JP4798972B2 - Control valve type lead-acid battery for standby - Google Patents

Control valve type lead-acid battery for standby Download PDF

Info

Publication number
JP4798972B2
JP4798972B2 JP2004226441A JP2004226441A JP4798972B2 JP 4798972 B2 JP4798972 B2 JP 4798972B2 JP 2004226441 A JP2004226441 A JP 2004226441A JP 2004226441 A JP2004226441 A JP 2004226441A JP 4798972 B2 JP4798972 B2 JP 4798972B2
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrode active
standby
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004226441A
Other languages
Japanese (ja)
Other versions
JP2006049025A (en
Inventor
優 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2004226441A priority Critical patent/JP4798972B2/en
Publication of JP2006049025A publication Critical patent/JP2006049025A/en
Application granted granted Critical
Publication of JP4798972B2 publication Critical patent/JP4798972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、低温高率放電特性に優れ、かつスタンバイ使用における浮動充電電流が少なく正極格子が腐食し難い、長寿命のスタンバイ用制御弁式鉛蓄電池に関する。   The present invention relates to a long-life control valve type lead-acid battery for standby which is excellent in low-temperature high-rate discharge characteristics, has a small floating charging current in standby use and hardly corrodes a positive electrode grid.

従来のスタンバイ用制御弁式鉛蓄電池は、負極と正極の活物質の質量比(負/正)が0.9〜1.1、負極活物質の密度が4.1〜4.2g/cmであり、低温高率放電特性などの電池特性は優れるものの、非常用電源等のスタンバイ使用において浮動充電電流が流れ易く、この電流は一部が腐食電流となり、この腐食電流が多いときは正極格子の腐食が顕著になり電池寿命が低下した。この腐食による寿命低下を、正極格子を厚くして改善するのは原料コストおよびエネルギー密度の点で不利である。長寿命の密閉形鉛蓄電池として、ペースト式負極板の活物質中にカーボンまたはグラファイトを0.4〜4.0質量%含有させたものが提案されている(特許文献1)。 The conventional control valve type lead-acid battery for standby has a mass ratio (negative / positive) of the negative electrode to the positive electrode active material of 0.9 to 1.1, and the density of the negative electrode active material of 4.1 to 4.2 g / cm 3. Although the battery characteristics such as low-temperature high-rate discharge characteristics are excellent, floating charging current easily flows in standby use such as an emergency power supply. As a result, the battery life decreased. It is disadvantageous in terms of raw material cost and energy density to improve the life reduction due to corrosion by increasing the thickness of the positive electrode grid. As a long-life sealed lead-acid battery, 0.4 to 4 .4 of carbon or graphite is contained in the active material of the paste type negative electrode plate . One containing 0 % by mass has been proposed (Patent Document 1).

特開2001−43849号公報JP 2001-43849 A

本発明は、低温高率放電特性に優れ、かつスタンバイ使用における浮動充電電流が少なく正極格子が腐食し難い、長寿命のスタンバイ用制御弁式鉛蓄電池の提供を目的とする。   It is an object of the present invention to provide a long-life standby control valve type lead-acid battery that is excellent in low-temperature high-rate discharge characteristics, has a small floating charging current in standby use, and does not corrode the positive grid.

請求項1記載発明は、負極活物質の密度が3.5〜4.0g/cm であり、負極活物質と正極活物質の質量比(負/正)が0.5〜0.8(ただし、0.75〜0.8を除く)であり、さらに負極活物質中にカーボンが0.1質量%以下含有されていることを特徴とするスタンバイ用制御弁式鉛蓄電池である。 According to the first aspect of the present invention, the density of the negative electrode active material is 3.5 to 4.0 g / cm 3 , and the mass ratio (negative / positive) of the negative electrode active material to the positive electrode active material is 0.5 0 to 0.8. 0 (excluding 0.75-0.8 0), and that it is contained more carbon 0.1 0 wt% or less in the negative electrode active material in the standby control valve type lead-acid battery, characterized in is there.

本発明のスタンバイ用制御弁式鉛蓄電池は、負極活物質と正極活物質の質量比(負/正)を0.5〜0.8(ただし、0.75〜0.8を除く)に小さく規定したので、スタンバイ使用における浮動充電電流が減少して正極格子の腐食が防止され、長寿命である。また負極活物質の密度を3.5〜4.0g/cmと小さく規定したので負極活物質の利用率が高くなり、従って正極活物質量に対する負極活物質量を減らしても、低温高率放電特性は従来品と同等に維持される。また、前記負極活物質中にカーボンを、0.1質量%以下含有させることにより、さらに低温高率放電特性が向上する。 Standby for valve-regulated lead-acid battery of the present invention, the weight ratio of the negative electrode active material and the positive electrode active material (negative / positive) 0.5 0 to 0.8 0 (excluding 0.75-0.8 0 ), The floating charging current in standby use is reduced, corrosion of the positive grid is prevented, and the life is long. Further, since the density of the negative electrode active material is regulated to be as small as 3.5 to 4.0 g / cm 3 , the utilization factor of the negative electrode active material is increased. Therefore, even if the amount of the negative electrode active material relative to the amount of the positive electrode active material is reduced, Discharge characteristics are maintained at the same level as conventional products. Moreover, the low-temperature high-rate discharge characteristics are further improved by containing 0.1% by mass or less of carbon in the negative electrode active material.

本発明のスタンバイ用制御弁式鉛蓄電池では、スタンバイ使用における浮動充電電流が少ないので、正極格子の腐食が抑制される。従って正極格子を厚くする必要がなく、低コスト、高エネルギー密度が達成される。   In the control valve type lead storage battery for standby according to the present invention, the floating charging current in standby use is small, so that corrosion of the positive electrode grid is suppressed. Therefore, it is not necessary to increase the thickness of the positive electrode lattice, and low cost and high energy density are achieved.

請求項1記載発明は、負極活物質と正極活物質の質量比(負/正)を小さく規定することによりスタンバイ使用における浮動充電電流を減少させ、それにより正極格子の腐食を抑制し、前記質量比を小さく規定したことによる低温高率放電特性の低下は、負極活物質密度を低く規定して負極の活物質利用率を高めて抑制したスタンバイ用制御弁式鉛蓄電池である。また、前記負極活物質中にカーボンを含有させて導電性を高め低温高率放電特性を高めたスタンバイ用制御弁式鉛蓄電池である。 The invention according to claim 1 reduces the floating charging current in standby use by defining the mass ratio (negative / positive) of the negative electrode active material and the positive electrode active material to be small, thereby suppressing the corrosion of the positive electrode grid and the mass. The decrease in the low-temperature, high-rate discharge characteristics due to the specified ratio is a control valve type lead-acid battery for standby that suppresses the active material utilization rate of the negative electrode by lowering the negative electrode active material density. In addition, the negative electrode active material is a standby control valve type lead-acid battery in which carbon is contained in the negative electrode active material to increase conductivity and to improve low-temperature high-rate discharge characteristics.

本発明において、負極活物質と正極活物質の質量比(負/正)を0.5〜0.8(ただし、0.75〜0.8を除く)に規定する理由は、前記質量比が0.5未満では低温高率放電特性が低下し、0.8を超えると浮動充電電流が増加して正極格子が腐食し易くなるためである。 The reason for defining the in the present invention, the mass ratio of the negative electrode active material and the positive electrode active material (negative / positive) 0.5 0 to 0.8 0 (excluding 0.75-0.8 0), the the mass ratio is less than 0.5 0 reduces the low-temperature high-rate discharge characteristics is because the floating charge current exceeds 0.8 0 tends to positive grid corrodes to increase.

本発明において、負極活物質中に含有させるカーボンは負極の導電性を高めて、さらに低温高率放電特性を向上させる。ただし、前記カーボンの含有量を0.1質量%以下に規定する理由は、0.1質量%を超えると浮動充電電流が増加して正極格子が腐食し易くなるためである。 In the present invention, the carbon contained in the negative electrode active material enhances the conductivity of the negative electrode and further improves the low-temperature high-rate discharge characteristics. However, the reason for defining the content of the carbon below 0.1 wt% is because floating charge current exceeds 0.1 0 wt% tends to positive grid corrodes to increase.

本発明において、前記カーボンの形状は粉状でも繊維状でもよい。また前記カーボンをグラファイトに代えても同様の効果が得られる。   In the present invention, the shape of the carbon may be powder or fiber. The same effect can be obtained even if the carbon is replaced with graphite.

本発明において、負極活物質の密度を3.5〜4.0g/cmに規定する理由は、負極活物質の密度が3.5g/cm未満では密度が低ぎて活物質内の空孔が多くなり水素過電圧が下がり浮動充電電流が増加するためである。また4.0g/cmを超えると負極活物質の利用率が低下し十分な低温高率放電特性が得られないためである。 In the present invention, the density of the anode active material reasons specified in 3.5~4.0g / cm 3, the density of the negative electrode active material density is less than 3.5 g / cm 3 are low over assistant engineer the active material This is because the number of holes increases, the hydrogen overvoltage decreases, and the floating charging current increases. On the other hand , if it exceeds 4.0 g / cm 3 , the utilization factor of the negative electrode active material is lowered and sufficient low-temperature high-rate discharge characteristics cannot be obtained.

以下に本発明を実施例により具体的に説明する。
参考例1:Pb−Ca−Sn合金の正極格子と負極格子にそれぞれペースト状正極活物質とカーボンを含有しないペースト状負極活物質を塗布充填し、40℃、相対湿度98%の大気中で24時間熟成し、次いで24時間乾燥させて未化成の正極板および負極板を作製した。前記ペースト状負極活物質中はカーボンを添加しないものを用いた。前記負極板の活物質密度、および負極板と正極板の活物質の質量比は本発明規定値内で種々に変化させた。
Hereinafter, the present invention will be described specifically by way of examples.
Reference Example 1: A positive electrode lattice and a negative electrode lattice of a Pb—Ca—Sn alloy were coated and filled with a paste-like positive electrode active material and a paste-like negative electrode active material not containing carbon , respectively. Aging was carried out for a period of time, followed by drying for 24 hours to produce an unformed positive electrode plate and negative electrode plate. The paste-like negative electrode active material in the using of no added carbon. The active material density of the negative electrode plate and the mass ratio of the active material of the negative electrode plate to the positive electrode plate were variously changed within the specified values of the present invention.

負極活物質密度と活物質の質量比(負/正)の組み合わせは、負極活物質密度が低いと利用率が向上し、正極に対する負極の活物質量は少なくなり、質量比(負/正)は小さくなるようにした。逆に、負極活物質密度が高いと利用率が低下し、正極に対する負極の活物質量は多くなり、質量比は大きくなるようにした。   The combination of the negative electrode active material density and the mass ratio (negative / positive) of the active material is improved when the negative electrode active material density is low, and the amount of the negative electrode active material with respect to the positive electrode is reduced, and the mass ratio (negative / positive). Was made smaller. On the contrary, when the negative electrode active material density is high, the utilization factor is reduced, the amount of the active material of the negative electrode with respect to the positive electrode is increased, and the mass ratio is increased.

次に、前記未化成の正極板3枚と負極板4枚をガラス繊維製のリテーナを介在させて交互に積層して極板群とし、これをABS製電槽に組み込み、電槽内に比重1.21(20℃)の希硫酸を注入したのち、充電量230%、化成時間48H、周囲温度25℃の条件で電槽化成を行ってスタンバイ用制御弁式鉛蓄電池を製造した。   Next, the three unformed positive electrode plates and the four negative electrode plates are alternately laminated with a glass fiber retainer interposed therebetween to form an electrode plate group. After injecting 1.21 (20 ° C.) dilute sulfuric acid, the battery was formed under the conditions of a charge amount of 230%, a formation time of 48H, and an ambient temperature of 25 ° C. to produce a standby control valve type lead-acid battery.

得られたスタンバイ用制御弁式鉛蓄電池について、低温高率放電特性を−5℃の3CA放電容量により調べた。終止電圧は1.6V/セルとした。またスタンバイ使用における浮動充電電流(60℃)を調べた。   About the obtained control valve type lead acid battery for standby, the low temperature high rate discharge characteristic was investigated by 3CA discharge capacity of -5 degreeC. The final voltage was 1.6 V / cell. Further, the floating charging current (60 ° C.) in standby use was examined.

実施例1:負極活物質中にカーボンを含有させた他は参考例1と同じ方法によりスタンバイ用制御弁式鉛蓄電池を製造し、参考例1と同じ調査を行った。  Example 1 A control valve lead storage battery for standby was manufactured in the same manner as in Reference Example 1 except that carbon was contained in the negative electrode active material, and the same investigation as in Reference Example 1 was performed.

従来例1:負極活物質密度および活物質の質量比(負/正)を従来のスタンバイ用制御弁式鉛蓄電池の範囲とし他は参考例1と同じ方法によりスタンバイ用制御弁式鉛蓄電池を製造し、参考例1と同じ調査を行った。 Conventional Example 1: negative electrode active material density and weight ratio of the active material (negative / positive) conventional except that a standby control valve-range lead-acid batteries for standby valve-regulated lead-acid battery in the same manner as in Reference Example 1 The same investigation as in Reference Example 1 was conducted.

比較例1:負極活物質密度および活物質の質量比(負/正)を共に本発明規定値外とし他は参考例1と同じ方法によりスタンバイ用制御弁式鉛蓄電池を製造し、参考例1と同じ調査を行った。 Comparative Example 1: Mass ratio of the negative electrode active material density and the active material (negative / positive) except that together with the present invention defined value outside the manufactures for standby valve-regulated lead-acid battery in the same manner as in Reference Example 1, Reference Example The same investigation as 1 was conducted.

比較例2:負極活物質密度および活物質の質量比(負/正)は本発明規定値内とし、カーボン含有量を本発明規定値外とした他は参考例1と同じ方法によりスタンバイ用制御弁式鉛蓄電池を製造し、参考例1と同じ調査を行った。 Comparative Example 2: Control for standby by the same method as in Reference Example 1 except that the negative electrode active material density and the mass ratio (negative / positive) of the active material are within the specified values of the present invention, and the carbon content is out of the specified values of the present invention. A valve-type lead-acid battery was manufactured, and the same investigation as in Reference Example 1 was performed.

比較例3:負極活物質密度を本発明規定値外とし、活物質の質量比(負/正)を本発明規定値内とし他は参考例1と同じ方法によりスタンバイ用制御弁式鉛蓄電池(No.12、13)を製造し参考例1と同じ調査を行った。また、負極活物質密度を本発明規定値内とし、活物質の質量比(負/正)を本発明規定値外とし他は参考例1と同じ方法によりスタンバイ用制御弁式鉛蓄電池(No.14、15)を製造し、参考例1と同じ調査を行った。 Comparative Example 3: negative electrode active material density and the invention specified value outside the mass ratio of the active material (negative / positive) of the present invention except that the inside specified value for standby valve-regulated lead-acid battery in the same manner as in Reference Example 1 (Nos. 12, 13) were manufactured and the same investigation as in Reference Example 1 was performed. Further, the control valve type lead-acid storage battery for standby (No.) was prepared in the same manner as in Reference Example 1 except that the negative electrode active material density was within the specified value of the present invention and the mass ratio (negative / positive) of the active material was outside the specified value of the present invention. 14 and 15 ) and the same investigation as in Reference Example 1 was conducted.

参考例1、実施例1、従来例1、比較例13の調査結果を表1に示した。3CA容量(−5℃)と浮動充電電流は従来例1のNo.6を100としたときの比率(%)で示した。 Table 1 shows the investigation results of Reference Example 1, Example 1, Conventional Example 1, and Comparative Examples 1 to 3. The 3CA capacity (−5 ° C.) and the floating charging current are No. It is shown as a ratio (%) where 6 is 100.

表1から明らかなように、参考1のNo.1〜3はいずれも従来例1に較べて、3CA(−5℃)容量が高く、かつ浮動充電電流が少なく正極格子の腐食が起き難いものであった。また、カーボンを適量含有する実施例1(本発明例)のNo.4、5は3CA容量(−5℃)が大幅に向上した。 As is clear from Table 1 , No. 1 in Reference Example 1 was obtained . 1 to 3 were higher in 3CA (−5 ° C.) capacity than in Conventional Example 1, had a small floating charging current, and did not easily corrode the positive grid. Moreover, No. 1 of Example 1 (example of the present invention) containing an appropriate amount of carbon. In 4 and 5, the 3CA capacity (−5 ° C.) was greatly improved.

これに対し、比較例1のNo.8は正極に対する負極活物質量が少ないため3CA容量(−5℃)が低く、No.9は正極に対する負極活物質量が多いため浮動充電電流が増加した。No.10は負極活物質密度が高く、負極活物質量も少ないため3CA容量(−5℃)が低下した。比較例2のNo.11は負極活物質のカーボン量が多いため浮動充電電流が増加した。 On the other hand, No. 1 of Comparative Example 1 was used. Since No. 8 has a small amount of negative electrode active material relative to the positive electrode , the 3CA capacity (−5 ° C.) is low. 9 had a large amount of negative electrode active material relative to the positive electrode, and therefore the floating charging current increased. No. No. 10 had a high negative electrode active material density and a small amount of negative electrode active material, so the 3CA capacity (−5 ° C.) decreased. No. of Comparative Example 2 Since No. 11 had a large amount of carbon in the negative electrode active material , the floating charging current increased.

比較例3のNo.12は、3CA容量(−5℃)および浮動充電電流の効果が従来と比較して多少の改善が認められる十分ではない。No.13は負極活物質密度が高く利用率が低いため3CA容量(−5℃)が低下した。No.14は正極に対する負極活物質量が少ないため3CA容量(−5℃)が低下した。No.15は正極に対する負極活物質量が多いため浮動充電電流が増加した。 No. of Comparative Example 3 12, the effect of the 3CA capacity (−5 ° C.) and the floating charging current is slightly improved as compared with the conventional case , but is not sufficient. No. Since No. 13 has a high negative electrode active material density and a low utilization factor , the 3CA capacity (−5 ° C.) decreased. No. Since 14 had a small amount of the negative electrode active material relative to the positive electrode , the 3CA capacity (−5 ° C.) decreased. No. No. 15 had a large amount of negative electrode active material relative to the positive electrode, and therefore the floating charging current increased.

Claims (1)

負極活物質の密度が3.5〜4.0g/cmであり、負極活物質と正極活物質の質量比(負/正)が0.5〜0.8(ただし、0.75〜0.8を除く)であり、さらに負極活物質中にカーボンが0.1質量%以下含有されていることを特徴とするスタンバイ用制御弁式鉛蓄電池。 Density of the negative electrode active material is a 3.5~4.0g / cm 3, the mass ratio of the negative electrode active material and the positive electrode active material (negative / positive) 0.5 0 to 0.8 0 (however, 0.75 0.8 0 a excluding), the standby control valve type lead-acid battery, characterized in that it is further contain carbon in the negative electrode active substance 0.1 0 wt% or less.
JP2004226441A 2004-08-03 2004-08-03 Control valve type lead-acid battery for standby Active JP4798972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004226441A JP4798972B2 (en) 2004-08-03 2004-08-03 Control valve type lead-acid battery for standby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004226441A JP4798972B2 (en) 2004-08-03 2004-08-03 Control valve type lead-acid battery for standby

Publications (2)

Publication Number Publication Date
JP2006049025A JP2006049025A (en) 2006-02-16
JP4798972B2 true JP4798972B2 (en) 2011-10-19

Family

ID=36027346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226441A Active JP4798972B2 (en) 2004-08-03 2004-08-03 Control valve type lead-acid battery for standby

Country Status (1)

Country Link
JP (1) JP4798972B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138391B2 (en) * 2008-01-15 2013-02-06 古河電池株式会社 Control valve type lead acid battery
JP5637503B2 (en) * 2011-09-27 2014-12-10 株式会社Gsユアサ Lead acid battery
JP6597308B2 (en) * 2013-11-29 2019-10-30 株式会社Gsユアサ Retainer type lead acid battery
CN104681879B (en) * 2013-11-29 2020-07-10 株式会社杰士汤浅国际 Lead-acid battery
JP5708959B2 (en) * 2014-09-08 2015-04-30 株式会社Gsユアサ Lead acid battery
JP6582386B2 (en) * 2014-10-17 2019-10-02 日立化成株式会社 Lead acid battery
JP6339030B2 (en) * 2015-02-17 2018-06-06 株式会社Gsユアサ Lead acid battery
JP6115796B2 (en) * 2015-02-18 2017-04-19 株式会社Gsユアサ Lead acid battery
EP3059789B1 (en) * 2015-02-18 2020-09-16 GS Yuasa International Ltd. Lead-acid battery
JP6836315B2 (en) * 2015-03-19 2021-02-24 株式会社Gsユアサ Control valve type lead acid battery
CN107408702B (en) * 2015-03-30 2020-07-14 株式会社杰士汤浅国际 Lead-acid battery
JP6503869B2 (en) * 2015-05-08 2019-04-24 日立化成株式会社 Control valve type lead storage battery and method of manufacturing the same
JP6781365B2 (en) * 2015-10-23 2020-11-04 昭和電工マテリアルズ株式会社 Lead-acid battery
JP6830615B2 (en) * 2019-07-10 2021-02-17 株式会社Gsユアサ Control valve type lead acid battery
JP6791326B2 (en) * 2019-09-04 2020-11-25 昭和電工マテリアルズ株式会社 Lead-acid battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1179013A (en) * 1980-10-03 1984-12-04 Purushothama Rao Sealed, maintenance-free, lead-acid batteries for float applications
JPS57124866A (en) * 1981-01-26 1982-08-03 Matsushita Electric Ind Co Ltd Closed type lead storage battery
JPH0244658A (en) * 1988-08-04 1990-02-14 Yuasa Battery Co Ltd Sealed lead-acid battery
JPH04296464A (en) * 1991-03-26 1992-10-20 Shin Kobe Electric Mach Co Ltd Sealed-type lead-acid battery
JPH07240227A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH08339819A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH09283147A (en) * 1996-04-19 1997-10-31 Yuasa Corp Sealed lead-acid battery and manufacture thereof
JP2002042794A (en) * 2000-07-27 2002-02-08 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2002343360A (en) * 2001-05-15 2002-11-29 Shin Kobe Electric Mach Co Ltd Control valve type lead storage battery
JP4221963B2 (en) * 2002-07-12 2009-02-12 パナソニック株式会社 Control valve type lead acid battery

Also Published As

Publication number Publication date
JP2006049025A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4798972B2 (en) Control valve type lead-acid battery for standby
JP6331161B2 (en) Control valve type lead acid battery
JP5748091B2 (en) Lead acid battery
JP6836315B2 (en) Control valve type lead acid battery
JP4325153B2 (en) Control valve type lead acid battery
JP4802358B2 (en) Negative electrode plate for control valve type lead-acid battery
JP6601654B2 (en) Control valve type lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2012138331A (en) Lead storage battery and idling stop vehicle
JP2007095626A (en) Method of manufacturing lead-acid battery
JP5283429B2 (en) Sealed lead acid battery
JP6164502B2 (en) Lead acid battery
US2994626A (en) Low loss battery
JP6830615B2 (en) Control valve type lead acid battery
JP6041186B2 (en) Lead acid battery
JP2006310062A (en) Lead-acid battery
JP4827452B2 (en) Method for producing lead-acid battery
JP4356298B2 (en) Control valve type lead acid battery
JP4411860B2 (en) Storage battery
JP4423840B2 (en) Control valve type lead acid battery
JP2004047302A (en) Control valve type lead-acid battery
JP3518123B2 (en) Anode plate for lead-acid battery
JPS58158874A (en) Lead storage battery
JP2007066741A (en) Method for manufacturing negative electrode plate for lead accumulator
JP2008078019A (en) Lead acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150