JPH0883622A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH0883622A
JPH0883622A JP6215529A JP21552994A JPH0883622A JP H0883622 A JPH0883622 A JP H0883622A JP 6215529 A JP6215529 A JP 6215529A JP 21552994 A JP21552994 A JP 21552994A JP H0883622 A JPH0883622 A JP H0883622A
Authority
JP
Japan
Prior art keywords
electrolytic solution
silica
battery
sealed lead
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6215529A
Other languages
Japanese (ja)
Inventor
Koichi Nobeyama
弘一 延山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP6215529A priority Critical patent/JPH0883622A/en
Publication of JPH0883622A publication Critical patent/JPH0883622A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE: To provide a sealed lead-acid battery facilitating the injection of an electrolyte into a battery jar, preventing the stratification of the electrolyte, and capable of prolonging the life. CONSTITUTION: An electrode plate group laminated with a paste positive electrode plate and a paste negative electrode plate via a retainer is arranged in a battery jar. Silica grains 1 of 10-50wt.% having the grain size of 4-6nm and silica grains 2 of the remainder having the grain size of 40-300nm are added to the dilute sulfuric acid having the specific gravity of 1.26-1.35 to form an electrolyte. The electrolyte is injected into the battery jar while being stirred.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉形鉛蓄電池に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead acid battery.

【0002】[0002]

【従来の技術】密閉形鉛蓄電池の電解質の配設方法とし
ては、リテーナ式とゲル式とが知られている。リテーナ
式は、ガラス繊維からなる電解液保持体(リテーナ)に
希硫酸からなる電解液を保持させる方法である。またゲ
ル式は電解液保持体を用いずに、シリカを10〜20重
量%程度添加してゲル化した電解液をそのまま電解質と
して用いる方法である。リテーナ式では、電池に充放電
を繰り返すと、電解液が成層化して電池の寿命が短くな
るという問題がある。これに対してゲル式では、電解液
の成層化が起きないため、リテーナ式よりも寿命が延び
る。しかしながら、ゲル式では電解液の注液が容易でな
い上に、電解液の移動がスムーズに行われないために、
電池の放電容量が小さくなるという問題がある。特に高
率放電になるほど放電容量は小さくなる。そこで、正極
板と負極板との間に電解液保持体を配置し、シリカを1
〜5重量%程度添加してゲル化した電解液を電解液保持
体に含浸させたリテーナ式とゲル式の併用方式が検討さ
れた。
2. Description of the Related Art Retainer type and gel type are known as a method for disposing an electrolyte in a sealed lead-acid battery. The retainer method is a method in which an electrolytic solution holding body (retainer) made of glass fibers holds an electrolytic solution made of dilute sulfuric acid. In addition, the gel method is a method in which about 10 to 20% by weight of silica is added and a gelled electrolytic solution is directly used as an electrolyte without using an electrolytic solution holder. The retainer type has a problem that when the battery is repeatedly charged and discharged, the electrolyte is layered and the life of the battery is shortened. On the other hand, the gel method has a longer life than the retainer method because the electrolyte is not stratified. However, in the gel method, the injection of the electrolytic solution is not easy, and because the electrolytic solution does not move smoothly,
There is a problem that the discharge capacity of the battery becomes small. In particular, the higher the rate of discharge, the smaller the discharge capacity. Therefore, an electrolytic solution holder is arranged between the positive electrode plate and the negative electrode plate, and silica is
A combined system of a retainer type and a gel type in which an electrolytic solution holding body is impregnated with an electrolytic solution which is gelled by adding about 5 wt% is studied.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな併用方式でもゲル式と同様にゲル化した電解液を用
いるため、電解液を電槽内に注液し難くいという問題が
あった。また電解液の注液性を高めるために、電解液の
粘度を低くする(ゲル化を少なくする)と電解液の成層
化防止を図ることができず、リテーナ式を用いた電池に
比べれば、寿命は延びるもののゲル式を用いた電池に比
べて寿命が短いという問題があった。
However, even in such a combined system, since the gelled electrolytic solution is used as in the gel system, there is a problem that it is difficult to inject the electrolytic solution into the battery container. If the viscosity of the electrolytic solution is lowered (the gelation is reduced) in order to improve the pouring property of the electrolytic solution, the stratification of the electrolytic solution cannot be prevented, and compared with the battery using the retainer type, Although the life is extended, there is a problem that the life is shorter than that of the battery using the gel type.

【0004】本発明の目的は、電解液の電槽内への注液
が容易で、しかも寿命の長い密閉形鉛蓄電池を提供する
ことにある。
An object of the present invention is to provide a sealed lead-acid battery in which the electrolytic solution can be easily poured into the battery case and which has a long life.

【0005】[0005]

【課題を解決するための手段】本発明は、シリカ(Si
2 )を含む電解液を含浸したリテーナを用いる密閉形
鉛蓄電池を対象にして、電解液に含浸させるシリカとし
て10〜50重量%が4〜6nmの粒子径を有し、残部
が40〜300nmの粒子径を有するものを用いる。残
部のシリカの粒子径が40nmを下回ると粒子径の小さ
いシリカとの粒子径の差が小さくなって、チキソトロピ
ック性を十分に高めることができない。粒子径の小さい
シリカのみを用いると、電解液の粘度が高くなり、電解
液の注液性が悪くなる。また粒子径が300nmを上回
るとシリカがゲル化し難くなる。またシリカとしては、
コロイダルシリカを用いてもよく、シリカ粉末を用いて
も構わない。コロイダルシリカとは、負に帯電した無定
形シリカ粒子が水中に分散してコロイド状をなしている
ものである。
The present invention relates to silica (Si
For sealed lead-acid batteries using a retainer impregnated with an electrolytic solution containing O 2 ), 10 to 50% by weight of silica to be impregnated with the electrolytic solution has a particle diameter of 4 to 6 nm, and the rest is 40 to 300 nm. Those having a particle size of If the particle size of the remaining silica is less than 40 nm, the difference in particle size from silica having a small particle size becomes small, and the thixotropic property cannot be sufficiently enhanced. When only silica having a small particle size is used, the viscosity of the electrolytic solution becomes high and the liquid injection property of the electrolytic solution becomes poor. Further, if the particle size exceeds 300 nm, it becomes difficult for silica to gel. As silica,
Colloidal silica may be used or silica powder may be used. Colloidal silica is a colloidal dispersion of negatively charged amorphous silica particles dispersed in water.

【0006】[0006]

【作用】本発明のようなシリカを用いると、図3に示す
ように4〜6nmの小さい粒子径を有するシリカ粒子1
…が40〜300nmの大きい粒子径を有するシリカ粒
子2…の間に入り込む。そのため、小粒子径のシリカ1
が大粒子径のシリカ2の転がりを促進する役割を果た
し、ゲル化した電解液のチキソトロピック性(電解液を
攪拌したときには電解液の粘性が低くなり、電解液を静
止したときには電解液の粘性が高くなる性質)が高くな
る。発明者は、10〜50重量%が4〜6nmの粒子径
を有し、残部が40〜300nmの粒子径を有するシリ
カを電解液に含ませると、最適なチキソトロピック性を
得られることを見出した。このようなシリカを含む電解
液を用いると、電解液を攪拌しながら電槽内に注液すれ
ば、電解液の注液を容易に行うことができる。そして電
槽内への注液後には電解液の防止を図れる程度まで粘性
が高くなるため、密閉形鉛蓄電池の寿命を延ばすことが
できる。
When the silica according to the present invention is used, silica particles 1 having a small particle size of 4 to 6 nm as shown in FIG.
... enter between the silica particles 2 having a large particle diameter of 40 to 300 nm. Therefore, small particle size silica 1
Plays a role of promoting the rolling of the silica 2 having a large particle size, and the thixotropic property of the gelled electrolytic solution (the viscosity of the electrolytic solution becomes low when the electrolytic solution is stirred, and the viscosity of the electrolytic solution when the electrolytic solution is stopped). Is higher). The inventor has found that 10 to 50% by weight has a particle size of 4 to 6 nm, and the balance contains silica having a particle size of 40 to 300 nm in an electrolytic solution to obtain optimum thixotropic properties. It was When such an electrolytic solution containing silica is used, the electrolytic solution can be easily injected by pouring the electrolytic solution into the battery case while stirring. After the liquid is poured into the battery case, the viscosity becomes high enough to prevent the electrolytic solution, so that the life of the sealed lead-acid battery can be extended.

【0007】[0007]

【実施例】本実施例を含む試験に用いた密閉形鉛蓄電池
は次のようにして作った。まず平均線径1μm のガラス
繊維を用いて多孔度90%、厚み1.8mmの電解液保持
体(リテーナ)を作った。電解液保持体の好ましい平均
線径は0.5〜2μm であり、好ましい多孔度は85〜
93%、好ましい厚みは1.0〜2.5mmである。次に
公知のペースト式正極板3枚とペースト式負極板4枚と
を電解液保持体を介して積層して極板群を作り、この極
板群を電槽内に配置した。次に混合割合(重量%)が異
なる粒子径4〜6nmのシリカと粒子径40〜300n
mのシリカとを比重1.30(20℃)の希硫酸に対し
てそれぞれ1、3、5重量%添加した複数の電解液を用
意した。なおシリカはシリカを含有するコロイド溶液を
電解液に入れることにより添加した。図1は、粒子径4
〜6nmのシリカのシリカ全体に対する混合割合と電解
液のチキソトロピー指数との関係を示している。なお、
図中の各曲線は電解液に対するシリカの添加量がそれぞ
れ異なっている。本図より、電解液に対するシリカの添
加量に関係なく、粒子径4〜6nmのシリカの混合割合
が10〜50重量%の場合に電解液のチキソトロピー指
数が最大となるのが判る。なおチキソトロピー指数は、
(10rpm時の粘度値)/(100rpm時の粘度
値)の式で求めた。
EXAMPLES The sealed lead-acid battery used in the tests including this example was made as follows. First, an electrolytic solution holder (retainer) having a porosity of 90% and a thickness of 1.8 mm was prepared using glass fibers having an average wire diameter of 1 μm. The preferable average diameter of the electrolytic solution holder is 0.5 to 2 μm, and the preferable porosity is 85 to
93%, preferable thickness is 1.0 to 2.5 mm. Next, three well-known paste type positive electrode plates and four well-known paste type negative electrode plates were laminated via an electrolytic solution holder to form an electrode plate group, and this electrode plate group was placed in a battery case. Next, silica having a particle size of 4 to 6 nm and a particle size of 40 to 300 n with different mixing ratios (% by weight) are used.
A plurality of electrolytic solutions were prepared by adding 1,3,5 and 5% by weight of silica of m to dilute sulfuric acid having a specific gravity of 1.30 (20 ° C.), respectively. Silica was added by putting a colloidal solution containing silica in the electrolytic solution. Figure 1 shows a particle size of 4
5 shows the relationship between the mixing ratio of silica having a size of ˜6 nm with respect to the whole silica and the thixotropy index of the electrolytic solution. In addition,
In each curve in the figure, the amount of silica added to the electrolytic solution is different. From this figure, it is understood that the thixotropy index of the electrolytic solution becomes maximum when the mixing ratio of silica having a particle size of 4 to 6 nm is 10 to 50% by weight, regardless of the amount of silica added to the electrolytic solution. The thixotropic index is
It was determined by the formula (viscosity value at 10 rpm) / (viscosity value at 100 rpm).

【0008】次にこれらの用意した電解液をミキサーに
より100rpmで攪拌しながら電槽にそれぞれ注液
し、電解液を電解液保持体に含浸して、38Ah−12
Vの各密閉形鉛蓄電池を作った。好ましい攪拌速度は1
00〜500rpmである。そして各電池に9.5Aの
定電流(終止電圧10.2V)で放電した後に、14.
7V(制限電流:7.6A)の定電流定電圧で8時間充
電する充放電サイクルを繰り返して、各電池が寿命(定
格容量の50%を割る容量)に至るまでのサイクル数を
測定した。そして粒子径4〜6nmのシリカのシリカ全
体に対する混合割合と電池の寿命に至るサイクル数との
関係を調べた。図2はその測定結果を示している。本図
より、電解液に対するシリカの添加量に関係なく、粒子
径4〜6nmのシリカの混合割合が10〜50重量%の
場合に寿命に至るサイクル数が最大になるのが判る。こ
れより、サイクル寿命においても図1に示す電解液のチ
キソトロピー指数と同じ傾向が示されるのが判る。
Next, the prepared electrolytic solution was poured into a battery container while stirring at 100 rpm by a mixer, and the electrolytic solution was impregnated with the electrolytic solution holding body to obtain 38Ah-12.
Each sealed lead acid battery of V was made. The preferred stirring speed is 1
It is from 00 to 500 rpm. After discharging each battery with a constant current of 9.5 A (cutoff voltage 10.2 V), 14.
The charge / discharge cycle of charging for 8 hours at a constant current and constant voltage of 7 V (limit current: 7.6 A) was repeated to measure the number of cycles until each battery reached the end of its life (capacity that is less than 50% of the rated capacity). Then, the relationship between the mixing ratio of silica having a particle diameter of 4 to 6 nm to the whole silica and the number of cycles leading to the life of the battery was investigated. FIG. 2 shows the measurement result. From this figure, it is understood that the cycle number to reach the maximum is maximized when the mixing ratio of silica having a particle size of 4 to 6 nm is 10 to 50% by weight, regardless of the amount of silica added to the electrolytic solution. From this, it can be seen that the cycle life shows the same tendency as the thixotropic index of the electrolytic solution shown in FIG.

【0009】なお本実施例では、コロイダルシリカを電
解液に添加したが、粉体のシリカを電解液に添加しても
構わない。シリカ粉体を電解液に添加する場合は、乳鉢
に入れたシリカ粉体を乳棒ですりつぶすいわゆるニーデ
ィングによりシリカ粉体を所定の粒子径にして電解液に
添加する。
Although colloidal silica is added to the electrolytic solution in this embodiment, powdered silica may be added to the electrolytic solution. When the silica powder is added to the electrolytic solution, the silica powder is placed in a mortar and ground with a pestle, so-called kneading, so that the silica powder has a predetermined particle size and is added to the electrolytic solution.

【0010】以下、明細書に記載した複数の発明の中で
いくつかの発明についてその構成を示す。
The structure of some of the inventions described in the specification will be shown below.

【0011】(1) ペースト式正極板とペースト負式
極板とがリテーナを介して積層されてなる極板群を電槽
内に配置し、シリカを含む希硫酸からなる電解液を前記
電槽内に注液して密閉形鉛蓄電池を製造する方法におい
て、前記シリカとして10〜50重量%が4〜6nmの
粒子径を有し、残部が40〜300nmの粒子径を有す
るものを用い、前記電解液を100〜500rpmで攪
拌しながら前記電解液を前記電槽内に注液することを特
徴とする密閉形鉛蓄電池の製造方法。
(1) An electrode plate group in which a paste type positive electrode plate and a paste negative type electrode plate are laminated via a retainer is arranged in a battery case, and an electrolytic solution made of dilute sulfuric acid containing silica is placed in the battery container. In the method for producing a sealed lead-acid battery by injecting into the interior, 10 to 50% by weight of the silica has a particle diameter of 4 to 6 nm, and the rest has a particle diameter of 40 to 300 nm. A method for manufacturing a sealed lead-acid battery, comprising pouring the electrolytic solution into the battery case while stirring the electrolytic solution at 100 to 500 rpm.

【0012】(2)前記リテーナとして、平均線径0.
5〜2μm のガラス繊維を用いた多孔度85〜93%、
厚み1.0〜2.5mmのものを用いることを特徴とする
密閉形鉛蓄電池の製造方法。
(2) The retainer has an average wire diameter of 0.
Porosity 85-93% using glass fiber of 5-2 μm,
A method for producing a sealed lead-acid battery, characterized in that a thickness of 1.0 to 2.5 mm is used.

【0013】[0013]

【発明の効果】本発明によれば、電解液の最適なチキソ
トロピック性を得られる。そのため、電解液の電槽内へ
の注液が容易になり、しかも電解液は成層化の防止を図
れる程度まで粘性が高くなるため、密閉形鉛蓄電池の寿
命を延ばすことができる。
According to the present invention, the optimum thixotropic property of the electrolytic solution can be obtained. Therefore, it becomes easy to inject the electrolytic solution into the battery case, and the viscosity of the electrolytic solution becomes high enough to prevent stratification, so that the life of the sealed lead-acid battery can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】 粒子径4〜6nmのシリカのシリカ全体に対
する混合割合と電解液のチキソトロピー指数との関係を
示す図である。
FIG. 1 is a diagram showing a relationship between a mixing ratio of silica having a particle diameter of 4 to 6 nm with respect to the whole silica and a thixotropic index of an electrolytic solution.

【図2】 粒子径4〜6nmのシリカのシリカ全体に対
する混合割合と電池の寿命に至るサイクル数との関係を
示す図である。
FIG. 2 is a diagram showing a relationship between a mixing ratio of silica having a particle diameter of 4 to 6 nm with respect to the entire silica and the number of cycles leading to the life of the battery.

【図3】 本発明の密閉形鉛蓄電池に用いるシリカを示
す図である。
FIG. 3 is a diagram showing silica used in the sealed lead-acid battery of the present invention.

【符号の説明】[Explanation of symbols]

1,2 シリカ粒子 1,2 silica particles

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリカを含む電解液が含浸したリテーナ
を用いる密閉形鉛蓄電池において、 前記電解液に含まれるシリカの10〜50重量%は4〜
6nmの粒子径を有するものであり、残部が40〜30
0nmの粒子径を有するものであることを特徴とする密
閉形鉛蓄電池。
1. In a sealed lead-acid battery using a retainer impregnated with an electrolyte solution containing silica, 10 to 50% by weight of silica contained in the electrolyte solution is 4 to 4.
It has a particle diameter of 6 nm, and the balance is 40 to 30.
A sealed lead-acid battery having a particle size of 0 nm.
JP6215529A 1994-09-09 1994-09-09 Sealed lead-acid battery Withdrawn JPH0883622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6215529A JPH0883622A (en) 1994-09-09 1994-09-09 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6215529A JPH0883622A (en) 1994-09-09 1994-09-09 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0883622A true JPH0883622A (en) 1996-03-26

Family

ID=16673942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6215529A Withdrawn JPH0883622A (en) 1994-09-09 1994-09-09 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0883622A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174361A (en) * 2011-02-17 2012-09-10 Gs Yuasa Corp Control valve type lead-acid storage battery and method for manufacturing the same
CN107959063A (en) * 2016-10-14 2018-04-24 现代自动车株式会社 Lead accumulator electrolyte composition and the lead accumulator using said composition
KR102103307B1 (en) * 2018-10-22 2020-04-23 주식회사 한국아트라스비엑스 AGM battery manufacturing method using electrolytic solution containing colloidal silica in a container formation process and AGM battery
KR20230038886A (en) * 2021-09-13 2023-03-21 한국앤컴퍼니 주식회사 Electrolyte stratification prevention structure using sodium bicarbonate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174361A (en) * 2011-02-17 2012-09-10 Gs Yuasa Corp Control valve type lead-acid storage battery and method for manufacturing the same
CN107959063A (en) * 2016-10-14 2018-04-24 现代自动车株式会社 Lead accumulator electrolyte composition and the lead accumulator using said composition
US10361462B2 (en) 2016-10-14 2019-07-23 Hyundai Motor Company Electrolyte composition of lead storage battery and lead storage battery using the same
CN107959063B (en) * 2016-10-14 2021-10-08 现代自动车株式会社 Electrolyte composition for lead storage battery and lead storage battery using the same
KR102103307B1 (en) * 2018-10-22 2020-04-23 주식회사 한국아트라스비엑스 AGM battery manufacturing method using electrolytic solution containing colloidal silica in a container formation process and AGM battery
KR20230038886A (en) * 2021-09-13 2023-03-21 한국앤컴퍼니 주식회사 Electrolyte stratification prevention structure using sodium bicarbonate

Similar Documents

Publication Publication Date Title
JPH0883622A (en) Sealed lead-acid battery
JP2018055903A (en) Positive electrode plate for lead storage battery and lead storage battery
JP2000251896A (en) Lead-acid battery and its manufacture
JP2004055323A (en) Control valve type lead-acid battery
JP2004529479A (en) Liquid low sodium silicate conversion solution for storage battery and battery conversion method
JP2007250308A (en) Control valve type lead acid battery
JP3575145B2 (en) Negative electrode plate for lead storage battery and method for producing the same
JP2712400B2 (en) Lead storage battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JPH0696793A (en) Manufacture of sealed lead-acid battery
JP2002100347A (en) Lead-acid battery
JPS62160659A (en) Lead storage battery
JP2559610B2 (en) Method for manufacturing sealed lead acid battery
JPH05242887A (en) Manufacture of electrode plate for lead-acid battery
JPS59173961A (en) Organic electrolyte secondary battery
JP2001035485A (en) Sealed lead-acid battery
JPH0676815A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JP2003323913A (en) Method for manufacturing lead storage battery
JPS63190252A (en) Lead storage battery
JP3013623B2 (en) Sealed lead-acid battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JP2001155735A (en) Sealed lead acid storage battery
JP2003132937A (en) Manufacturing method of lead storage battery
JP2004199949A (en) Manufacturing method of electrode plate for lead-acid storage battery
JP2000036305A (en) Plate for lead-acid battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120