JP2006310062A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2006310062A
JP2006310062A JP2005130699A JP2005130699A JP2006310062A JP 2006310062 A JP2006310062 A JP 2006310062A JP 2005130699 A JP2005130699 A JP 2005130699A JP 2005130699 A JP2005130699 A JP 2005130699A JP 2006310062 A JP2006310062 A JP 2006310062A
Authority
JP
Japan
Prior art keywords
lead
acid battery
electrolyte
electrode plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005130699A
Other languages
Japanese (ja)
Inventor
Kazuya Sasaki
一哉 佐々木
Tetsuo Ogoshi
哲郎 大越
Koji Kogure
耕二 木暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2005130699A priority Critical patent/JP2006310062A/en
Publication of JP2006310062A publication Critical patent/JP2006310062A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of a short service life in a lead-acid battery by preventing the stratification of an electrolyte which is caused by a using condition of insufficient charging due to low-voltage charging or frequent idling stops etc. <P>SOLUTION: In this lead-acid battery, SiO<SB>2</SB>and Sb are added to its electrolyte. The SiO<SB>2</SB>addition amount is 0.2-10% by weight per cell to the quantity of electrolytic solution. The Sb addition amount is 7-92 μg/cm<SP>2</SP>per cell to the specific surface area of a cathode plate (the total area of the front and rear surfaces of the electrode plate). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は自動車用の液式鉛蓄電池に関するものである。   The present invention relates to a liquid lead-acid battery for automobiles.

液式鉛蓄電池(以下電池と略す)は正極板及び負極板をセパレータを介して積層した2V単電池を1セルとして、6セル構成(公称12V)にしたものが自動車の始動、点灯用に用いられている。   A liquid lead-acid battery (hereinafter abbreviated as a battery) is a 6-cell configuration (12V nominal) with a 2V single battery in which a positive electrode plate and a negative electrode plate are stacked via a separator, and is used for starting and lighting automobiles. It has been.

電池の電解液としては濃硫酸を希釈した希硫酸が用いられている。希硫酸は通常は安定であるが、電池が充放電すると、電池内の極板と電解液との間で水分と硫酸分の移動が起こり濃度の均一性が保てなくなる。具体的には、希硫酸中の比重の重い硫酸分がセルの下部へ、比重の軽い水分がセルの上部へ移動し、電解液の上下間に生じる濃度差が生じる、いわゆる成層化が生じる。成層化が生じると硫酸濃度の低い上部では充放電反応が起こりがたくなり、硫酸濃度の高い下部では極板の劣化(活物質の泥状化、格子体の腐食)は顕著になる。   As the battery electrolyte, dilute sulfuric acid diluted with concentrated sulfuric acid is used. Although dilute sulfuric acid is usually stable, when the battery is charged and discharged, moisture and sulfuric acid move between the electrode plate in the battery and the electrolytic solution, and the concentration uniformity cannot be maintained. Specifically, sulfuric acid having a high specific gravity in dilute sulfuric acid moves to the lower part of the cell and moisture having a low specific gravity moves to the upper part of the cell, so that a so-called stratification occurs in which a concentration difference occurs between the upper and lower portions of the electrolyte. When stratification occurs, the charge / discharge reaction hardly occurs in the upper part where the sulfuric acid concentration is low, and the deterioration of the electrode plate (muddying of the active material, corrosion of the lattice) becomes remarkable in the lower part where the sulfuric acid concentration is high.

上述のように成層化は電池の劣化や短寿命につながるので、それを防止する目的で電解液の攪拌性向上が行われている。その手段のひとつとして負極板の水素過電圧を低下させ、水素ガスの発生を促し、水素ガスの発生により電解液を攪拌して、電解液の成層化を解消するものがある。具体的例としては、水素過電圧を低下させるものとして、Sb(アンチモン)などの金属を添加する特許文献1のような方法がとられている。しかし、水素過電圧を低下させ、水素ガスの発生を促した場合、電解液中の水の電気分解量が多くなり、電解液量の減少が多くなる。そのため補水の頻度が増し、メンテナンスフリー特性が損なわれる問題点がある。   As described above, stratification leads to deterioration and short life of the battery, so that the stirring property of the electrolytic solution is improved for the purpose of preventing it. One of the means is to reduce the hydrogen overvoltage of the negative electrode plate, promote the generation of hydrogen gas, and stir the electrolyte by the generation of hydrogen gas to eliminate the stratification of the electrolyte. As a specific example, a method such as Patent Document 1 in which a metal such as Sb (antimony) is added is used to reduce the hydrogen overvoltage. However, when the hydrogen overvoltage is lowered and the generation of hydrogen gas is promoted, the amount of electrolysis of water in the electrolyte increases and the amount of electrolyte decreases. Therefore, there is a problem that the frequency of water replenishment increases and the maintenance-free characteristics are impaired.

特開2004−207004号公報JP 2004-207004 A

最近の自動車用電池の使用法として、メンテナンスフリー特性向上のための車輌のレギュレータ充電電圧の低下、および車輌停止時の二酸化炭素放出抑制のため、アイドリングをストップするなどの運動が展開されている。このように電池の充電状態が低く、つまり充電不足環境で使用されると充放電バランスが乱れ、電解液の成層化が起こりやすくなる。また、アイドリングストップによる始動回数の増加も電池に過重な負荷をかける。よって、前記特許文献1の方法でも、上記使用環境下では成層化に起因する短寿命を避けられなかった。   As a recent method of using batteries for automobiles, movements such as idling stop have been developed in order to reduce vehicle regulator charging voltage for improving maintenance-free characteristics and to suppress carbon dioxide emission when the vehicle is stopped. Thus, when the state of charge of the battery is low, that is, when it is used in an undercharged environment, the charge / discharge balance is disturbed, and stratification of the electrolyte is likely to occur. In addition, an increase in the number of start-ups due to idling stop places an excessive load on the battery. Therefore, even the method of Patent Document 1 cannot avoid a short life due to stratification under the above-mentioned use environment.

本発明に係る電池では、上述のレギュレータ充電電圧の低下及びアイドリングストップによる充電不足による成層化を抑制し、長寿命の電池を提供することを目的とする。   An object of the battery according to the present invention is to provide a battery having a long life by suppressing stratification due to a decrease in the regulator charging voltage and insufficient charging due to idling stop.

本発明では、電解液にSiO2を添加し、さらにSbを添加するが、その量をできるだけ少なくして電解液の成層化を抑制する。 In the present invention, SiO 2 is added to the electrolytic solution, and Sb is further added, but the amount thereof is reduced as much as possible to suppress stratification of the electrolytic solution.

SiO2は電解液に粘性を付与し流動性を下げる。流動性を下げることで硫酸分の移動を妨げることができる。Sbは水素過電圧を下げ、水素ガスの発生を促し電解液の攪拌を促進する。これらの相乗効果によって充電不足による成層化を抑制する。 SiO 2 imparts viscosity to the electrolyte and lowers fluidity. The movement of sulfuric acid can be prevented by lowering the fluidity. Sb lowers the hydrogen overvoltage, promotes the generation of hydrogen gas, and promotes the stirring of the electrolyte. These synergistic effects suppress stratification due to insufficient charging.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明は下記実施例に何ら限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施することができる。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to the following Example at all, In the range which does not change the summary, it can change suitably and can implement.

本発明の実施例を以下に説明する。   Examples of the present invention will be described below.

最初に負極板を作製する。まず、合金組成がPb−0.7%Sn−0.04%Caからなる格子を作製した。次に鉛粉と鉛粉に対して13重量%の希硫酸(比重1.26:20℃換算)と、鉛粉に対して12重量%の水とを混練して負極活物質ペーストを作った。負極活物質ペースト75gを格子に充填してから、温度50℃、湿度95%中に18時間放置して熟成した後に温度25℃、湿度40%中に2時間放置し、乾燥して未化成負極板を作った。この極板の見かけ面積(極板の表裏の総面積)は15.5cmである。 First, a negative electrode plate is prepared. First, a lattice having an alloy composition of Pb-0.7% Sn-0.04% Ca was produced. Next, 13% by weight of dilute sulfuric acid (specific gravity 1.26: converted to 20 ° C.) with respect to the lead powder and the lead powder and 12% by weight of water with respect to the lead powder were mixed to make a negative electrode active material paste. . After filling the lattice with 75 g of negative electrode active material paste, it was left to mature for 18 hours in a temperature of 50 ° C. and a humidity of 95%, and then left to stand in a temperature of 25 ° C. and a humidity of 40% for 2 hours, and then dried to form an unformed negative electrode I made a board. The apparent area of this electrode plate (total area of the front and back of the electrode plate) is 15.5 cm 2 .

次に正極板を作製する。まず、合金組成がPb−0.8%Sn−0.07%Caからなる格子を作製した。次に鉛粉と鉛粉に対して10重量%の希硫酸(比重1.26:20℃換算)と、鉛粉に対して12重量%の水とを混練して正極活物質ペーストを作った。正極活物質ペースト95gを格子に充填し、この後、温度50℃、湿度95%中に18時間放置して熟成した後に乾燥して未化成正極板を作った。   Next, a positive electrode plate is produced. First, a lattice having an alloy composition of Pb-0.8% Sn-0.07% Ca was produced. Next, a positive electrode active material paste was prepared by kneading 10% by weight of dilute sulfuric acid (specific gravity 1.26: converted to 20 ° C.) with respect to the lead powder and 12% by weight of water with respect to the lead powder. . The grid was filled with 95 g of a positive electrode active material paste, and then left to mature for 18 hours at a temperature of 50 ° C. and a humidity of 95%, and then dried to produce an unformed positive electrode plate.

次に袋セパレータに未化成負極板を挿入した。この袋セパレータ入りの未化成負極板8枚と未化成正極板7枚を積層した。正極板及び負極板の集電部分をキャストオンストラップ法で溶接し極板群を形成した。この極板群が単電池となる。そして、各極板群を電槽内のセル室に入槽してから、各セルに電解液700mlを注入して未化成電池を作った。電解液は比重1.23(20℃換算)の希硫酸である。続いて、未化成電池に8Aの直流電流を42時間通電して化成した。化成後に電解液比重を1.28(20℃換算)に調整し、電池を作製した。
(比較例1)
電解液に何も添加しない電池を無添加品とした。
(実施例1)
前記化成後の比重調整の際に、コロイド状SiO2を電解液量に対してセル当たり2.63重量%添加し、充電でガスを発生させ電解液を攪拌した。
(実施例2)
前記の化成前の電解液に三酸化アンチモン(Sb)をセル当たり111μg/cm(負極板のみかけ表面積比)溶解し、分散させた電池を作製した。
(実施例3)
前記実施例2、3の両方を行った電池を作製した。
Next, an unformed negative electrode plate was inserted into the bag separator. Eight unformed negative electrode plates and seven unformed positive plate containing the bag separator were laminated. The current collecting portions of the positive electrode plate and the negative electrode plate were welded by a cast on strap method to form an electrode plate group. This electrode plate group becomes a single cell. And after putting each electrode group into the cell chamber in a battery case, 700 ml of electrolyte solution was inject | poured into each cell, and the non-chemical cell was made. The electrolyte is dilute sulfuric acid with a specific gravity of 1.23 (20 ° C. conversion). Subsequently, the unformed battery was formed by applying a direct current of 8 A for 42 hours. After conversion, the specific gravity of the electrolyte was adjusted to 1.28 (converted to 20 ° C.) to produce a battery.
(Comparative Example 1)
A battery in which nothing was added to the electrolyte was defined as an additive-free product.
Example 1
When adjusting the specific gravity after the chemical conversion, colloidal SiO 2 was added by 2.63% by weight per cell with respect to the amount of the electrolytic solution, gas was generated by charging, and the electrolytic solution was stirred.
(Example 2)
An antimony trioxide (Sb 2 O 3 ) was dissolved in 111 μg / cm 2 per cell (surface area ratio over the negative electrode plate) and dispersed in the electrolytic solution before the formation.
(Example 3)
A battery was manufactured in which both of Examples 2 and 3 were performed.

各例の電池を図1に示したサイクルパターン寿命試験に供した。これは低い充電電圧及びアイドリングストップに伴う多頻度始動を模擬しており、電解液の成層化を誘発しやすいパターンである。   The battery of each example was subjected to the cycle pattern life test shown in FIG. This is a pattern that simulates frequent start-up with low charging voltage and idling stop, and easily induces stratification of the electrolyte.

図1に示したパターンを1サイクルとして、サイクルを繰り返した寿命試験結果を図2に示す。評価の対象は始動性に関係した100A放電時の電池電圧とした。前述のように電解液の成層化が発生するため、比較例1(無添加)は5000サイクルほどで判定ラインの6Vで寿命に至った。これに対して、三酸化アンチモンを添加すると電池電圧が高く推移し、寿命が延びた。また、SiO2では電池電圧がやや低いものの三酸化アンチモンより寿命が延びた。実施例3のSiO2及び三酸化アンチモンの添加により、電圧が高く維持された状態を保持し、かつ寿命特性が向上した。 FIG. 2 shows the life test result of repeating the cycle with the pattern shown in FIG. 1 as one cycle. The object of evaluation was the battery voltage during 100 A discharge related to startability. Since the stratification of the electrolyte occurred as described above, Comparative Example 1 (without addition) reached the life at 6V of the judgment line in about 5000 cycles. On the other hand, when antimony trioxide was added, the battery voltage increased and the life was extended. In addition, SiO 2 has a slightly lower battery voltage but has a longer life than antimony trioxide. The addition of SiO 2 and antimony trioxide of Example 3 maintained the state where the voltage was kept high and improved the life characteristics.

図1に示したサイクルパターン寿命試験についてSiO2の添加量を変化させて検討した。図3に示すようにSiO2添加量0.2〜10重量%が無添加品に比べ寿命性能が向上した。添加量10重量%より大きいところでは低下するのは、SiO2による粘性の増加で電解液中の硫酸イオンの移動が妨げられるためと考えられる。 The cycle pattern life test shown in FIG. 1 was examined by changing the amount of SiO 2 added. As shown in FIG. 3, when the SiO 2 addition amount is 0.2 to 10% by weight, the life performance is improved as compared with the additive-free product. The reason for the decrease when the added amount is larger than 10% by weight is thought to be because the movement of sulfate ions in the electrolytic solution is hindered by the increase in viscosity due to SiO 2 .

図1に示したサイクルパターン寿命試験について三酸化アンチモンの添加量を変化させて検討した。図4に示すように三酸化アンチモン添加量が負極板みかけ表面積に対して9μg/cm以上が無添加品に比べ寿命性能が向上した。添加量111μg/cm以上で寿命数は低下するが、これは、Sb添加による減液性能低下の影響と考えられる。三酸化アンチモンとSbの分子量比から、Sbは負極板みかけ表面積に対して7〜92μg/cmの添加が好ましい。なお、Sbの添加形態としては他の化合物、例えば五酸化アンチモン、硫酸アンチモン等でも同様の効果を得ることができる。 The cycle pattern life test shown in FIG. 1 was examined by changing the amount of antimony trioxide added. As shown in FIG. 4, when the amount of antimony trioxide added was 9 μg / cm 2 or more with respect to the apparent surface area of the negative electrode plate, the life performance was improved as compared with the additive-free product. The life number decreases when the addition amount is 111 μg / cm 2 or more, which is considered to be an influence of the decrease in the liquid reduction performance due to the addition of Sb. From the molecular weight ratio of antimony trioxide and Sb, Sb is preferably added in an amount of 7 to 92 μg / cm 2 with respect to the apparent surface area of the negative electrode plate. The same effect can be obtained with other compounds such as antimony pentoxide and antimony sulfate as the form of addition of Sb.

以上のように本発明では、電解液にSiO2を添加し、さらにSbを添加することで、電解液の成層化を抑制し、充電不足の使用環境下で長寿命の電池を得ることができる。 As described above, in the present invention, by adding SiO 2 to the electrolytic solution and further adding Sb, stratification of the electrolytic solution can be suppressed, and a long-life battery can be obtained in a use environment where charging is insufficient. .

寿命試験のサイクルパターンを示す図である。It is a figure which shows the cycle pattern of a life test. 寿命試験中の100A放電末期の電圧推移を示す図である。It is a figure which shows the voltage transition of the 100A discharge end stage during a life test. SiO2添加量とサイクル寿命の関係を示す図である。It is a diagram showing the relationship between additive amount of SiO 2 and cycle life. 三酸化アンチモン添加量とサイクル寿命の関係を示す図である。It is a figure which shows the relationship between antimony trioxide addition amount and cycle life.

Claims (4)

自動車用の液式鉛蓄電池において、電解液中にSiO2とSbを含むことを特徴とした鉛蓄電池。 A lead-acid battery for a liquid lead-acid battery for automobiles, wherein the electrolyte contains SiO 2 and Sb. SiO2を電解液量に対してセル当たり0.2〜10重量%添加したことを特徴とする請求項1記載の鉛蓄電池。 2. The lead acid battery according to claim 1, wherein SiO2 is added in an amount of 0.2 to 10% by weight per cell based on the amount of the electrolyte. Sbを負極板のみかけ表面積(極板の表裏の総面積)に対してセル当たり7〜92μg/cm添加したことを特徴とする請求項1記載の鉛蓄電池。 The lead-acid battery according to claim 1, wherein 7 to 92 µg / cm 2 of Sb is added per cell with respect to the surface area (total area of the front and back surfaces of the electrode plate) over the negative electrode plate. 前記鉛蓄電池は充電不足傾向にあり、かつ始動頻度が多い使用環境にあることを特徴とする請求項1〜3項記載の鉛蓄電池。   The lead acid battery according to any one of claims 1 to 3, wherein the lead acid battery is in a use environment that tends to be insufficiently charged and frequently starts.
JP2005130699A 2005-04-28 2005-04-28 Lead-acid battery Pending JP2006310062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005130699A JP2006310062A (en) 2005-04-28 2005-04-28 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005130699A JP2006310062A (en) 2005-04-28 2005-04-28 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2006310062A true JP2006310062A (en) 2006-11-09

Family

ID=37476728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130699A Pending JP2006310062A (en) 2005-04-28 2005-04-28 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2006310062A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311051A (en) * 2007-06-14 2008-12-25 Gs Yuasa Corporation:Kk Lead storage battery
JP4647722B1 (en) * 2009-09-01 2011-03-09 パナソニック株式会社 Lead acid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311051A (en) * 2007-06-14 2008-12-25 Gs Yuasa Corporation:Kk Lead storage battery
JP4647722B1 (en) * 2009-09-01 2011-03-09 パナソニック株式会社 Lead acid battery
WO2011027383A1 (en) * 2009-09-01 2011-03-10 パナソニック株式会社 Lead acid battery

Similar Documents

Publication Publication Date Title
US9570779B2 (en) Flooded lead-acid battery
CN102660697B (en) Lead-acid battery grid alloy for power
JP4798972B2 (en) Control valve type lead-acid battery for standby
JPH09306497A (en) Negative electrode plate for lead-acid battery
CN110336086B (en) Formation process of liquid-enriched lead storage battery and lead storage battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP2008243489A (en) Lead acid storage battery
JP2006310062A (en) Lead-acid battery
JP4802358B2 (en) Negative electrode plate for control valve type lead-acid battery
JP2011222446A (en) Lead acid storage battery
JP4812386B2 (en) Method for producing lead-acid battery
JP2006004636A (en) Lead acid storage battery
JP2007035339A (en) Control valve type lead-acid storage battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2007294124A (en) Manufacturing method of lead-acid battery
JP2003142147A (en) Lead-acid battery
JP2012199026A (en) Negative electrode active material paste, lead acid battery and method for manufacturing lead acid battery
JP3269302B2 (en) Lead storage battery
JP2006185743A (en) Control valve type lead-acid battery
JP4411860B2 (en) Storage battery
JPH0850896A (en) Manufacture of lead-acid battery
JP2007213896A (en) Lead-acid storage battery
JP2006107984A (en) Manufacturing method of positive electrode plate for lead-acid battery and lead-acid battery using this positive electrode plate
JP4742424B2 (en) Control valve type lead acid battery
JP3013623B2 (en) Sealed lead-acid battery