by weight of artificial graphite powder and 5 parts by weight of polyvinylidene fluoride were mixed with the parts, and these were kneaded to prepare a slurry. Then, this slurry was applied to both surfaces of an aluminum foil, which is a positive electrode current collector, by a doctor blade method, and this was vacuum dried at 150 ° C. for 2 hours to produce a positive electrode.

【0019】[負極の作製]負極を作製するにあたって
は、負極材料に天然黒鉛を用い、この天然黒鉛粉末95
重量部に対して、結着剤であるポリフッ化ビニリデンが
5重量部含まれるようにして、このポリフッ化ビニリデ
ンを溶解させた5重量%N−メチルピロリドン溶液を加
え、これらを混練してスラリーを調製した。そして、こ
のスラリーを負極集電体である銅箔の両面に塗布し、こ
れを150℃で2時間真空乾燥させて負極を作製した。
[Manufacture of Negative Electrode] When manufacturing a negative electrode, natural graphite was used as a negative electrode material, and this natural graphite powder 95 was used.
With respect to 5 parts by weight of polyvinylidene fluoride as a binder, 5% by weight of a polyvinylidene fluoride-dissolved N-methylpyrrolidone solution was added, and these were kneaded to form a slurry. Prepared. And this slurry was apply | coated to both surfaces of the copper foil which is a negative electrode collector, this was vacuum-dried at 150 degreeC for 2 hours, and the negative electrode was produced.

【0020】[非水電解液の調製]非水電解液を調製す
るにあたっては、溶媒にエチレンカーボネートとジエチ
ルカーボーネートとを1:1の体積比で混合させた混合
溶媒を用い、この混合溶媒に六フッ化リン酸リチウムL
iPF6 を1mol/lの割合で溶解させ、更にこれに
ケイ酸塩としてNa2 O・SiO2 を1重量%の割合に
なるように添加させて非水電解液を調製した。
[Preparation of Non-Aqueous Electrolyte] In preparing the non-aqueous electrolyte, a mixed solvent prepared by mixing ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 was used as the solvent. Lithium hexafluorophosphate L
The iPF 6 was dissolved in a proportion of 1 mol / l, were further prepared thereto to a Na 2 O · SiO 2 was added to a proportion of 1% by weight silicate non-aqueous electrolyte solution.

【0021】[電池の作製]そして、この実施例1の非
水電解質二次電池を作製するにあたっては、図1に示す
ように、上記のようにして作製した正極1と負極2との
間にそれぞれセパレータ3としてリチウムイオン透過性
のポリプロピレン性の微多孔膜を介在させ、これらをス
パイラル状に巻いて電池缶4内に収容させた後、この電
池缶4内に上記の非水電解液を注液して封口し、正極1
を正極リード5を介して正極外部端子6に接続させると
共に負極2を負極リード7を介して電池缶4に接続さ
せ、正極外部端子6と電池缶4とを絶縁パッキン8によ
り電気的に分離させた。
[Production of Battery] Then, in producing the non-aqueous electrolyte secondary battery of Example 1, as shown in FIG. 1, between the positive electrode 1 and the negative electrode 2 produced as described above. A lithium ion-permeable polypropylene microporous film is interposed as each separator 3 and these are spirally wound to be housed in a battery can 4, and then the nonaqueous electrolyte solution is poured into the battery can 4. Liquid and seal, positive electrode 1
Is connected to the positive electrode external terminal 6 via the positive electrode lead 5, the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7, and the positive electrode external terminal 6 and the battery can 4 are electrically separated by the insulating packing 8. It was

【0022】(実施例2〜6)これらの実施例において
は、上記の実施例1における非水電解液の調製におい
て、非水電解液中に加えるケイ酸塩の種類を変更させ、
実施例2ではNa2 O・SiO2 を、実施例3ではNa
2 O・2SiO2 を、実施例4ではNa2 O・4SiO
2 を、実施例5ではCaO・SiO2 を、実施例6では
CaO・MgO・2SiO2 をそれぞれ非水電解液中に
1重量%含有されるようにし、それ以外については上記
実施例1の場合と同様にして各非水電解質二次電池を作
製した。
(Examples 2 to 6) In these examples, in the preparation of the nonaqueous electrolytic solution in the above Example 1, the kind of silicate added to the nonaqueous electrolytic solution was changed,
In Example 2, Na 2 O.SiO 2 was used, and in Example 3, Na 2 O.SiO 2 was used.
2 O · 2SiO 2 was used in Example 4 as Na 2 O · 4SiO
2, Example 5, CaO · SiO 2, Example and 6 in CaO · MgO · 2SiO 2 to be contained 1% by weight in the nonaqueous electrolytic solution each, in the above Example 1 for others Each non-aqueous electrolyte secondary battery was produced in the same manner as in.

【0023】(比較例1)この比較例においては、上記
の実施例1の非水電解質二次電池における非水電解液の
調製において、非水電解液中に何れのケイ酸塩も添加し
ないようにし、それ以外については上記実施例1の場合
と同様にして非水電解質二次電池を作製した。
(Comparative Example 1) In this comparative example, in the preparation of the non-aqueous electrolyte solution in the non-aqueous electrolyte secondary battery of Example 1 described above, no silicate was added to the non-aqueous electrolyte solution. A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except for the above.

【0024】次に、上記のようにして作製した実施例1
〜6及び比較例1の各非水電解質二次電池について保存
特性及びサイクル特性を調べ、その結果を下記の表1に
示した。ここで、保存特性については、各非水電解質二
次電池を充電電流200mAで充電終止電圧4.2Vま
で充電させた後、放電電流200mAで放電終止電圧
2.75Vまで放電させて、保存前における放電容量を
測定する一方、上記のように充電させた各非水電解質二
次電池を温度60℃で10日間保存した後、これらの各
非水電解質二次電池を取り出して室温に戻し、上記のよ
うに放電電流200mAで放電終止電圧2.75Vまで
放電させて保存後における放電容量を測定し、各非水電
解質二次電池における保存前の放電容量に対する保存後
の放電容量の容量残存率(%)を求めた。また、サイク
ル特性については、各非水電解質二次電池を充電電流2
00mAで充電終止電圧4.2Vまで充電させ、放電電
流200mAで放電終止電圧2.75Vまで放電させ、
このような充放電を1サイクルとして500サイクル繰
り返し、1サイクルあたりにおける放電容量の劣化率
(%)を求めた。
Next, the first embodiment manufactured as described above was used.
6 to 6 and the non-aqueous electrolyte secondary batteries of Comparative Example 1 were examined for storage characteristics and cycle characteristics, and the results are shown in Table 1 below. Here, regarding storage characteristics, each non-aqueous electrolyte secondary battery was charged at a charging current of 200 mA to a charge end voltage of 4.2 V, and then discharged at a discharge current of 200 mA to a discharge end voltage of 2.75 V, before storage. While measuring the discharge capacity, each of the non-aqueous electrolyte secondary batteries charged as described above was stored at a temperature of 60 ° C. for 10 days, and then each of these non-aqueous electrolyte secondary batteries was taken out and returned to room temperature. The discharge capacity after storage was measured by discharging to a discharge end voltage of 2.75 V at a discharge current of 200 mA, and the residual capacity ratio of the discharge capacity after storage to the discharge capacity before storage in each non-aqueous electrolyte secondary battery (% ) Was asked. Regarding the cycle characteristics, charge current 2 for each non-aqueous electrolyte secondary battery.
It is charged to a charge end voltage of 4.2 V at 00 mA, and discharged to a discharge end voltage of 2.75 V at a discharge current of 200 mA,
Such charging / discharging was set as one cycle, repeated 500 times, and the deterioration rate (%) of the discharge capacity per one cycle was obtained.

【0025】[0025]

【表1】 [Table 1]

【0026】この結果、溶質にLiPF6 を用いた非水
電解液中に上記のような各種のケイ酸塩を含有させた実
施例1〜6の各非水電解質二次電池においては、ケイ酸
塩を添加しなかった比較例1の非水電解質二次電池に比
べて、1サイクルあたりにおける放電容量の劣化率が低
くなっていると共に、保存後における容量残存率も高く
なっており、保存特性及びサイクル特性が比較例1の非
水電解質二次電池に比べて向上していた。
As a result, in each of the non-aqueous electrolyte secondary batteries of Examples 1 to 6 in which the above-mentioned various silicates were contained in the non-aqueous electrolyte solution using LiPF 6 as the solute, silicic acid was used. Compared to the non-aqueous electrolyte secondary battery of Comparative Example 1 in which no salt was added, the deterioration rate of the discharge capacity per cycle was low, and the residual capacity rate after storage was also high. And the cycle characteristics were improved as compared with the non-aqueous electrolyte secondary battery of Comparative Example 1.

【0027】(実施例7〜11)これらの実施例におい
ては、上記の実施例1の非水電解質二次電池における非
水電解液の調製において、非水電解液中に加えるケイ酸
塩Na2 O・SiO2 の量を、下記の表2に示すように
0.05重量%、0.1重量%、5重量%、10重量
%、20重量%に変更させ、それ以外については、上記
実施例1の場合と同様にして非水電解質二次電池を作製
した。
(Examples 7 to 11) In these Examples, the silicate Na 2 added to the non-aqueous electrolyte in the preparation of the non-aqueous electrolyte in the non-aqueous electrolyte secondary battery of Example 1 above. As shown in Table 2 below, the amount of O.SiO 2 was changed to 0.05% by weight, 0.1% by weight, 5% by weight, 10% by weight, and 20% by weight. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1.

【0028】そして、これらの実施例7〜11における
各非水電解質電池においても、上記の場合と同様にし
て、保存後における容量残存率(%)と1サイクルあた
りの劣化率(%)とを求め、その結果を上記の実施例1
のものと合わせて下記の表2に示した。
Also in each of the non-aqueous electrolyte batteries in Examples 7 to 11, the capacity remaining rate (%) after storage and the deterioration rate (%) per cycle were determined in the same manner as above. Obtained, and the result is obtained in Example 1 above.
The results are shown in Table 2 below.

【0029】[0029]

【表2】 [Table 2]

【0030】この結果、非水電解液中に添加させるケイ
酸塩Na2 O・SiO2 の添加量を0.1〜10重量%
の範囲にした実施例1及び実施例8〜10の各非水電解
質二次電池においては、1サイクルあたりにおける劣化
率が低く、容量残存率も高くなっており、保存特性及び
サイクル特性が十分に向上されていた。
[0030] As a result, the amount of silicate Na 2 O · SiO 2 which is added in the nonaqueous electrolytic solution of 0.1 to 10 wt%
In each of the non-aqueous electrolyte secondary batteries of Example 1 and Examples 8 to 10 in which the range was set, the deterioration rate per cycle was low, the capacity remaining rate was high, and the storage characteristics and cycle characteristics were sufficient. Had been improved.

【0031】一方、上記のケイ酸塩Na2 O・SiO2
の添加量が0.05重量%になった実施例7の非水電解
質二次電池においては、上記のケイ酸塩による効果が十
分に得られず、また添加量が20重量%になった実施例
11の非水電解質二次電池においては、非水電解液にお
ける伝導度が低下したり、正極材料がこの非水電解液と
反応したりして、何れも1サイクルあたりの劣化率が高
く、容量残存率も低くなっており、保存特性及びサイク
ル特性が十分に向上されていなかった。
On the other hand, the above-mentioned silicate Na 2 O.SiO 2
In the non-aqueous electrolyte secondary battery of Example 7 in which the added amount of 0.05% by weight was obtained, the above effect of the silicate was not sufficiently obtained, and the addition amount was 20% by weight. In the non-aqueous electrolyte secondary battery of Example 11, the conductivity in the non-aqueous electrolytic solution was lowered, or the positive electrode material reacted with this non-aqueous electrolytic solution, and thus the deterioration rate per cycle was high, The capacity remaining rate was also low, and the storage characteristics and cycle characteristics were not sufficiently improved.

【0032】(実施例12〜16)これらの実施例にお
いては、上記の実施例1の非水電解質二次電池における
非水電解液の調製において、非水電解液中にケイ酸塩を
加えないようにする一方、負極の作製において、負極材
料である天然黒鉛粉末に対して、ケイ酸塩Na2 O・S
iO2 を、下記の表3に示すように0.05重量%、
0.1重量%、1重量%、5重量%、10重量%含有さ
せるようにし、それ以外については、上記実施例1の場
合と同様にして各非水電解質二次電池を作製した。
(Examples 12 to 16) In these Examples, no silicate was added to the non-aqueous electrolyte in the preparation of the non-aqueous electrolyte in the non-aqueous electrolyte secondary battery of Example 1 described above. On the other hand, in the production of the negative electrode, the silicate Na 2 O · S is added to the natural graphite powder, which is the negative electrode material.
0.05% by weight of iO 2 as shown in Table 3 below,
0.1% by weight, 1% by weight, 5% by weight, 10% by weight, and other than that, each non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 above.

【0033】そして、これらの実施例12〜16におけ
る各非水電解質電池についても、上記の場合と同様にし
て、保存後における容量残存率(%)と1サイクルあた
りの劣化率(%)とを求め、その結果を表3に合わせて
示した。
Also for each of the nonaqueous electrolyte batteries in Examples 12 to 16, the capacity remaining rate (%) after storage and the deterioration rate (%) per cycle were stored in the same manner as above. The results are shown in Table 3 together.

【0034】[0034]

【表3】 [Table 3]

【0035】この結果、負極中にケイ酸塩Na2 O・S
iO2 を添加させる場合、負極材料である黒鉛粉末に対
して上記のケイ酸塩を0.1〜5重量%の範囲で添加さ
せた実施例13〜15の非水電解質二次電池において
は、1サイクルあたりの劣化率が低くなると共に容量残
存率が高くなっており、保存特性及びサイクル特性が十
分に向上されていた。
As a result, the silicate Na 2 O.S
In the case of adding iO 2 , in the non-aqueous electrolyte secondary batteries of Examples 13 to 15, in which the above-mentioned silicate is added in the range of 0.1 to 5% by weight with respect to the graphite powder as the negative electrode material, The deterioration rate per cycle was low and the capacity remaining rate was high, and storage characteristics and cycle characteristics were sufficiently improved.

【0036】一方、黒鉛粉末に対して上記のケイ酸塩N
2 O・SiO2 の添加量が0.05重量%になった実
施例12の非水電解質二次電池においては、上記のケイ
酸塩による効果が十分に得られず、1サイクルあたりの
劣化率が高く、容量残存率も低くなっており、また添加
量が10重量%になった実施例16の非水電解質二次電
池においても、1サイクルあたりの劣化率が高く、容量
残存率も低くなっており、保存特性及びサイクル特性が
十分に向上されていなかった。
On the other hand, the above-mentioned silicate N is added to the graphite powder.
In the non-aqueous electrolyte secondary battery of Example 12 in which the added amount of a 2 O · SiO 2 was 0.05% by weight, the above effect of the silicate could not be sufficiently obtained, and deterioration per cycle In the non-aqueous electrolyte secondary battery of Example 16 in which the addition rate was 10% by weight, the deterioration rate per cycle was high and the remaining capacity rate was low. The storage characteristics and cycle characteristics were not sufficiently improved.

【0037】(実施例17〜20)これらの実施例にお
いては、上記の実施例1の非水電解質二次電池における
非水電解液の調製において、非水電解液中に加える溶質
の種類だけを下記の表4に示すように変更させ、溶質と
して、実施例17ではLiBF4 を、実施例18ではL
iAsF6 を、実施例19ではLiCF3 SO3 を、実
施例20ではLiN(CF3 SO22 を用い、上記の
エチレンカーボネートとジエチルカーボネートとの混合
溶媒にこれらの溶質をそれぞれ1mol/lの割合で溶
解させるようにし、これにケイ酸塩としてNa2 O・S
iO2 を1重量%添加させて非水電解液を調製し、それ
以外については、上記実施例1の場合と同様にして非水
電解質二次電池を作製した。
(Examples 17 to 20) In these Examples, only the kind of solute to be added to the non-aqueous electrolytic solution in the preparation of the non-aqueous electrolytic solution in the non-aqueous electrolyte secondary battery of Example 1 was used. The solute was changed as shown in Table 4 below, and as a solute, LiBF 4 was used in Example 17 and L was used in Example 18.
iAsF 6 , LiCF 3 SO 3 in Example 19 and LiN (CF 3 SO 2 ) 2 in Example 20 were used, and these solutes were mixed in an amount of 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate. It is made to dissolve in a ratio, and Na 2 O ・ S is added to this as a silicate.
A non-aqueous electrolyte was prepared by adding 1% by weight of iO 2 , and otherwise the non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1.

【0038】(比較例2)この比較例においては、上記
の実施例1の非水電解質二次電池における非水電解液の
調製において、その溶質として含フッ素リチウム塩では
ない過塩素酸リチウムLiClO4 を用い、このLiC
lO4 を上記の混合溶媒に1mol/lの割合で溶解さ
せるようにし、これにケイ酸塩としてNa2 O・SiO
2 を1重量%添加させて非水電解液を調製し、それ以外
については、上記実施例1の場合と同様にして非水電解
質二次電池を作製した。
Comparative Example 2 In this Comparative Example, lithium perchlorate LiClO 4 which is not a fluorine-containing lithium salt is used as the solute in the preparation of the non-aqueous electrolyte solution in the non-aqueous electrolyte secondary battery of Example 1 described above. Using LiC
lO 4 was dissolved in the above mixed solvent at a ratio of 1 mol / l, and Na 2 O.SiO was used as a silicate.
1% by weight of 2 was added to prepare a non-aqueous electrolyte solution, and other than that, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 above.

【0039】次に、上記のようにして作製した実施例1
7〜20及び比較例2の各非水電解質二次電池について
も、前記の場合と同様にして容量残存率(%)と1サイ
クルあたりの劣化率(%)とを求め、その結果を表4に
合わせて示した。
Next, Example 1 produced as described above.
For each of the non-aqueous electrolyte secondary batteries of Nos. 7 to 20 and Comparative Example 2, the capacity remaining rate (%) and the deterioration rate per cycle (%) were determined in the same manner as in the above case, and the results are shown in Table 4. It is also shown.

【0040】[0040]

【表4】 [Table 4]

【0041】この結果、非水電解液における溶質に異な
った含フッ素リチウム塩を用いた実施例17〜20の各
非水電解質二次電池においても、上記の実施例1の非水
電解質二次電池の場合と同様に、非水電解液中にケイ酸
塩Na2 O・SiO2 を含有させることにより、1サイ
クルあたりの劣化率が低くなっていると共に、容量残存
率も高くなっており、保存特性及びサイクル特性が十分
に向上されていた。
As a result, also in the non-aqueous electrolyte secondary batteries of Examples 17 to 20 using different fluorine-containing lithium salts as solutes in the non-aqueous electrolyte solution, the non-aqueous electrolyte secondary battery of Example 1 was also used. As in the case of No. 3, by containing the silicate Na 2 O · SiO 2 in the non-aqueous electrolyte, the deterioration rate per cycle is low and the capacity remaining rate is high, The characteristics and cycle characteristics were sufficiently improved.

【0042】これに対して、非水電解液における溶質に
含フッ素リチウム塩でないLiClO4 を用いた比較例
2の非水電解質二次電池においては、この非水電解液中
に同様のケイ酸塩を添加させたとしても、1サイクルあ
たり劣化率が高く、また容量残存率も低くなっており、
ケイ酸塩を添加させた効果が得られなかった。
On the other hand, in the non-aqueous electrolyte secondary battery of Comparative Example 2 using LiClO 4 which is not a fluorine-containing lithium salt as the solute in the non-aqueous electrolyte, the same silicate is contained in this non-aqueous electrolyte. , The deterioration rate per cycle is high and the capacity remaining rate is low.
The effect of adding silicate was not obtained.

【0043】次に、上記の実施例1の非水電解質二次電
池における負極の作製において、その負極材料として、
上記の天然黒鉛に代わりにコークスを用い、それ以外に
ついては、上記実施例1と同様にして非水電解質二次電
池を作製した。
Next, in the production of the negative electrode in the non-aqueous electrolyte secondary battery of the above Example 1, as the negative electrode material,
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that coke was used instead of the above-mentioned natural graphite.

【0044】そして、このように負極材料にコークスを
用いた非水電解質二次電池についても、前記の場合と同
様にして1サイクルあたりにおける放電容量の劣化率
(%)を調べると共に保存後における容量残存率(%)
を測定した。
As for the non-aqueous electrolyte secondary battery using coke as the negative electrode material, the deterioration rate (%) of the discharge capacity per cycle was examined in the same manner as in the above case, and the capacity after storage was evaluated. Survival rate(%)
Was measured.

【0045】この結果、負極材料にコークスを用いた非
水電解質二次電池においては、1サイクルあたりの劣化
率が0.03〜0.04%であり、また保存後における
容量残存率は80%となっており、非水電解液中にケイ
酸塩Na2 O・SiO2 を添加したにもかかわらず、サ
イクル特性や保存特性がほとんど向上されていなかっ
た。
As a result, in the non-aqueous electrolyte secondary battery using coke as the negative electrode material, the deterioration rate per cycle was 0.03 to 0.04%, and the capacity remaining rate after storage was 80%. Therefore, even though the silicate Na 2 O.SiO 2 was added to the non-aqueous electrolyte, the cycle characteristics and the storage characteristics were hardly improved.

【0046】これは、負極材料の種類により劣化機構が
異なるためであると考えられ、負極材料に黒鉛を用いた
場合に有効に作用するということがわかった。
It is considered that this is because the deterioration mechanism differs depending on the type of negative electrode material, and it was found that when graphite is used as the negative electrode material, it works effectively.

【0047】(比較例3)この比較例においては、上記
の実施例1の非水電解質二次電池における非水電解液の
作製において、非水電解液中にケイ酸塩ではないLi2
CO3 を1重量%添加させるようにし、それ以外につい
ては、上記実施例1と同様にして非水電解質二次電池を
作製した。
(Comparative Example 3) In this comparative example, in the preparation of the non-aqueous electrolyte solution in the non-aqueous electrolyte secondary battery of Example 1 above, Li 2 which is not a silicate in the non-aqueous electrolyte solution is used.
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that 1% by weight of CO 3 was added.

【0048】次に、上記の実施例1〜11及び比較例4
の非水電解質二次電池について、充電電流200mAで
充電終止電圧4.2Vまで充電させ、放電電流500m
Aで放電終止電圧2.75Vまで放電させた場合におけ
る低率放電容量と、放電電流2000mAで放電終止電
圧2.75Vまで放電させた場合における高率放電容量
を求めると共に、負荷特性として、低率放電容量に対す
る高率放電容量の比率(高率放電容量/低率放電容量)
×100(%)を求め、その結果を下記の表5に示し
た。
Next, the above Examples 1 to 11 and Comparative Example 4
The non-aqueous electrolyte secondary battery of No. 2 was charged at a charging current of 200 mA to an end-of-charge voltage of 4.2 V, and a discharging current of 500 m
A low rate discharge capacity when discharged to a discharge end voltage of 2.75 V at A and a high rate discharge capacity when discharged to a discharge end voltage of 2.75 V at a discharge current of 2000 mA are obtained, and as a load characteristic, a low rate Ratio of high rate discharge capacity to discharge capacity (high rate discharge capacity / low rate discharge capacity)
× 100 (%) was determined and the results are shown in Table 5 below.

【0049】また、上記実施例1の非水電解質二次電池
と比較例3の非水電解質二次電池について、それぞれ放
電電流の電流値を変化させて放電を行ない、放電電流と
放電容量との関係を求め、その結果を図2に示した。
Further, the non-aqueous electrolyte secondary battery of Example 1 and the non-aqueous electrolyte secondary battery of Comparative Example 3 were each discharged by changing the current value of the discharge current to obtain the discharge current and the discharge capacity. The relationship was determined and the result is shown in FIG.

【0050】[0050]

【表5】 [Table 5]

【0051】これらの結果、上記の実施例1〜11のよ
うに非水電解液中にケイ酸塩を添加させた各非水電解質
二次電池においては、非水電解液中にケイ酸塩以外のL
2CO3 を添加した比較例4の非水電解質二次電池に
比べて低率放電容量に対する高率放電容量の比率が高く
なって負荷特性が向上されており、高い放電電流であっ
ても十分な放電容量が得られようになっていた。
As a result, in each of the non-aqueous electrolyte secondary batteries in which the silicate was added to the non-aqueous electrolyte as in Examples 1 to 11 described above, the non-aqueous electrolyte did not contain silicates. L
Compared with the non-aqueous electrolyte secondary battery of Comparative Example 4 to which i 2 CO 3 was added, the ratio of the high rate discharge capacity to the low rate discharge capacity was increased and the load characteristics were improved, and even with a high discharge current. A sufficient discharge capacity could be obtained.

【0052】[0052]

【発明の効果】以上詳述したように、この発明において
は、非水電解液の溶質に含フッ素リチウム塩を用いた非
水電解質電池において、負極や非水電解液中に前記のよ
うなケイ酸塩を含有させたため、保存特性やサイクル特
性の劣化が抑制されると共に、負荷特性も向上されて、
保存特性やサイクル特性に優れると共に、高い電流で放
電を行なった場合にも十分な放電容量をもつ非水電解質
電池が得られるようになった。
As described in detail above, according to the present invention, in the non-aqueous electrolyte battery using the fluorine-containing lithium salt as the solute of the non-aqueous electrolyte, the above-mentioned silica is used in the negative electrode and the non-aqueous electrolyte. Since it contains an acid salt, deterioration of storage characteristics and cycle characteristics is suppressed, and load characteristics are also improved.
It has become possible to obtain a non-aqueous electrolyte battery which has excellent storage characteristics and cycle characteristics, and has sufficient discharge capacity even when discharged at a high current.

【図面の簡単な説明】[Brief description of drawings]

【図1】各実施例及び各比較例における非水電解質二次
電池の内部構造を示した断面説明図である。
FIG. 1 is a cross-sectional explanatory view showing an internal structure of a non-aqueous electrolyte secondary battery in each of Examples and Comparative Examples.

【図2】実施例1と比較例4の各非水電解質二次電池に
おける放電電流と放電容量との関係を示した図である。
FIG. 2 is a diagram showing a relationship between discharge current and discharge capacity in each nonaqueous electrolyte secondary battery of Example 1 and Comparative Example 4.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極と、炭素材料を用いた負極と、溶質
に含フッ素リチウム塩を含む非水電解液とを備えた非水
電解質電池において、上記の負極及び/又は非水電解液
に対してxM12 O・ySiO2 、xM2O・ySiO
2 、xM323 ・ySiO2 (式中、M1〜M3は
K,Na,Mg,Ca,Fe,Alから選択される金属
元素であり、xは1〜2、yは1〜4である。)の何れ
かの式で示される少なくとも一種類のケイ酸塩を含有さ
せたことを特徴とする非水電解質電池。
1. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode using a carbon material, and a non-aqueous electrolyte containing a fluorine-containing lithium salt as a solute, wherein the negative electrode and / or the non-aqueous electrolyte is XM1 2 O · ySiO 2 , xM2O · ySiO
2 , xM3 2 O 3 · ySiO 2 (wherein, M1 to M3 are metal elements selected from K, Na, Mg, Ca, Fe and Al, x is 1 to 2 and y is 1 to 4) A non-aqueous electrolyte battery containing at least one kind of silicate represented by any of the formulas.
【請求項2】 請求項1に記載した非水電解質電池にお
いて、非水電解液に対して前記のケイ酸塩を0.1〜1
0重量%含有させたことを特徴とする非水電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein 0.1 to 1 of the silicate is added to the non-aqueous electrolytic solution.
A non-aqueous electrolyte battery containing 0% by weight.
【請求項3】 請求項1又は2に記載した非水電解質電
池において、負極における炭素材料に黒鉛を用いたこと
を特徴とする非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein graphite is used as a carbon material in the negative electrode.
JP14668096A 1996-05-15 1996-05-15 Non-aqueous electrolyte battery Expired - Fee Related JP3223111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14668096A JP3223111B2 (en) 1996-05-15 1996-05-15 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14668096A JP3223111B2 (en) 1996-05-15 1996-05-15 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH09306541A true JPH09306541A (en) 1997-11-28
JP3223111B2 JP3223111B2 (en) 2001-10-29

Family

ID=15413172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14668096A Expired - Fee Related JP3223111B2 (en) 1996-05-15 1996-05-15 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3223111B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204145A (en) * 1998-01-20 1999-07-30 Yuasa Corp Lithium secondary battery
JPH11250933A (en) * 1998-03-02 1999-09-17 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000012081A (en) * 1998-06-23 2000-01-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte lithium secondary battery
JP2000090987A (en) * 1998-09-09 2000-03-31 Matsushita Electric Ind Co Ltd Method for measuring discharging capacity of non- aqueous electrolyte secondary battery
JP2001176500A (en) * 1999-12-08 2001-06-29 Samsung Sdi Co Ltd Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
JP2018063912A (en) * 2016-10-14 2018-04-19 Attaccato合同会社 Skeleton-forming agent, electrode arranged by use thereof, and manufacturing method of electrode
JP2018101638A (en) * 2018-03-12 2018-06-28 Attaccato合同会社 Skeleton-forming agent, electrode arranged by use thereof, and manufacturing method of electrode
JP2019003959A (en) * 2018-10-10 2019-01-10 Attaccato合同会社 Positive electrode for nonaqueous electrolyte secondary battery and battery using the same
JP2019212638A (en) * 2018-03-12 2019-12-12 Attaccato合同会社 Skeleton-forming agent, electrode arranged by use thereof, and manufacturing method of electrode
WO2020189452A1 (en) * 2019-03-19 2020-09-24 パナソニックIpマネジメント株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2021193693A (en) * 2019-09-06 2021-12-23 Attaccato合同会社 Skeleton-forming agent, electrode arranged by use thereof, and manufacturing method of electrode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204145A (en) * 1998-01-20 1999-07-30 Yuasa Corp Lithium secondary battery
JPH11250933A (en) * 1998-03-02 1999-09-17 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000012081A (en) * 1998-06-23 2000-01-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte lithium secondary battery
JP2000090987A (en) * 1998-09-09 2000-03-31 Matsushita Electric Ind Co Ltd Method for measuring discharging capacity of non- aqueous electrolyte secondary battery
JP2001176500A (en) * 1999-12-08 2001-06-29 Samsung Sdi Co Ltd Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
JP2018063912A (en) * 2016-10-14 2018-04-19 Attaccato合同会社 Skeleton-forming agent, electrode arranged by use thereof, and manufacturing method of electrode
JP2018101638A (en) * 2018-03-12 2018-06-28 Attaccato合同会社 Skeleton-forming agent, electrode arranged by use thereof, and manufacturing method of electrode
JP2019212638A (en) * 2018-03-12 2019-12-12 Attaccato合同会社 Skeleton-forming agent, electrode arranged by use thereof, and manufacturing method of electrode
JP2019003959A (en) * 2018-10-10 2019-01-10 Attaccato合同会社 Positive electrode for nonaqueous electrolyte secondary battery and battery using the same
WO2020189452A1 (en) * 2019-03-19 2020-09-24 パナソニックIpマネジメント株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2021193693A (en) * 2019-09-06 2021-12-23 Attaccato合同会社 Skeleton-forming agent, electrode arranged by use thereof, and manufacturing method of electrode

Also Published As

Publication number Publication date
JP3223111B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
JP2006196250A (en) Lithium secondary battery
JP2005267940A (en) Nonaqueous electrolyte battery
JPH1140156A (en) Nonaqueous electrolyte secondary battery
JP2008084705A (en) Nonaqueous electrolyte secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JPH0864237A (en) Nonaqueous electrolyte battery
WO2011117992A1 (en) Active material for battery, and battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
JP2007250440A (en) Nonaqueous electrolyte secondary battery
JPH10289731A (en) Nonaqueous electrolytic battery
JP4207510B2 (en) Positive electrode material, positive electrode, and battery
JP3223111B2 (en) Non-aqueous electrolyte battery
JPH11111332A (en) Nonaqueous electrolyte battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP2003031259A (en) Nonaqueous electrolyte secondary battery
JPH087886A (en) Nonaquoeus electrolytic secondary battery and manufacture thereof
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2001052752A (en) Lithium secondary battery
JP2010238385A (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JPH09320596A (en) Nonaqueous electrolytic battery
JP6197541B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JPH09147865A (en) Lithium secondary battery
JP3426900B2 (en) Non-aqueous electrolyte battery
JPH09147864A (en) Nonaqueous electrolyte battery and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees