JP4887590B2 - Sealed lead acid battery - Google Patents

Sealed lead acid battery Download PDF

Info

Publication number
JP4887590B2
JP4887590B2 JP2001279169A JP2001279169A JP4887590B2 JP 4887590 B2 JP4887590 B2 JP 4887590B2 JP 2001279169 A JP2001279169 A JP 2001279169A JP 2001279169 A JP2001279169 A JP 2001279169A JP 4887590 B2 JP4887590 B2 JP 4887590B2
Authority
JP
Japan
Prior art keywords
separator
electrolyte
electrolytic solution
ion concentration
sodium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001279169A
Other languages
Japanese (ja)
Other versions
JP2003086236A (en
Inventor
豊田  泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2001279169A priority Critical patent/JP4887590B2/en
Publication of JP2003086236A publication Critical patent/JP2003086236A/en
Application granted granted Critical
Publication of JP4887590B2 publication Critical patent/JP4887590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉛蓄電池に関する。
【0002】
【従来の技術】
近年、自動車用途において、従来の開放形鉛蓄電池にかえて、シール形鉛蓄電池を適用する例が増えてきた。というのは、シール形鉛蓄電池は正極板で発生した酸素ガスが負極板で吸収されるため、電解液の減少が少なく、補水する必要がない、あるいは電池をいろいろな方向や場所に設置できポジションフリーに使用することができるなど、種々のメリットがあるからである。
【0003】
シール形鉛蓄電池には図1に概略構成を示すように3種類の方式が知られている。それは、電解液を微細なシリカでゲル化したゲル式、吸液性の微細なガラス繊維をシート状に成形したセパレータに電解液を保持させたリテーナ式、そして正極板と負極板の隙間や極板群と電槽との隙間に充填した顆粒状シリカの内部およびシリカの粒子間隙に電解液を保持させた顆粒シリカ式の3種類である。
【0004】
しかし、ゲル式では電解液をゲル化してしまうため電解液の拡散性能が低下するため、電池の性能が低下してしまうという欠点があった。また、リテーナ式は電解液の拡散性能は良いものの、電解液量が少なくなるとともに、電槽に電解液が接触する面積が小さいため、使用中の電池の温度の上昇が大きいという欠点があった。そのため格子腐食や電解液の減少量が多すぎるなどの問題があった。そして、顆粒シリカ式は、電解液の拡散が良く、電解液の熱容量も大きいため性能上の問題はなかったが、シリカの充填や電解液の注入に時間がかかりすぎる、コストが高くなってしまうという欠点があった。
【0005】
【発明が解決しようとする課題】
この為、低コストでかつ、電解液の拡散を速くし、しかも電池温度の上昇を抑制するために、図2に示すリテーナ式シール形電池の極板群と電槽との隙間にゲル電解液を注入する方式のシール形鉛蓄電池を検討した。しかしこの電池にもいくつかの欠点がある。それは、リテーナ式電池では浸透短絡の防止や充電受入性の向上の目的でセパレータ中の電解液にナトリウムイオンが少量含まれているが、ナトリウムイオン濃度が高すぎると初期容量やサイクル性能の低下などの問題が生じる。
【0006】
シール形鉛蓄電池ではセパレータ中だけでなく、ゲル電解液中にも元々シリカ中のケイ酸塩に起因するナトリウムイオンが含まれており、ゲル電解液中のナトリウムイオン濃度がセパレータ中のナトリウムイオンよりも高くなる傾向があり、ナトリウムイオンがセパレータ中に拡散してきて、正極板の軟化といった悪影響をおよぼすことがあった。
【0007】
そこで、本発明の課題は、リテーナ式シール形電池の極板群と電槽との隙間にゲル電解液を注入する方式のシール形鉛蓄電池において、正極板の軟化といった悪影響がなく寿命性能を向上させた鉛蓄電池を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するため、請求項1に記載の発明のシール形鉛蓄電池では、吸液性の繊維を含んだセパレータを用いて電解液を保持させるとともに、極板群と電槽との隙間にゲル化した電解液を配置させたシール形鉛蓄電池であって、該ゲル電解液に含まれるナトリウムイオン濃度がセパレータに保持されている電解液中のナトリウムイオン濃度よりも低く、該ゲル電解液中のナトリウムイオン濃度と該セパレータに保持されている電解液中のナトリウムイオン濃度との差が電解液体積あたり1g/リットル以上10g/リットル以下であることを特徴とする。
【0010】
そして、請求項に記載の発明のシール形鉛蓄電池では、請求項1に記載のシール形鉛蓄電池において、該セパレータに保持されている電解液中のナトリウムイオン濃度が電解液体積あたり2g/リットル以上20g/リットル以下であることを特徴とする。
【0011】
【発明の実施の形態】
本発明のシール形鉛蓄電池は、吸液性の微細な繊維をシート状に成形したセパレータを用いて電解液を保持させるとともに、極板群と電槽との隙間にゲル化した電解液を配置させた構造であって、ゲル電解液に含まれるナトリウムイオン濃度をセパレータに保持されている電解液中のナトリウムイオン濃度よりも低くすることにより、正極板の軟化といった悪影響がなく寿命性能を示すものである。セパレータは正・負極板に直接接しているので、セパレータ中の電解液に含まれているナトリウムイオンが少量存在する場合には浸透短絡の防止や充電受入性の向上に効果があるが、濃度が高すぎると初期容量の低下や正極板の軟化などの問題が生じることが知られている。
【0012】
そこでゲル電解液中のナトリウムイオン量をセパレータ中の電解液に含まれているナトリウム量よりも低くすることでセパレータ中へのナトリウムイオンの拡散を抑制し、セパレータ中の電解液に含まれるナトリウムイオン濃度の増加を防ぐことができるため、電池性能の低下を防ぐことができるものである。
【0013】
しかし、ゲル電解液中には元々シリカ中のケイ酸塩に起因するナトリウムイオンが含まれているため、ゲル電解液中のナトリウムイオン濃度がセパレータ中のナトリウムイオン濃度よりも高くなる傾向がある。よって、セパレータ中に含まれるナトリウムイオン濃度はゲル電解液中のナトリウムイオン濃度より高くなるように調整する必要がある。
【0014】
このとき、ゲル電解液中のナトリウムイオン濃度とセパレータに保持されている電解液中のナトリウムイオン濃度との差が電解液体積当たり1g/リットル以上10g/リットル以下の範囲だと、最も良好な性能であった。さらにこのとき、セパレータに保持されている電解液中のナトリウムイオン濃度が電解液体積あたり2g/リットル以上20g/リットル以下であることが、より好ましい性能を示した。
【0015】
【実施例】
以下、本発明の実施例について説明する。
(実施例1)
まず、基材である厚み10mmのPb−0.07wt%Ca−1.3wt%Sn合金の連続鋳造板から圧延ローラによって厚み1.0mmの圧延シートを作製した後、この圧延シートをロータリー式エキスパンド機を用いて網目状に展開して格子とした。これらの格子に、鉛粉と鉛丹と希硫酸とを練合して製作したペーストを充填し、熟成、乾燥して正極板を作製した。
【0016】
これらの正極板5枚と、厚み1.0mmのPb−0.07wt%Ca−1.3wt%Sn合金圧延シートをロータリー式エキスパンド機を用いて網目状に展開した格子に、リグニンスルホン酸、BaSOおよびカーボンを混合した鉛粉と希硫酸とを練合して製作したペーストを充填し、熟成、乾燥して作製した負極板6枚とをセパレータを介して交互に積層し、極板群を形成した。
【0017】
セパレータには微細なガラス繊維を使用した。これらの極板群を電槽に挿入し、種々の濃度のナトリウムイオンを含む希硫酸を所定量注液して初充電を行い、2V30Ahのシール形鉛蓄電池を製作した。初充電終了後、電池内に種々の濃度のナトリウムイオンを含む希硫酸とコロイダルシリカとを混合したゾル溶液を注入し、電池内でゲル化させることにより、ゲル電解液に含まれるナトリウムイオン濃度がセパレータに保持されている電解液中のナトリウムイオン濃度よりも低いシール形鉛蓄電池を複数種類作製した。最後にこれらの電池に通常の安全弁を装着した。
【0018】
作製した電池の一部を分解して、ゲル電解液とセパレータ中に含まれるナトリウムイオン濃度を分析した後、残りの電池を寿命試験に供した。試験は40℃の水槽中でおこない、放電は10A(1/3CA)で毎回終止電圧1.5Vまで放電し、充電は10Aの定電流で放電量の90%を充電した後、1.5Aの定電流で放電量の20%を充電するという2段定電流方式で充電をおこなった。また、比較のため、極板群の周囲にゲルを注入しない、従来のリテーナ式電池(ナトリウムイオン濃度:10g/リットル)も合わせて製作して評価をおこなった。
【0019】
シール形鉛蓄電池のゲル電解液とセパレータに含まれるそれぞれのナトリウムイオン濃度の差と寿命性能との関係を図3に示すが、シール形鉛蓄電池のゲル電解液に含まれるナトリウムイオン濃度がセパレータに保持されている電解液中のナトリウムイオン濃度よりも低いと寿命性能が向上した。特に、ゲル電解液中のナトリウムイオン濃度とセパレータに保持されている電解液中のナトリウムイオン濃度との差が電解液体積当たり1g/リットル以上10g/リットル以下の範囲だと、最も良好な性能であった。
【0020】
さらに、そのときのセパレータに保持されている電解液中のナトリウムイオン濃度は2g/リットル以上20g/リットル以下のときに最も性能が良好であった。
【0021】
なお、本実施例では、ゲル中のコロイダルシリカ量は電解液重量に対し5wt%に設定したが、他の実験の結果シリカ量による影響はみられなかった。また、ナトリウムイオンを発生させるものとして、NaSOを用いたが、ナトリウムイオンを遊離するものであれば何でもかまわない。
【0022】
【発明の効果】
以上、本発明を用いることによって、寿命性能を著しく延伸でき、優れたシール形鉛蓄電池を得ることができる。
【図面の簡単な説明】
【図1】従来例の各種シール形鉛蓄電池の概略構成を示す模式図
【図2】本開発のシール形鉛蓄電池の概略構成を示す模式図
【図3】本発明及び比較例のゲルとセパレータに含まれるそれぞれのナトリウムイオン濃度の差と寿命性能との関係を示す図
【符号の説明】
1 ゲル電解液
2 電解液を含んだ微細ガラス繊維セパレータ
3 電解液を含んだ顆粒シリカ
4 電槽
5 排気部
6 電解液を含んだ吸水性セパレータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead-acid battery.
[0002]
[Prior art]
In recent years, in automobile applications, an example of applying a sealed lead-acid battery in place of a conventional open-type lead-acid battery has increased. This is because the sealed lead-acid battery absorbs oxygen gas generated in the positive electrode plate by the negative electrode plate, so there is little decrease in electrolyte and no need to refill water, or the battery can be installed in various directions and locations. This is because there are various merits such as being able to use it freely.
[0003]
There are three types of sealed lead-acid batteries as shown in FIG. It is a gel type in which the electrolytic solution is gelled with fine silica, a retainer type in which the electrolytic solution is held in a separator formed by forming a liquid-absorbing fine glass fiber into a sheet, and the gap between the positive electrode plate and the negative electrode plate There are three types of granular silica type in which an electrolytic solution is held in the interior of granular silica filled in the gap between the plate group and the battery case and in the gap between the silica particles.
[0004]
However, in the gel type, since the electrolytic solution is gelled, the diffusion performance of the electrolytic solution is lowered, so that the battery performance is lowered. In addition, although the retainer type has good electrolyte diffusion performance, the amount of the electrolyte is reduced, and the area where the electrolyte contacts the battery case is small, so that the temperature of the battery in use is greatly increased. . For this reason, there are problems such as lattice corrosion and excessive reduction of the electrolyte. The granular silica type has good electrolyte diffusion and large heat capacity, so there is no performance problem, but it takes too much time to fill the silica and inject the electrolyte, resulting in high costs. There was a drawback.
[0005]
[Problems to be solved by the invention]
Therefore, in order to accelerate the diffusion of the electrolytic solution at a low cost and to suppress the rise in the battery temperature, the gel electrolytic solution is placed in the gap between the electrode plate group and the battery case of the retainer type sealed battery shown in FIG. We investigated a sealed lead-acid storage battery with an injection method. However, this battery also has some drawbacks. The retainer type battery contains a small amount of sodium ions in the electrolyte in the separator for the purpose of preventing permeation short-circuiting and improving charge acceptability. However, if the sodium ion concentration is too high, the initial capacity and cycle performance will decrease. Problem arises.
[0006]
In sealed lead-acid batteries, not only the separator but also the gel electrolyte originally contains sodium ions due to the silicate in the silica, and the sodium ion concentration in the gel electrolyte is higher than the sodium ions in the separator. The sodium ions diffused into the separator and had an adverse effect such as softening of the positive electrode plate.
[0007]
Accordingly, an object of the present invention is to improve the life performance of a sealed lead-acid battery in which a gel electrolyte is injected into the gap between the electrode plate group of the retainer-type sealed battery and the battery case without adverse effects such as softening of the positive electrode plate. The object is to provide a lead-acid battery.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the sealed lead-acid battery according to the first aspect of the present invention, the electrolytic solution is held using a separator containing liquid-absorbing fibers, and the gap between the electrode plate group and the battery case is retained. a sealed type lead-acid battery is arranged gelled electrolyte, the gel electrolyte sodium ion concentration in the is rather low than sodium ion concentration in the electrolyte solution held in the separator, the gel electrolyte The difference between the sodium ion concentration in the electrolyte and the sodium ion concentration in the electrolytic solution held in the separator is 1 g / liter or more and 10 g / liter or less per volume of the electrolytic solution.
[0010]
In the sealed lead-acid battery of the invention according to claim 2 , in the sealed lead-acid battery according to claim 1, the sodium ion concentration in the electrolyte held in the separator is 2 g / liter per electrolyte volume. It is 20 g / liter or less.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The sealed lead-acid battery of the present invention holds an electrolytic solution using a separator formed by forming a liquid-absorbing fine fiber into a sheet, and arranges a gelled electrolytic solution in the gap between the electrode plate group and the battery case A structure that shows life performance without adverse effects such as softening of the positive electrode plate by making the sodium ion concentration contained in the gel electrolyte lower than the sodium ion concentration in the electrolyte retained in the separator. It is. Since the separator is in direct contact with the positive and negative electrode plates, when a small amount of sodium ions are present in the electrolyte in the separator, it is effective in preventing penetration short circuit and improving charge acceptance, but the concentration is low. If it is too high, it is known that problems such as a decrease in initial capacity and softening of the positive electrode plate occur.
[0012]
Therefore, by reducing the amount of sodium ions in the gel electrolyte lower than the amount of sodium contained in the electrolyte solution in the separator, the diffusion of sodium ions into the separator is suppressed, and the sodium ions contained in the electrolyte solution in the separator Since an increase in concentration can be prevented, a decrease in battery performance can be prevented.
[0013]
However, since sodium ions originated from the silicate in silica are originally contained in the gel electrolyte, the sodium ion concentration in the gel electrolyte tends to be higher than the sodium ion concentration in the separator. Therefore, it is necessary to adjust the sodium ion concentration contained in the separator so as to be higher than the sodium ion concentration in the gel electrolyte.
[0014]
At this time, the best performance is obtained when the difference between the sodium ion concentration in the gel electrolyte and the sodium ion concentration in the electrolyte held in the separator is in the range of 1 g / liter to 10 g / liter per electrolyte volume. Met. Further, at this time, the sodium ion concentration in the electrolytic solution held in the separator was more preferably 2 g / liter or more and 20 g / liter or less per volume of the electrolytic solution.
[0015]
【Example】
Examples of the present invention will be described below.
Example 1
First, a rolled sheet having a thickness of 1.0 mm was produced by a rolling roller from a continuous cast plate of Pb-0.07 wt% Ca-1.3 wt% Sn alloy having a thickness of 10 mm, which was a base material. A grid was developed using a machine. These grids were filled with a paste prepared by kneading lead powder, red lead and dilute sulfuric acid, aged and dried to produce a positive electrode plate.
[0016]
These positive electrode plates and a 1.0 mm thick Pb-0.07 wt% Ca-1.3 wt% Sn alloy rolled sheet were spread on a grid using a rotary expander, and lignin sulfonic acid, BaSO 4 and a paste prepared by kneading lead powder mixed with carbon and dilute sulfuric acid were filled, and six negative electrodes prepared by aging and drying were alternately laminated via separators, Formed.
[0017]
A fine glass fiber was used for the separator. These electrode plate groups were inserted into a battery case, and predetermined amounts of dilute sulfuric acid containing various concentrations of sodium ions were injected to perform initial charging to produce a 2V30 Ah sealed lead-acid battery. After the completion of the initial charging, a sol solution in which dilute sulfuric acid containing colloidal silica containing various concentrations of sodium ions is injected into the battery and gelled in the battery, so that the concentration of sodium ions contained in the gel electrolyte is reduced. A plurality of types of sealed lead-acid batteries lower than the sodium ion concentration in the electrolyte solution held in the separator were produced. Finally, these batteries were fitted with normal safety valves.
[0018]
After disassembling a part of the produced battery and analyzing the sodium ion concentration contained in the gel electrolyte and the separator, the remaining battery was subjected to a life test. The test is carried out in a 40 ° C. water tank, the discharge is discharged at 10 A (1/3 CA) to a final voltage of 1.5 V each time, and charging is performed at a constant current of 10 A and 90% of the discharge amount is charged, and then 1.5 A is discharged. Charging was performed by a two-stage constant current method in which 20% of the discharge amount was charged with a constant current. For comparison, a conventional retainer type battery (sodium ion concentration: 10 g / liter) that does not inject gel around the electrode group was also manufactured and evaluated.
[0019]
FIG. 3 shows the relationship between the difference in sodium ion concentration contained in the gel electrolyte of the sealed lead-acid battery and the separator and the lifetime performance. The sodium ion concentration contained in the gel electrolyte of the sealed lead-acid battery is shown in FIG. When the sodium ion concentration is lower than the retained electrolyte, the life performance is improved. In particular, the best performance is obtained when the difference between the sodium ion concentration in the gel electrolyte and the sodium ion concentration in the electrolyte retained in the separator is in the range of 1 g / liter to 10 g / liter per electrolyte volume. there were.
[0020]
Furthermore, the performance was most favorable when the sodium ion concentration in the electrolytic solution held in the separator at that time was 2 g / liter or more and 20 g / liter or less.
[0021]
In this example, the amount of colloidal silica in the gel was set to 5 wt% with respect to the weight of the electrolyte, but as a result of other experiments, there was no effect of the amount of silica. Further, Na 2 SO 4 is used as a material for generating sodium ions, but any material that releases sodium ions may be used.
[0022]
【Effect of the invention】
As mentioned above, by using this invention, lifetime performance can be extended remarkably and the outstanding sealed lead acid battery can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a schematic configuration of various sealed lead-acid batteries of a conventional example. FIG. 2 is a schematic diagram showing a schematic configuration of a newly-developed sealed lead-acid battery. FIG. 3 is a gel and a separator of the present invention and a comparative example. Showing the relationship between the difference in sodium ion concentration contained in each and the lifetime performance 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Gel electrolyte solution 2 Fine glass fiber separator containing electrolyte solution 3 Granular silica containing electrolyte solution 4 Battery case 5 Exhaust part 6 Water-absorbing separator containing electrolyte solution

Claims (2)

吸液性の繊維を含んだセパレータを用いて電解液を保持させるとともに、極板群と電槽との隙間にゲル化した電解液を配置させたシール形鉛蓄電池であって、該ゲル電解液に含まれるナトリウムイオン濃度がセパレータに保持されている電解液中のナトリウムイオン濃度よりも低く、該ゲル電解液中のナトリウムイオン濃度と該セパレータに保持されている電解液中のナトリウムイオン濃度との差が電解液体積あたり1g/リットル以上10g/リットル以下であることを特徴とするシール形鉛蓄電池。A sealed lead-acid battery in which an electrolytic solution is held using a separator containing a liquid-absorbing fiber and a gelled electrolytic solution is disposed in a gap between the electrode plate group and the battery case, the gel electrolytic solution a sodium ion concentration of the sodium ion concentration is rather low than sodium ion concentration in the electrolyte solution held in the separator, electrolytic solution held in the sodium ion concentration and the separator of the gel electrolytic solution contained in The sealed lead-acid battery is characterized in that the difference between the two is 1 g / liter or more and 10 g / liter or less per volume of the electrolyte . 該セパレータに保持されている電解液中のナトリウムイオン濃度が電解液体積あたり2g/リットル以上20g/リットル以下であることを特徴とする、請求項1記載のシール形鉛蓄電池。2. The sealed lead-acid battery according to claim 1, wherein the concentration of sodium ions in the electrolytic solution retained by the separator is 2 g / liter or more and 20 g / liter or less per volume of the electrolytic solution.
JP2001279169A 2001-09-14 2001-09-14 Sealed lead acid battery Expired - Fee Related JP4887590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279169A JP4887590B2 (en) 2001-09-14 2001-09-14 Sealed lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279169A JP4887590B2 (en) 2001-09-14 2001-09-14 Sealed lead acid battery

Publications (2)

Publication Number Publication Date
JP2003086236A JP2003086236A (en) 2003-03-20
JP4887590B2 true JP4887590B2 (en) 2012-02-29

Family

ID=19103415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279169A Expired - Fee Related JP4887590B2 (en) 2001-09-14 2001-09-14 Sealed lead acid battery

Country Status (1)

Country Link
JP (1) JP4887590B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717318B2 (en) * 2015-10-22 2020-07-01 株式会社Gsユアサ Lead-acid battery separator and lead-acid battery
JP6866896B2 (en) * 2016-11-29 2021-04-28 昭和電工マテリアルズ株式会社 Lead-acid battery and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386271A (en) * 1986-09-29 1988-04-16 Shin Kobe Electric Mach Co Ltd Sealed lead acid battery

Also Published As

Publication number Publication date
JP2003086236A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
EP2960978B1 (en) Flooded lead-acid battery
US20050084762A1 (en) Hybrid gelled-electrolyte valve-regulated lead-acid battery
JP4887590B2 (en) Sealed lead acid battery
WO2011077640A1 (en) Valve-regulated lead acid battery
JPH0756811B2 (en) Sealed lead acid battery
JP2003086235A (en) Sealed-type lead-acid battery
JPH10189029A (en) Manufacture for sealed lead storage battery
JP2003178794A (en) Production process of sealed lead acid storage battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JP4857481B2 (en) Method for manufacturing retainer-gel hybrid sealed lead-acid battery
KR20190019412A (en) Electrolyte for a lead storage battery and lead storage battery comprising it
JPS6216506B2 (en)
JP2002343359A (en) Sealed type lead storage battery
JP2002343412A (en) Seal type lead-acid battery
JP2002313409A (en) Seal type lead acid battery device
JPH0624139B2 (en) Manufacturing method of sealed lead battery
JPH08298133A (en) Sealed lead acid battery
JP2003178795A (en) Sealed lead acid storage battery
JPH04308666A (en) Gel type sealed lead-acid battery
JPH06187967A (en) Clad type sealed lead-acid battery
JP2002343414A (en) Seal type lead-acid battery
CN116315144A (en) Low-voltage auxiliary battery for new energy vehicle
JPH09199115A (en) Negative plate for lead-acid battery
JP2002343413A (en) Seal type lead-acid battery
JPS607069A (en) Manufacture of sealed lead-acid battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees