JP2003178794A - Production process of sealed lead acid storage battery - Google Patents

Production process of sealed lead acid storage battery

Info

Publication number
JP2003178794A
JP2003178794A JP2001378283A JP2001378283A JP2003178794A JP 2003178794 A JP2003178794 A JP 2003178794A JP 2001378283 A JP2001378283 A JP 2001378283A JP 2001378283 A JP2001378283 A JP 2001378283A JP 2003178794 A JP2003178794 A JP 2003178794A
Authority
JP
Japan
Prior art keywords
battery
sulfuric acid
electrolytic solution
separator
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001378283A
Other languages
Japanese (ja)
Inventor
Hideki Tanaka
秀基 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001378283A priority Critical patent/JP2003178794A/en
Publication of JP2003178794A publication Critical patent/JP2003178794A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production process of a sealed lead acid storage battery improved in life performance in a system that a gel electrolyte is charged into a space between a plate group of a retainer type sealed battery and a battery jar. <P>SOLUTION: A prescribed amount of diluted sulfuric acid is charged into a battery to conduct initial charge, and a sol solution obtained by mixing diluted sulfuric acid having a higher concentration than the electrolyte contained in a liquid-absorbing separator after the initial charge with silica powder is charged into the space between the plate group and a battery jar to gelatinize it, thereby inhibiting excellent life performance without accumulating the electrolyte at a lower portion of the separator. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池に関す
る。
TECHNICAL FIELD The present invention relates to a lead storage battery.

【0002】[0002]

【従来の技術】近年、自動車用途において、従来の開放
形鉛蓄電池にかえて、シール形鉛蓄電池を適用する例が
増えてきた。というのは、シール形鉛蓄電池は正極板で
発生した酸素ガスが負極板で吸収されるため、電解液の
減少が少なく、補水する必要がない、あるいは電池をい
ろいろな方向や場所に設置できポジションフリーに使用
することができるなど、種々のメリットがあるからであ
る。
2. Description of the Related Art In recent years, in automotive applications, an example of applying a sealed lead acid battery instead of a conventional open type lead acid battery has been increasing. This is because in sealed lead-acid batteries, oxygen gas generated in the positive electrode plate is absorbed by the negative electrode plate, so there is little decrease in the electrolyte solution and there is no need to replenish water, or the battery can be installed in various directions and locations. This is because there are various merits such as free use.

【0003】シール形鉛蓄電池には図1に概略構成を示
すように3種類の方式が知られている。それは、電解液
を微細なシリカでゲル化したゲル式、吸液性の微細な繊
維をマットに状に加工したセパレータに電解液を保持さ
せたリテーナ式、そして正極板と負極板の隙間や極板群
と電槽との隙間に充填した顆粒状シリカの内部およびシ
リカの粒子間隙に電解液を保持させた顆粒シリカ式の3
種類である。
Three types of sealed lead-acid batteries are known as shown in the schematic structure of FIG. It is a gel type in which the electrolytic solution is gelled with fine silica, a retainer type in which the electrolytic solution is held in a separator made by processing fine liquid absorbing fibers into a mat, and the gap between the positive electrode plate and the negative electrode plate and the electrode. Granular silica type 3 in which the electrolytic solution is held inside the granular silica filled in the gap between the plate group and the battery case and in the silica particle gap.
It is a kind.

【0004】しかし、ゲル式では電解液をゲル化してし
まうため電解液の拡散性能が低下するため、電池の性能
が低下してしまうという欠点があった。また、リテーナ
式は電解液の拡散性能は良いものの、電解液量が少なく
なるとともに、電槽に電解液が接触する面積が小さいた
め、使用中の電池の温度の上昇が大きいという欠点があ
った。そのため格子腐食や電解液の減少量が多すぎるな
どの問題があった。そして、顆粒シリカ式は、電解液の
拡散が良く、電解液の熱容量も大きいため性能上の問題
はなかったが、シリカの充填や電解液の注入に時間がか
かり、コストが高くなってしまうという欠点があった。
However, the gel method has a drawback in that the electrolytic solution is gelled, so that the diffusion performance of the electrolytic solution is deteriorated and the performance of the battery is deteriorated. In addition, although the retainer type has good electrolytic solution diffusion performance, it has the drawback that the amount of electrolytic solution decreases and the area in which the electrolytic solution contacts the battery case is small, so the temperature of the battery in use increases greatly. . Therefore, there were problems such as lattice corrosion and an excessive decrease in the amount of electrolyte. And, the granular silica type has no problem in performance because the diffusion of the electrolytic solution is good and the heat capacity of the electrolytic solution is large, but it takes time to fill the silica and inject the electrolytic solution, resulting in an increase in cost. There was a flaw.

【0005】[0005]

【発明が解決しようとする課題】この為、低コストでか
つ、電解液の拡散を速くし、しかも電池温度の上昇を抑
制するために、図2に示すリテーナ式シール形電池の極
板群と電槽との隙間にゲル電解液を注入する方式のシー
ル形鉛蓄電池を検討した。
Therefore, in order to reduce the cost, accelerate the diffusion of the electrolytic solution, and suppress the rise in the battery temperature, the electrode plate group of the retainer type sealed battery shown in FIG. A sealed lead-acid battery, in which a gel electrolyte is injected into the gap between the battery and the battery case, was studied.

【0006】しかし、我々の試験では、該シール型鉛蓄
電池の寿命性能が、予想したほど改善されなかった。そ
れらの試験電池の分解調査結果から、その原因は、ゲル
から徐々に遊離した流動性のある電解液がガラスセパレ
ータを通して下部に移行することで、電解液がセパレー
タ下部に蓄積して、その結果、電池下部の充放電反応量
が局部的に多くなり、活物質の劣化を促進させてしまっ
たためと考えられる。
However, in our test, the life performance of the sealed lead-acid battery was not improved as expected. From the results of the disassembly study of those test batteries, the cause is that the fluid electrolyte gradually liberated from the gel migrates to the bottom through the glass separator, and the electrolyte accumulates at the bottom of the separator, and as a result, It is considered that the amount of charge / discharge reaction at the bottom of the battery was locally increased and accelerated the deterioration of the active material.

【0007】なお、従来のゲル式シール型鉛蓄電池で
は、セパレータの保持液量が少ないため、遊離した電解
液がセパレータを通して下部に移行する量が少なく、上
記の問題はほとんどなかった。
In the conventional gel-type sealed lead-acid battery, since the amount of the retained liquid in the separator is small, the amount of the released electrolytic solution migrating to the lower portion through the separator is small, and the above-mentioned problems are hardly present.

【0008】そこで、本発明の課題は、リテーナ式シー
ル形電池の極板群と電槽との隙間にゲル電解液を注入す
る方式のシール形鉛蓄電池において、電解液がセパレー
タ下部に蓄積することがなく、寿命性能を向上させた鉛
蓄電池の製造法を提供することにある。
Therefore, an object of the present invention is to accumulate the electrolyte solution in the lower part of the separator in the sealed lead acid battery of the type in which the gel electrolyte solution is injected into the gap between the electrode plate group of the retainer type seal type battery and the battery case. It is an object of the present invention to provide a method of manufacturing a lead storage battery having improved life performance.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、請求項1に記載の発明のシール形鉛蓄電池の製造法
では、吸液性セパレータを用いて電解液を保持させると
ともに、極板群と電槽との隙間にゲル化した電解液を配
置させた構造のシール型鉛蓄電池の製造法であって、第
一の工程において、所定量の希硫酸を電池内に注入して
初充電を行い、第二の工程において、初充電後の吸液性
セパレータに含まれる電解液の硫酸濃度よりも高い希硫
酸とシリカ粉体との混合ゾル溶液を電池内に注入し、電
池内でゲル化させることを特徴とする。
In order to solve the above-mentioned problems, in the method for manufacturing a sealed lead-acid battery according to the first aspect of the present invention, an electrolytic solution is held by using a liquid-absorbing separator, and an electrode plate group is used. A method for manufacturing a sealed lead-acid battery having a structure in which a gelled electrolytic solution is placed in the gap between the battery and a battery case, in which a predetermined amount of dilute sulfuric acid is injected into the battery for initial charging in the first step. In the second step, a mixed sol solution of dilute sulfuric acid and silica powder having a concentration higher than the sulfuric acid concentration of the electrolytic solution contained in the absorbent separator after the initial charge is injected into the battery to cause gelation in the battery. It is characterized by

【0010】また、請求項2に記載の発明のシール形鉛
蓄電池の製造法では、請求項1に記載のシール形鉛蓄電
池の製造法において、該ゲル化した電解液の硫酸濃度と
初充電後に該吸液性セパレータに保持されている電解液
の硫酸濃度との差が硫酸比重に換算して0.01以上
0.05以下(20℃換算)であることを特徴とする。
According to a second aspect of the present invention, there is provided a method for producing a sealed lead acid battery according to the first aspect, which is the same as the method for producing a sealed lead acid battery according to the first aspect. The difference from the sulfuric acid concentration of the electrolytic solution held by the liquid-absorbent separator is 0.01 or more and 0.05 or less (converted to 20 ° C.) in terms of sulfuric acid specific gravity.

【0011】[0011]

【発明の実施の形態】吸液性の微細な繊維を主体とした
材料をシート状に成形したセパレータを用いて電解液を
保持させるるとともに、極板群と電槽との隙間にゲル化
した電解液を配置させた構造のゲル・リテーナハイブリ
ッドシール型鉛蓄電池の製造において、まず所定量の希
硫酸を電池内に注入して初充電を行い、次に初充電後に
セパレータに含まれている電解液の硫酸濃度よりも高い
希硫酸とシリカ粉体とを混合したゾル溶液を所定量注入
して、電池内でゲル化させることにより、上記問題が解
決できることがわかった。
BEST MODE FOR CARRYING OUT THE INVENTION A separator formed by forming a sheet of a liquid-absorbent fine fiber is used to hold an electrolytic solution and gelled in a gap between an electrode plate group and a battery case. In the manufacture of gel-retainer hybrid seal type lead-acid batteries with a structure in which an electrolytic solution is arranged, first a predetermined amount of dilute sulfuric acid is injected into the battery for initial charging, and then the electrolysis contained in the separator after the initial charging. It was found that the above problem can be solved by injecting a predetermined amount of a sol solution obtained by mixing dilute sulfuric acid having a higher sulfuric acid concentration than the liquid and silica powder to cause gelation in the battery.

【0012】通常、ゲルに保持されている硫酸濃度が高
いほどゲル化電解液は硬くなり、遊離する速度が遅くな
る。その結果、ゲルから遊離する電解液の量が少なく、
セパレータ下部の流動性のある電解液の蓄積が少なくな
り、充放電反応が局部的に多くならないのである。
Generally, the higher the concentration of sulfuric acid retained in the gel, the harder the gelled electrolytic solution and the slower the rate of liberation. As a result, the amount of electrolyte released from the gel is small,
Accumulation of fluid electrolyte in the lower part of the separator is reduced, and the charge / discharge reaction is not locally increased.

【0013】なお、該ゲル化した電解液の硫酸濃度と該
セパレータに保持されている電解液の硫酸濃度との差が
硫酸比重に換算して0.05(20℃換算)をこえる
と、遊離によってセパレータに供給される電解液濃度が
高くなりすぎて、かえって充電受け入れ性能が低下して
しまい、寿命性能の低下を引き起こすため、硫酸濃度の
差を0.01以上0.05以下(20℃換算比重)にす
ることが望ましい。
When the difference between the sulfuric acid concentration of the gelled electrolytic solution and the sulfuric acid concentration of the electrolytic solution held by the separator exceeds 0.05 (converted at 20 ° C.) in terms of sulfuric acid specific gravity, it is liberated. Because the concentration of the electrolyte solution supplied to the separator becomes too high and the charge acceptance performance deteriorates, and the life performance deteriorates. Therefore, the difference in sulfuric acid concentration is 0.01 or more and 0.05 or less (converted at 20 ° C). Specific gravity is desirable.

【0014】[0014]

【実施例】以下、本発明の実施例について説明する。 (実施例1)まず、基材である厚み10mmのPb−
0.07wt%Ca−1.3wt%Sn合金の連続鋳造
板を圧延ローラで圧延することによって厚み1.0mm
の圧延シートを作製した後、この圧延シートをロータリ
ー式エキスパンド機を用いて網目状に展開して格子とし
た。これらの格子に、鉛粉と鉛丹と希硫酸とを練膏して
製作したペーストを充填し、熟成、乾燥して正極板を作
製した。
EXAMPLES Examples of the present invention will be described below. (Example 1) First, Pb- which is a base material and has a thickness of 10 mm
A continuous cast plate of 0.07 wt% Ca-1.3 wt% Sn alloy is rolled with a rolling roller to have a thickness of 1.0 mm.
After producing the rolled sheet of, the rolled sheet was developed into a mesh using a rotary expander to form a lattice. These grids were filled with a paste prepared by plastering lead powder, red lead and dilute sulfuric acid, aged and dried to prepare a positive electrode plate.

【0015】これらの正極板5枚と、厚み1.0mmの
Pb−0.07wt%Ca−1.3wt%Sn合金圧延
シートをロータリー式エキスパンド機を用いて網目状に
展開した格子に、リグニンスルホン酸、BaSOおよ
びカーボンを混合した鉛粉と希硫酸とを練膏して製作し
たペーストを充填し、熟成、乾燥して作製した負極板6
枚とを微細ガラス繊維セパレータを介して交互に積層
し、極板群を形成した。
Lignin sulfone was formed on a grid of five positive plates and a rolled Pb-0.07wt% Ca-1.3wt% Sn alloy sheet having a thickness of 1.0mm in a mesh-like shape using a rotary expander. Negative electrode plate 6 prepared by filling a paste prepared by plastering lead powder mixed with acid, BaSO 4 and carbon and dilute sulfuric acid, aging and drying
The sheet and the sheet were alternately laminated via a fine glass fiber separator to form an electrode plate group.

【0016】これらの極板群を電槽に挿入し、希硫酸を
所定量注液して初充電を行い、2V30Ahのシール型
鉛蓄電池を製作した。初充電終了後、電池内に、セパレ
ータに含まれている電解液の硫酸濃度よりも高い各種類
の希硫酸とコロイダルシリカ5%(希硫酸中のシリカ重
量パーセント)とを混合したゾル溶液を注入し、電池内
でゲル化させることにより、ゲル・リテーナハイブリッ
ドシール型鉛蓄電池を各種類作製した。最後に、電池に
通常の安全弁を装着した。
These electrode plate groups were inserted into a battery case, a predetermined amount of dilute sulfuric acid was injected, and initial charging was performed to produce a 2V30Ah sealed lead acid battery. After completion of the first charge, inject into the battery a sol solution in which each type of dilute sulfuric acid having a concentration higher than the sulfuric acid concentration of the electrolytic solution contained in the separator and 5% of colloidal silica (weight percentage of silica in dilute sulfuric acid) are mixed. Then, gel-retainer hybrid seal type lead-acid batteries were produced by gelling in the batteries. Finally, the battery was fitted with a normal safety valve.

【0017】これらの電池を放電は10A(1/3C
A)で終止1.70Vまで、充電は10Aの定電流で放
電量の110%を充電する充放電サイクル試験を実施し
た。なお、試験は40℃の水槽中にて実施した。また寿
命の判定は10A放電容量が初期の80%になった時点
で判定した。また比較のため、極板群の周囲にゲルを注
入しない、従来のリテーナ式電池も合わせて製作して評
価を実施した。
These batteries are discharged at 10 A (1/3 C
In A), a charge / discharge cycle test was conducted in which the battery was charged up to 1.70 V at the end and 110% of the discharge amount was charged at a constant current of 10 A. The test was carried out in a water tank at 40 ° C. The life was determined when the discharge capacity of 10 A reached 80% of the initial value. For comparison, a conventional retainer battery without gel injection around the electrode plate group was also manufactured and evaluated.

【0018】電池の構成と寿命試験結果を表1に示す。
本発明品であるセパレータに保持されている電解液の硫
酸濃度より、ゲルに含まれる硫酸の濃度が比重に換算し
て0.01〜0.05(20℃換算)高いゲル−リテーナ
ハイブリッドシール型鉛蓄電池ではリテーナ式シール型
鉛蓄電池にくらべて寿命性能が大きく向上し、電池の分
解調査の結果、電解液のセパレータ下部における蓄積も
見られなかった。
Table 1 shows the structure of the battery and the result of the life test.
Gel-retainer hybrid seal type in which the concentration of sulfuric acid contained in the gel is 0.01 to 0.05 (converted at 20 ° C.) higher than the sulfuric acid concentration of the electrolytic solution held by the separator of the present invention in terms of specific gravity The lead-acid battery has a significantly improved life performance compared to the retainer-type sealed lead-acid battery. As a result of disassembling and investigating the battery, no accumulation of electrolyte solution under the separator was observed.

【0019】しかし、ゲル電解液の硫酸濃度とセパレー
タに保持されている電解液の硫酸濃度との差が硫酸比重
に換算して0.05以上(20℃換算)ではかえって寿
命性能が低下した。
However, if the difference between the sulfuric acid concentration of the gel electrolyte and the sulfuric acid concentration of the electrolyte held in the separator is 0.05 or more (converted to 20 ° C.) in terms of sulfuric acid specific gravity, the life performance is rather deteriorated.

【0020】なお、本実施例では、コロイダルシリカ量
を硫酸に対して5重量%に制限して試験を実施したが、
これよりコロイダルシリカ量が多い場合や、少ない場合
でも結果は同じであった。
In this example, the test was carried out by limiting the amount of colloidal silica to 5% by weight with respect to sulfuric acid.
The results were the same when the amount of colloidal silica was larger or smaller than that.

【0021】[0021]

【表1】 試験電池の構成および寿命性能 [Table 1] Test battery composition and life performance

【0022】[0022]

【発明の効果】以上、本発明を用いることによって、電
解液がセパレータ下部に蓄積することがなく、寿命性能
を向上させた鉛蓄電池を得ることができる。
As described above, by using the present invention, it is possible to obtain a lead storage battery having an improved life performance without the electrolytic solution accumulating in the lower part of the separator.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来例の各種シール形鉛蓄電池の概略構成を示
す模式図
FIG. 1 is a schematic diagram showing a schematic configuration of various sealed lead acid batteries of a conventional example.

【図2】本発明の製造法によるシール形鉛蓄電池の概略
構成を示す模式図
FIG. 2 is a schematic diagram showing a schematic configuration of a sealed lead acid battery according to the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 ゲル化した電解液 2 電解液を含んだ微細ガラス繊維セパレータ 3 電解液を含んだ顆粒シリカ 4 電槽 5 排気部 6 電解液を含んだ吸水性セパレータ 1 Gelled electrolyte 2 Fine glass fiber separator containing electrolyte 3 Granular silica containing electrolyte 4 battery case 5 exhaust 6 Water-absorbing separator containing electrolyte

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】吸液性セパレータを用いて電解液を保持さ
せるとともに、極板群と電槽との隙間にゲル化した電解
液を配置させた構造のシール型鉛蓄電池の製造法であっ
て、第一の工程において、所定量の希硫酸を電池内に注
入して初充電を行い、第二の工程において、初充電後の
吸液性セパレータに含まれる電解液の硫酸濃度よりも高
い希硫酸とシリカ粉体との混合ゾル溶液を電池内に注入
し、電池内でゲル化させることを特徴とするシール形鉛
蓄電池の製造法。
1. A method of manufacturing a sealed lead-acid battery having a structure in which an electrolytic solution is held by using a liquid-absorbing separator and a gelled electrolytic solution is disposed in a gap between an electrode plate group and a battery case. In the first step, a predetermined amount of dilute sulfuric acid is injected into the battery for initial charging, and in the second step, the diluted sulfuric acid concentration is higher than the sulfuric acid concentration of the electrolytic solution contained in the absorbent separator after the initial charging. A method for manufacturing a sealed lead-acid battery, which comprises injecting a mixed sol solution of sulfuric acid and silica powder into a battery to cause gelation in the battery.
【請求項2】該ゲル化した電解液の硫酸濃度と初充電後
に該吸液性セパレータに保持されている電解液の硫酸濃
度との差が硫酸比重に換算して0.01以上0.05以
下(20℃換算)であることを特徴とする請求項第1項
に記載のシール形鉛蓄電池の製造法。
2. The difference between the sulfuric acid concentration of the gelled electrolytic solution and the sulfuric acid concentration of the electrolytic solution retained in the liquid-absorbent separator after initial charging is 0.01 or more 0.05 in terms of sulfuric acid specific gravity. The method for producing a sealed lead-acid battery according to claim 1, wherein the following (20 ° C. conversion) is satisfied.
JP2001378283A 2001-12-12 2001-12-12 Production process of sealed lead acid storage battery Pending JP2003178794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001378283A JP2003178794A (en) 2001-12-12 2001-12-12 Production process of sealed lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001378283A JP2003178794A (en) 2001-12-12 2001-12-12 Production process of sealed lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2003178794A true JP2003178794A (en) 2003-06-27

Family

ID=19186047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001378283A Pending JP2003178794A (en) 2001-12-12 2001-12-12 Production process of sealed lead acid storage battery

Country Status (1)

Country Link
JP (1) JP2003178794A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311051A (en) * 2007-06-14 2008-12-25 Gs Yuasa Corporation:Kk Lead storage battery
CN103633379A (en) * 2013-11-29 2014-03-12 汕头市毅和电源科技有限公司 Totally-gelled electrolyte for lead-acid storage battery and preparation method for totally-gelled electrolyte
JP5790843B1 (en) * 2014-06-17 2015-10-07 株式会社豊田自動織機 Power storage device and secondary battery
CN105977550A (en) * 2016-06-27 2016-09-28 汕头市毅和电源科技有限公司 Full-colloidal electrolyte of lead-acid storage battery and preparation method of full-colloidal electrolyte

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311051A (en) * 2007-06-14 2008-12-25 Gs Yuasa Corporation:Kk Lead storage battery
CN103633379A (en) * 2013-11-29 2014-03-12 汕头市毅和电源科技有限公司 Totally-gelled electrolyte for lead-acid storage battery and preparation method for totally-gelled electrolyte
JP5790843B1 (en) * 2014-06-17 2015-10-07 株式会社豊田自動織機 Power storage device and secondary battery
WO2015194213A1 (en) * 2014-06-17 2015-12-23 株式会社豊田自動織機 Electricity storage device and secondary battery
CN105977550A (en) * 2016-06-27 2016-09-28 汕头市毅和电源科技有限公司 Full-colloidal electrolyte of lead-acid storage battery and preparation method of full-colloidal electrolyte

Similar Documents

Publication Publication Date Title
JP5241264B2 (en) Control valve type lead storage battery manufacturing method
JP2014207198A (en) Control valve type lead-acid battery
JP2009187776A (en) Control valve type lead-acid storage battery
JP4325153B2 (en) Control valve type lead acid battery
JP2003178794A (en) Production process of sealed lead acid storage battery
JP6551012B2 (en) Negative electrode for lead acid battery and lead acid battery
WO2011077640A1 (en) Valve-regulated lead acid battery
JP2003178795A (en) Sealed lead acid storage battery
JP3555177B2 (en) Sealed lead-acid battery
JPH0231462B2 (en)
JP2011049135A (en) Lead-acid battery jar formation method
JP4857481B2 (en) Method for manufacturing retainer-gel hybrid sealed lead-acid battery
JP4887590B2 (en) Sealed lead acid battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JP2006185743A (en) Control valve type lead-acid battery
JP2009146727A (en) Control valve type lead-acid battery
JP2008103180A (en) Control valve type lead-acid battery
JP2004207003A (en) Liquid type lead acid storage battery
JPS6040672B2 (en) Manufacturing method of sealed lead-acid battery
JP2586249B2 (en) Sealed lead-acid battery
JP2002343412A (en) Seal type lead-acid battery
JP3163510B2 (en) Sealed lead-acid battery
JP3518123B2 (en) Anode plate for lead-acid battery
JP2002343359A (en) Sealed type lead storage battery
JP2002313409A (en) Seal type lead acid battery device