JPH09283147A - Sealed lead-acid battery and manufacture thereof - Google Patents

Sealed lead-acid battery and manufacture thereof

Info

Publication number
JPH09283147A
JPH09283147A JP8097225A JP9722596A JPH09283147A JP H09283147 A JPH09283147 A JP H09283147A JP 8097225 A JP8097225 A JP 8097225A JP 9722596 A JP9722596 A JP 9722596A JP H09283147 A JPH09283147 A JP H09283147A
Authority
JP
Japan
Prior art keywords
carbon
carbon powder
active material
added
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8097225A
Other languages
Japanese (ja)
Inventor
Keiichi Hasegawa
圭一 長谷川
Naoaki Matsumoto
修明 松本
Sawako Takahashi
さわ子 高橋
Takahide Nakayama
恭秀 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP8097225A priority Critical patent/JPH09283147A/en
Publication of JPH09283147A publication Critical patent/JPH09283147A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance heavy current charging efficiency such as regeneration charging and lengthen the life of a battery under charging of an electric vehicle or the like. SOLUTION: This sealed lead-acid battery is constituted by using a negative plate in which 0.01-1wt.% carbon fibers and/or carbon whiskers are/is added to a negative active material, and 0.01-10wt.% carbon powder is added to the negative active material. The manufacturing process is that a shrink proof agent is carried in carbon powder, carbon and carbon fibers and/or carbon whiskers are added to the negative active material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は密閉形鉛蓄電池とそ
の製造方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead acid battery and an improvement in its manufacturing method.

【0002】[0002]

【従来の技術】近年、密閉形鉛蓄電池は電気自動車及び
内燃機関とモーターを併用したハイブリッド形電気自動
車へ用途が拡大している。このような用途では、車全体
のエネルギー効率を向上させるため、制動時や降坂時の
エネルギーを回生エネルギーとして再び電池に蓄える技
術、すなわち回生充電の効率向上が重要である。回生充
電は、通常走行時においては数秒から数十秒という短時
間で行われるため、この間に蓄えるエネルギーを大きく
するためには充電電流をできるだけ大きくする必要があ
る。しかしながら、鉛蓄電池は一般に他の電池系に比べ
大電流での充電効率が低いため、実際には回生電流を制
限して回生充電を行っている。
2. Description of the Related Art In recent years, applications of sealed lead-acid batteries have expanded to electric vehicles and hybrid electric vehicles that use both an internal combustion engine and a motor. In such applications, in order to improve the energy efficiency of the vehicle as a whole, it is important to improve the efficiency of regenerative charging, that is, the technology of storing energy during braking or downhill as regenerative energy in the battery again. Since regenerative charging is performed in a short time of several seconds to several tens of seconds during normal traveling, it is necessary to maximize the charging current in order to increase the energy stored during this period. However, lead-acid batteries generally have a lower charging efficiency at large currents than other battery systems, and therefore regenerative charging is actually performed by limiting the regenerative current.

【0003】また、これらの用途では、始動用鉛蓄電池
のように常に充電状態で使用されることはほとんどな
く、通常、一部分が放電した充電不足の状態で使用され
る。鉛蓄電池はこのような充電不足下での使用では寿命
が著しく減少する問題点を有する。たとえば、負極上に
生成した放電後の活物質である硫酸鉛が充電不足により
長期間還元されずにいると、非常に不活性な硫酸鉛とな
り負極中に蓄積していく。硫酸鉛は導電性を持たないの
で、これにより負極板の充放電特性は劣化する。
Also, in these applications, unlike a lead-acid battery for starting, it is rarely used in a charged state at all times, and is usually used in a state of insufficient charge in which a part is discharged. The lead acid battery has a problem that its life is significantly reduced when it is used under such insufficient charging. For example, if lead sulfate, which is the active material after discharge, generated on the negative electrode is not reduced for a long time due to insufficient charging, it becomes very inactive lead sulfate and accumulates in the negative electrode. Since lead sulfate does not have conductivity, this deteriorates the charge / discharge characteristics of the negative electrode plate.

【0004】一方、電気自動車などの用途に限らずこれ
らの問題点は数多くの検討がなされてきた。前述のよう
に負極がこれらの問題点の要因となっているため、特に
負極の改善が図られてきた。その一つに負極への導電性
添加剤の適用がある。負極活物質は金属鉛であるため充
電末期には高い導電性を有しているが、放電深度が深く
なったり、前述のように硫酸鉛が活物質中に蓄積してい
くと単純に導電性が低下するばかりでなく、極板中に未
充電部分が残存しているにもかかわらず、すでに充電さ
れた部分において副反応である水の電気分解に電気量が
使われ、充電効率の低下を引き起こす。これによりさら
に硫酸鉛の蓄積速度が増大し、加速的に劣化が進行す
る。
On the other hand, many studies have been made on these problems, not limited to applications such as electric vehicles. As described above, the negative electrode is one of the causes of these problems, and therefore the negative electrode has been particularly improved. One of them is the application of a conductive additive to the negative electrode. Since the negative electrode active material is metallic lead, it has high conductivity at the end of charging, but when the depth of discharge becomes deep and lead sulfate accumulates in the active material as described above, it simply becomes conductive. In addition to the decrease in battery charge, the amount of electricity used for electrolysis of water, which is a side reaction in the already charged part, decreases the charging efficiency even though there is an uncharged part in the electrode plate. cause. As a result, the lead sulfate accumulation rate further increases, and the deterioration progresses at an accelerated rate.

【0005】そこで、導電性添加剤、一般的にはカーボ
ンを負極活物質中に添加することが行われている。カー
ボン粉末の導電性向上は一般的には粒子の細かい比表面
積の高いカーボンが適しているとされ、これに適合する
要件を備えたカーボン添加剤が種々提案されている。
Therefore, a conductive additive, generally carbon, is added to the negative electrode active material. It is generally said that carbon having fine particles and a high specific surface area is suitable for improving the conductivity of carbon powder, and various carbon additives having requirements compatible with this have been proposed.

【0006】しかしながら、これらのカーボンはその高
い比表面積のため活性度が高く、水素過電圧が低下して
定電圧充電時に副反応が起こりやすく、電池として電解
液の減少が促進され電解液枯渇による電池劣化を引き起
こしやすい。また、活性度が高いために負極活物質中に
添加したリグニンスルホン酸に代表される防縮剤を吸着
し、金属鉛の凝集を抑制する作用を消失させてしまい、
金属鉛の表面積を低下させる。このため、特に低温での
高率放電特性が低下したり、実質的な電流密度が増大
し、副反応比率の増大による充電効率の低下や、活物質
粒子間の結合が集中するなどして電池劣化が進行する。
このため、通常のカーボン添加剤はその添加量が実質的
には活物質に対し0.01〜0.5wt%程度にしか上
げることができず、とくに、電気自動車などの用途に対
しては十分な回生充電特性を示すことができなかった。
また寿命特性も十分な値が得られるものではなかった。
[0006] However, these carbons have high activity due to their high specific surface area, hydrogen overvoltage decreases, side reactions are likely to occur during constant voltage charging, and the decrease of the electrolyte solution is promoted as a battery, and the battery is exhausted due to electrolyte depletion. It is easy to cause deterioration. Further, because of its high activity, it absorbs a shrink preventive agent typified by lignin sulfonic acid added to the negative electrode active material, and loses the effect of suppressing the aggregation of metallic lead.
Reduces the surface area of metallic lead. For this reason, the high rate discharge characteristics are deteriorated especially at low temperature, the substantial current density is increased, the charging efficiency is decreased due to the increase of the side reaction ratio, and the bonds between the active material particles are concentrated. Deterioration progresses.
For this reason, the amount of the conventional carbon additive can be substantially increased to about 0.01 to 0.5 wt% with respect to the active material, and is particularly sufficient for applications such as electric vehicles. The regenerative charging characteristics could not be shown.
Further, the life characteristics were not sufficient.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みてなされたもので、回生充電などの大電流充電効率
や、電気自動車用途などのアンダーチャージ下での寿命
向上を図ろうとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and is intended to improve the efficiency of high-current charging such as regenerative charging, and to improve the life of the electric vehicle when it is undercharged. Is.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
めに本発明は、カーボン繊維または/およびカーボンウ
ィスカーを負極活物質に対し0.01〜1wt%、カー
ボン粉末を負極活物質に対し0.01〜10wt%添加
した負極板を用いて構成したことを特徴とする密閉形鉛
蓄電池であり、また、該カーボン粉末に防縮剤を担持さ
せていることを特徴とする密閉形鉛蓄電池である。 前
記カーボン繊維またはカーボンウィスカーは、アスペク
ト比(長さを直径で除したもの)10以上、長さ1μm
以上、比表面積300m2 /g以下であることが好まし
く、また、前記カーボン粉末は、直径1μm以下、比表
面積300m2 /g以上、多孔度が40%以上であるこ
とが好ましい。
In order to solve the above problems, the present invention provides 0.01 to 1 wt% of carbon fibers or / and carbon whiskers to the negative electrode active material, and 0 carbon powder to the negative electrode active material. A sealed lead acid battery characterized by comprising a negative electrode plate added with 0.01 to 10 wt%, and a sealed lead acid battery characterized in that a shrink proof agent is carried on the carbon powder. . The carbon fiber or carbon whisker has an aspect ratio (length divided by diameter) of 10 or more and a length of 1 μm.
As described above, the specific surface area is preferably 300 m 2 / g or less, and the carbon powder preferably has a diameter of 1 μm or less, a specific surface area of 300 m 2 / g or more, and a porosity of 40% or more.

【0009】本発明の製造方法は、カーボン粉末に防縮
剤合物を担持させ、次いで、該カーボン粉末と、カーボ
ン繊維または/およびカーボンウィスカーとを負極活物
質中に添加したことを特徴とする。また、該カーボン粉
末の吸着性を抑制する前処理を行ってから該カーボン粉
末と、カーボン繊維または/およびカーボンウィスカー
とを負極活物質中に添加することを特徴とする。
The method of the present invention is characterized in that the carbon powder is caused to carry a shrinkproofing agent compound, and then the carbon powder and carbon fibers and / or carbon whiskers are added to the negative electrode active material. Further, it is characterized in that the carbon powder and the carbon fibers and / or the carbon whiskers are added to the negative electrode active material after a pretreatment for suppressing the adsorptivity of the carbon powder.

【0010】[0010]

【作用】カーボンウィスカーやカーボン繊維はその形状
から活物質粒子間を導電性ネットワーク状に接続する作
用を有するとして提案されてきたものであるが、実際は
粉末状のカーボンに比べ導電性が低く、十分な導電性ネ
ットワークを形成するほどの量を添加すると活物質粒子
間の抵抗はむしろ増大し、大電流放電特性、出力密度特
性が低下する。逆にカーボン粉末を多量に添加すると前
述のように水素過電圧が低下するため充電効率の低下を
引き起こす。
[Function] Carbon whiskers and carbon fibers have been proposed as having a function of connecting between active material particles in a conductive network form due to their shape, but in reality, they have lower conductivity than powdered carbon, If the amount of such a conductive network is added, the resistance between the active material particles rather increases, and the large current discharge characteristics and the power density characteristics deteriorate. On the contrary, when a large amount of carbon powder is added, the hydrogen overvoltage is lowered as described above, and thus the charging efficiency is lowered.

【0011】これに対し、本発明ではカーボンウィスカ
ーやカーボン繊維を導電性の高いカーボン粉末と同時に
添加することで、それぞれのカーボンの問題点である活
物質粒子間抵抗の増大および水素過電圧の低下を解決す
ることができる。また、これらの形状の異なるカーボン
を添加することで、カーボン粉末の二次、三次粒子間を
カーボンウィスカーが接続し、単独では得られないカー
ボン粒子ネットワークが形成されているものと推定され
る。これらの作用により、通常の添加量より少ない領域
から、単独添加では悪影響が発現する添加量まで幅広い
領域の添加量を選択することができる。また、カーボン
粉末に前処理を施すことで、これらの作用はさらに長期
間有効となるので、電気自動車用途に対しきわめて高性
能な負極板を提供することが可能になる。
On the other hand, in the present invention, by adding carbon whiskers and carbon fibers at the same time as the carbon powder having high conductivity, it is possible to increase the resistance between active material particles and decrease the hydrogen overvoltage, which are problems of each carbon. Can be resolved. It is also presumed that the carbon whiskers are connected between the secondary and tertiary particles of the carbon powder by adding these carbons having different shapes, and a carbon particle network that cannot be obtained by itself is formed. Due to these effects, it is possible to select the addition amount in a wide range from the addition amount smaller than the usual addition amount to the addition amount where the adverse effect is caused by the single addition. Further, by pre-treating the carbon powder, these effects are effective for a longer period of time, and thus it is possible to provide an extremely high-performance negative electrode plate for electric vehicle applications.

【0012】[0012]

【発明の実施の形態】以下、本発明を実施形態に基づき
詳細に説明する。 (実施形態1)アスペクト比65、長さ3μm、比表面
積58m2 /gのカーボンウィスカー、比表面積980
2 /g、多孔度63%、一次粒子径約0.02μmの
カーボン粉末を用意し、種々の添加比率で負極活物質中
にリグニン、硫酸バリウム等公知の添加剤と共に添加
し、公知の方法で負極板を作製した。これを公知の方法
で作製した正極板と組み合わせ容量3Ahの密閉形単セ
ル電池を組み立てた。これらの電池を1Ah放電した
後、2.5Vの定電圧充電を行い、その8秒目電流から
求めた回生充電密度と、満充電から6Aの充放電を5秒
ずつ繰り返す寿命試験を25℃中で実施した結果を図1
および図2に示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail based on embodiments. (Embodiment 1) Carbon whiskers having aspect ratio of 65, length of 3 μm and specific surface area of 58 m 2 / g, specific surface area of 980
m 2 / g, porosity 63%, primary particle diameter of about 0.02 μm carbon powder was prepared and added to the negative electrode active material at various addition ratios together with known additives such as lignin and barium sulfate, and a known method. Then, a negative electrode plate was produced. This was combined with a positive electrode plate manufactured by a known method to assemble a sealed single cell battery having a capacity of 3 Ah. After discharging these batteries for 1 Ah, constant voltage charging of 2.5 V was performed, and a regenerative charging density obtained from the current at the 8th second and a life test in which charging / discharging of 6 A from full charge was repeated for 5 seconds each at 25 ° C. Figure 1 shows the result
And FIG.

【0013】これらの結果から明らかなように、カーボ
ンウィスカー添加量0.01〜1wt%の範囲でカーボ
ン粉末添加量0.01〜10wt%と組み合わせた場
合、回生充電効率及び繰り返し寿命の大幅な向上を認め
ることができる。カーボンウィスカーの添加により寿命
向上を図る提案はこれまでにもなされていたが、本発明
のように、カーボンウィスカーとカーボン粉末を同時に
添加することで単独のカーボン添加では得られなかった
大幅な寿命向上が可能になる。
As is clear from these results, when combined with the carbon powder addition amount of 0.01 to 10 wt% within the carbon whisker addition amount of 0.01 to 1 wt%, the regenerative charging efficiency and the repeated life are greatly improved. Can be admitted. Proposals to improve the life by adding carbon whiskers have been made so far, but by adding carbon whiskers and carbon powder at the same time as in the present invention, a significant improvement in life that could not be obtained by adding carbon alone Will be possible.

【0014】ここで、実施形態1では本発明電池のカー
ボンウィスカーを、アスペクト比65、長さ3μm、比
表面積58m2 /gとしたが、アスペクト比が10以
上、長さ1μm以上、比表面積300m2 /g以下、添
加量が0.01〜1wt%であれば同等の効果を得るこ
とができる。アスペクト比および長さが前記要件以下に
なると活物質粒子および同時に添加するカーボン粉末と
の接続が不足し、カーボンによる導電性ネットワークを
構成するためには1wt%を越えて多量に添加しなけれ
ばならない。多量に添加するとカーボンよりも導電性の
高い金属鉛によるネットワークを破壊するので、図1、
2で示したように特性は低下し、コストも上昇するので
好ましくない。また、比表面積300m2 /gを越える
と実質的にカーボン粉末と同様の性質を示すので、複合
添加の効果が発現しない。より顕著に複合添加の効果が
得られるのは比表面積100m2 /g以下の場合であ
る。
Here, in Embodiment 1, the carbon whiskers of the battery of the present invention have an aspect ratio of 65, a length of 3 μm and a specific surface area of 58 m 2 / g, but the aspect ratio is 10 or more, the length is 1 μm or more, and the specific surface area is 300 m. If the amount is 2 / g or less and the addition amount is 0.01 to 1 wt%, the same effect can be obtained. If the aspect ratio and length are less than the above requirements, the connection between the active material particles and the carbon powder to be added at the same time will be insufficient, and in order to form a conductive network of carbon, a large amount of more than 1 wt% must be added. . If added in a large amount, the network of metallic lead, which is more conductive than carbon, will be destroyed, so
As shown in 2, the characteristics are deteriorated and the cost is increased, which is not preferable. Further, if the specific surface area exceeds 300 m 2 / g, it exhibits substantially the same properties as the carbon powder, so that the effect of composite addition does not appear. The more remarkable effect of composite addition is obtained when the specific surface area is 100 m 2 / g or less.

【0015】また、実施形態1では本発明電池のカーボ
ン粉末を一次粒子径約0.02μm、比表面積980m
2 /g、多孔度63%としたが、直径1μm以下、比表
面積300m2 /g以上、多孔度が40%以上であるカ
ーボン粉末を0.01〜10wt%添加すれば同様の効
果を得ることができる。添加量がこれより大きいと図
1、2で示したように特性が低下するほか、体積的には
負極活物質量よりも多くなるので工業的な生産には実質
的に不適当である。また、直径がこれより大きくなると
活物質粒子間及び同時に添加するカーボンウィスカーま
たはカーボン繊維間にカーボン粉末が配置されることが
できにくくなり、導電性ネットワークの形成が困難にな
る。このため複合添加の効果が得られない。多孔度が4
0%よりも小さくなる場合も同様の理由で好ましくな
い。比表面積においては、前記要件より小さくなるとカ
ーボン粉末間の導電性が低下するので好ましくない。ま
た、カーボン粉末としての複合添加の発現がなくなる。
このため、比表面積は500m2 /g以上あることがよ
り好ましいが、実質的に得られるカーボン粉末では20
00m2 /g程度が上限である。
In the first embodiment, the carbon powder of the battery of the present invention has a primary particle diameter of about 0.02 μm and a specific surface area of 980 m.
2 / g and a porosity of 63% were used, but the same effect can be obtained by adding 0.01 to 10 wt% of carbon powder having a diameter of 1 μm or less, a specific surface area of 300 m 2 / g or more, and a porosity of 40% or more. You can If the added amount is larger than this, the characteristics deteriorate as shown in FIGS. 1 and 2, and the volume becomes larger than the amount of the negative electrode active material, so that it is substantially unsuitable for industrial production. Further, if the diameter is larger than this, it becomes difficult to arrange the carbon powder between the active material particles and between the carbon whiskers or the carbon fibers added at the same time, which makes it difficult to form the conductive network. Therefore, the effect of composite addition cannot be obtained. Porosity is 4
When it is smaller than 0%, it is not preferable for the same reason. When the specific surface area is smaller than the above requirements, the conductivity between carbon powders is lowered, which is not preferable. In addition, the compound addition as carbon powder does not occur.
Therefore, it is more preferable that the specific surface area is 500 m 2 / g or more, but it is substantially 20 in the obtained carbon powder.
The upper limit is about 00 m 2 / g.

【0016】(実施形態2)実施形態1で用いたカーボ
ン粉末を、リグニンスルホン酸の水溶液中で懸濁させ、
24時間攪拌してカーボン粉末にリグニンを吸着担持さ
せた。このカーボン粉末を乾燥後、実施形態1で用いた
カーボンウィスカーと複合してリグニン、硫酸バリウム
等の添加剤と共に添加し、実施形態1と同様にして作製
した負極板を得た。この負極板を用いて構成した電池を
本発明電池Aとする。実施形態1で用いたカーボン粉末
を、チャンバー中に置き、一酸化炭素(CO)ガスを通
気しカーボン粉末の活性度を低下させる前処理を行っ
た。このカーボン粉末を用いて本発明電池Aと同様にし
て作製した電池を本発明電池Bとする。一方、なにも処
理しないカーボン粉末を用いて本発明電池Aと同様にし
て作製した電池を本発明電池C、なにも処理しないカー
ボン粉末のみを添加して作製した負極板を用いた電池を
比較電池Dとした。カーボン粉末の添加量はいずれの電
池も処理前の重量として負極活物質の0.5wt%、カ
ーボンウィスカー添加量は負極活物質の0.15wt%
とした。
(Embodiment 2) The carbon powder used in Embodiment 1 is suspended in an aqueous solution of ligninsulfonic acid,
Lignin was adsorbed and supported on carbon powder by stirring for 24 hours. After this carbon powder was dried, it was combined with the carbon whiskers used in Embodiment 1 and added together with additives such as lignin and barium sulfate to obtain a negative electrode plate manufactured in the same manner as in Embodiment 1. A battery constituted by using this negative electrode plate is referred to as Battery A of the present invention. The carbon powder used in Embodiment 1 was placed in a chamber, and carbon monoxide (CO) gas was aerated to perform a pretreatment for reducing the activity of the carbon powder. A battery manufactured by using this carbon powder in the same manner as the battery A of the present invention is referred to as a battery B of the present invention. On the other hand, a battery manufactured in the same manner as the battery A of the present invention by using the carbon powder that was not treated was the battery C of the present invention, and a battery using the negative electrode plate prepared by adding only the carbon powder that was not treated. This is Comparative Battery D. The amount of carbon powder added was 0.5 wt% of the negative electrode active material as the weight before treatment in each battery, and the amount of carbon whiskers added was 0.15 wt% of the negative electrode active material.
And

【0017】これらの電池を1/3Cで放電深度100
%まで放電し、1/5Cで放電量の80%充電する充放
電を繰り返し、50サイクル毎に2C放電容量を確認す
る寿命試験を実施した。図3に寿命試験中の2C放電容
量の推移を示す。図から明らかなように本発明電池A,
Bは容量低下が小さい。これに対し比較電池Dは容量低
下が大きい。これは、通常より多量に添加したカーボン
粉末によりリグニンが吸着され、活物質粒子が大きく成
長し、高率放電特性が低下したものと考えられ、本発明
電池Aではリグニンを担持させたカーボン粉末により、
本発明電池Bではカーボン粉末の活性度を低下させたこ
とにより、リグニンの吸着が抑制され、高率放電特性が
維持できたものである。本発明電池Cは、カーボンウィ
スカーとカーボン粉末を混合添加した事による作用で、
単独添加である比較電池Dよりも容量低下は小さいもの
の、カーボン粉末へのリグニン吸着量が大きいため本発
明電池A,Bよりも容量低下が大きい結果となった。以
上のように、本発明による前処理により多量にカーボン
を混合添加することが可能になる。
These batteries were discharged at a discharge depth of 100 at 1 / 3C.
%, And 80% of the discharge amount at 1/5 C was repeatedly charged and discharged, and a life test was conducted to confirm the 2 C discharge capacity every 50 cycles. FIG. 3 shows the transition of the 2C discharge capacity during the life test. As is clear from the figure, the present invention battery A,
B has a small capacity decrease. On the other hand, the comparative battery D has a large decrease in capacity. It is considered that this is because the lignin was adsorbed by the carbon powder added in a larger amount than usual, the active material particles grew large, and the high rate discharge characteristics were deteriorated. In the battery A of the present invention, the carbon powder supporting lignin was used. ,
In the battery B of the present invention, the activity of the carbon powder was lowered, so that the adsorption of lignin was suppressed and the high rate discharge characteristics could be maintained. The battery C of the present invention operates by mixing and adding carbon whiskers and carbon powder,
Although the decrease in capacity was smaller than that of Comparative Battery D, which was added alone, the amount of lignin adsorbed on the carbon powder was large, resulting in a larger decrease in capacity than Batteries A and B of the present invention. As described above, the pretreatment according to the present invention makes it possible to mix and add a large amount of carbon.

【0018】ここで、カーボン粉末へリグニンを前もっ
て担持させる方法を用いたが、負極中へのリグニン添加
量を増加させても寿命向上作用を得ることができる。し
かし、負極中へのリグニンの多量添加はカーボンに前も
って担持させる方法と異なり、吸着できず遊離したリグ
ニンが多量に存在するので、遊離したリグニンの正極で
の酸化により自己放電速度の増大や充電効率の低下など
悪影響が大きく、寿命向上の効果も本発明ほど顕著には
得られない。また、カーボン粉末の活性度を低下させる
処理として一酸化炭素処理を行ったが、これに限らず、
CO2 、メタンガスなどによって不活性化させてもよ
い。
Here, the method of previously supporting lignin on the carbon powder was used, but the life improving effect can be obtained even if the amount of lignin added to the negative electrode is increased. However, the addition of a large amount of lignin to the negative electrode is different from the method of preliminarily supporting it on carbon, and there is a large amount of lignin that cannot be adsorbed and is released. The effect of improving the life is not so remarkable as that of the present invention. Further, although carbon monoxide treatment was performed as a treatment for reducing the activity of the carbon powder, the treatment is not limited to this.
CO 2, it may be inactivated by such methane.

【0019】[0019]

【発明の効果】以上詳述したように、本発明は次の効果
を奏する。 (1)請求項1によれば、高率放電特性および寿命特性
が優れ、回生充電などの急速充電効率が飛躍的に向上す
る密閉形鉛蓄電池を提供できる。 (2)請求項2によれば、高率放電特性の低下を抑制で
きる。 (3)請求項3および4によれば、請求項1の効果を顕
著にできる。 (4)請求項5によれば、前もって防縮剤をカーボン粉
末とカーボン繊維などに担持させず添加する場合に比
べ、多量のカーボンを添加でき、寿命性能が向上でき
る。 (5)請求項6によれば、カーボン粉末が芳香族化合物
を吸着しなくなるので、高率放電特性の低下を抑制でき
る。また、カーボン粉末と一体化した活物質粒子が大き
く成長することがないので、容量の低下を防ぐことがで
きる。
As described in detail above, the present invention has the following effects. (1) According to the first aspect, it is possible to provide a sealed lead-acid battery which has excellent high rate discharge characteristics and life characteristics and dramatically improves rapid charging efficiency such as regenerative charging. (2) According to claim 2, it is possible to suppress deterioration of the high rate discharge characteristics. (3) According to claims 3 and 4, the effect of claim 1 can be made remarkable. (4) According to claim 5, a large amount of carbon can be added, and the life performance can be improved, as compared with the case where the shrink-proofing agent is added without previously supporting it on the carbon powder and the carbon fiber. (5) According to claim 6, since the carbon powder does not adsorb the aromatic compound, it is possible to suppress deterioration of the high rate discharge characteristics. Moreover, since the active material particles integrated with the carbon powder do not grow significantly, it is possible to prevent the capacity from decreasing.

【図面の簡単な説明】[Brief description of drawings]

【図1】カーボンウィスカーとカーボン粉末の添加量に
対する回生充電密度を示すグラフである。
FIG. 1 is a graph showing regenerative charge density with respect to the addition amounts of carbon whiskers and carbon powder.

【図2】カーボンウィスカーとカーボン粉末の添加量に
対する寿命サイクル数を示すグラフである。
FIG. 2 is a graph showing the number of life cycles with respect to the amounts of carbon whiskers and carbon powder added.

【図3】本発明電池A〜Cと比較電池Dの寿命特性を示
すグラフである。
FIG. 3 is a graph showing life characteristics of batteries A to C of the present invention and comparative battery D.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 恭秀 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhide Nakayama 6-6 Josaimachi, Takatsuki City, Osaka Prefecture Yuasa Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 カーボン繊維または/およびカーボンウ
ィスカーを負極活物質に対し0.01〜1wt%、カー
ボン粉末を負極活物質に対し0.01〜10wt%添加
していることを特徴とする密閉形鉛蓄電池。
1. A closed type in which 0.01 to 1 wt% of carbon fibers and / or carbon whiskers are added to the negative electrode active material and 0.01 to 10 wt% of carbon powder is added to the negative electrode active material. Lead acid battery.
【請求項2】 前記カーボン粉末に防縮剤を担持させて
いることを特徴とする請求項1の密閉形鉛蓄電池。
2. The sealed lead acid battery according to claim 1, wherein the carbon powder carries a shrinkproofing agent.
【請求項3】 前記カーボン繊維またはカーボンウィス
カーがアスペクト比10以上、長さ1μm以上、比表面
積300m2 /g以下であることを特徴とする請求項1
または2記載の密閉形鉛蓄電池
3. The carbon fibers or carbon whiskers have an aspect ratio of 10 or more, a length of 1 μm or more, and a specific surface area of 300 m 2 / g or less.
Or the sealed lead-acid battery described in 2.
【請求項4】 前記カーボン粉末が直径1μm以下、比
表面積300m2 /g以上、多孔度が40%以上である
ことを特徴とする請求項1または2記載の密閉形鉛蓄電
4. The sealed lead-acid battery according to claim 1, wherein the carbon powder has a diameter of 1 μm or less, a specific surface area of 300 m 2 / g or more, and a porosity of 40% or more.
【請求項5】 カーボン粉末に防縮剤を担持させ、次い
で、該カーボン粉末と、カーボン繊維または/およびカ
ーボンウィスカーとを負極活物質中に添加することを特
徴とする密閉形鉛蓄電池の製造方法。
5. A method for producing a sealed lead-acid battery, which comprises supporting a shrink preventive agent on carbon powder, and then adding the carbon powder and carbon fibers and / or carbon whiskers to a negative electrode active material.
【請求項6】 カーボン粉末の吸着性を抑制する前処理
を行い、次いで、該カーボン粉末と、カーボン繊維また
は/およびカーボンウィスカーとを負極活物質中に添加
することを特徴とする密閉形鉛蓄電池の製造方法。
6. A sealed lead-acid battery characterized in that a pretreatment for suppressing adsorption of carbon powder is carried out, and then the carbon powder and carbon fibers and / or carbon whiskers are added to a negative electrode active material. Manufacturing method.
JP8097225A 1996-04-19 1996-04-19 Sealed lead-acid battery and manufacture thereof Pending JPH09283147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8097225A JPH09283147A (en) 1996-04-19 1996-04-19 Sealed lead-acid battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8097225A JPH09283147A (en) 1996-04-19 1996-04-19 Sealed lead-acid battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09283147A true JPH09283147A (en) 1997-10-31

Family

ID=14186698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8097225A Pending JPH09283147A (en) 1996-04-19 1996-04-19 Sealed lead-acid battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09283147A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327157A (en) * 2003-04-23 2004-11-18 Japan Storage Battery Co Ltd Storage battery
JP2006049025A (en) * 2004-08-03 2006-02-16 Furukawa Battery Co Ltd:The Control valve type lead-acid storage battery
WO2011090113A1 (en) * 2010-01-21 2011-07-28 株式会社Gsユアサ Negative electrode plate for lead storage battery, process for producing same, and lead storage battery
CN102484286A (en) * 2009-10-26 2012-05-30 株式会社杰士汤浅国际 Lead acid storage battery
JP2015005528A (en) * 2014-09-05 2015-01-08 株式会社Gsユアサ Lead storage battery
JP2016504743A (en) * 2013-01-25 2016-02-12 アルケマ フランス Electrode paste manufacturing method
JP2016532638A (en) * 2013-06-14 2016-10-20 ユニヴァーシティー オブ サウス ウェールズ コマーシャル サービシズ リミテッド Synthesis and hydrogen storage properties of manganese hydrides
US10465852B2 (en) 2014-06-13 2019-11-05 USW Commercial Services Ltd. Synthesis and hydrogen storage properties of novel metal hydrides
US10974961B2 (en) 2011-12-15 2021-04-13 USW Commercial Services, Ltd. Metal hydrides and their use in hydrogen storage applications

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327157A (en) * 2003-04-23 2004-11-18 Japan Storage Battery Co Ltd Storage battery
JP2006049025A (en) * 2004-08-03 2006-02-16 Furukawa Battery Co Ltd:The Control valve type lead-acid storage battery
CN102484286A (en) * 2009-10-26 2012-05-30 株式会社杰士汤浅国际 Lead acid storage battery
WO2011090113A1 (en) * 2010-01-21 2011-07-28 株式会社Gsユアサ Negative electrode plate for lead storage battery, process for producing same, and lead storage battery
CN102725891A (en) * 2010-01-21 2012-10-10 株式会社杰士汤浅国际 Negative electrode plate for lead storage battery, process for producing same, and lead storage battery
JPWO2011090113A1 (en) * 2010-01-21 2013-05-23 株式会社Gsユアサ Negative electrode plate for lead acid battery, method for producing the same, and lead acid battery
US10974961B2 (en) 2011-12-15 2021-04-13 USW Commercial Services, Ltd. Metal hydrides and their use in hydrogen storage applications
US11851327B2 (en) 2011-12-15 2023-12-26 USW Commercial Services Ltd. Metal hydrides and their use in hydrogen storage applications
JP2016504743A (en) * 2013-01-25 2016-02-12 アルケマ フランス Electrode paste manufacturing method
JP2016532638A (en) * 2013-06-14 2016-10-20 ユニヴァーシティー オブ サウス ウェールズ コマーシャル サービシズ リミテッド Synthesis and hydrogen storage properties of manganese hydrides
US10622655B2 (en) 2013-06-14 2020-04-14 Usw Commercial Services Ltd Synthesis and hydrogen storage properties of novel manganese hydrides
US10465852B2 (en) 2014-06-13 2019-11-05 USW Commercial Services Ltd. Synthesis and hydrogen storage properties of novel metal hydrides
JP2015005528A (en) * 2014-09-05 2015-01-08 株式会社Gsユアサ Lead storage battery

Similar Documents

Publication Publication Date Title
JP4364460B2 (en) Negative electrode for lead acid battery
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
JPH09283147A (en) Sealed lead-acid battery and manufacture thereof
JP2003123760A (en) Negative electrode for lead-acid battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP2001332264A (en) Lead battery with miniature control valve
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPH11329476A (en) Sealed lead-acid battery
JP5839988B2 (en) Lead acid battery
JPH0568828B2 (en)
JP2005294142A (en) Lead storage battery
JP3371472B2 (en) Paste cadmium cathode plate for alkaline storage batteries
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH0837022A (en) Alkaline storage battery
JPH0434857A (en) Enclosed type alkaline battery and manufacture thereof
JP3229636B2 (en) Metal-hydrogen alkaline storage battery
JPH11135127A (en) Lead-acid battery
JPH01134862A (en) Alkaline zinc storage battery
CN117638329A (en) Atomic-level dispersed nickel-based catalyst and preparation method and application thereof
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JPH02112158A (en) Metal-hydrogen alkaline storage battery
JPS617565A (en) Paste type cadmium negative electrode
JPS63158750A (en) Zink electrode for alkaline storage battery
JPS617566A (en) Manufacture of paste type cadmium negative electrode
JPH05159800A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040607