JPH0434857A - Enclosed type alkaline battery and manufacture thereof - Google Patents

Enclosed type alkaline battery and manufacture thereof

Info

Publication number
JPH0434857A
JPH0434857A JP2140945A JP14094590A JPH0434857A JP H0434857 A JPH0434857 A JP H0434857A JP 2140945 A JP2140945 A JP 2140945A JP 14094590 A JP14094590 A JP 14094590A JP H0434857 A JPH0434857 A JP H0434857A
Authority
JP
Japan
Prior art keywords
porous body
metal
storage battery
dimensional structure
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2140945A
Other languages
Japanese (ja)
Inventor
Eiji Kadouchi
英治 門内
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2140945A priority Critical patent/JPH0434857A/en
Publication of JPH0434857A publication Critical patent/JPH0434857A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance a charging and discharging characteristic by forming numerous pores, whose average particle diameter is within a limit, on the surface layer of a metal frame constituting a porous body of a three-dimentional structure which holds an electrode active material and collects a current. CONSTITUTION:Numerous pores whose average pore diameter is 5mum or less are formed in the vicinity of the surface layer of a metal frame constituting a porous body of a three-dimentional structure including mainly metal such as nickel. At the frame surface of the porous body or the portion thereof from the frame surface to the inside, there is previously provided a mixture layer made of one or two kinds or more of materials selected from main structure metal, alkali metal, alkaline earth metal and salts thereof. And then, a part or the whole of the material is eluded with an alkaline solution.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉式アルカリ蓄電池の放電性能の改善に関
するものである・ 従来の技術 密閉式アルカリ蓄電池は過充電特電池内で発生するガス
を電池内で吸収する構成を採用している。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improving the discharging performance of sealed alkaline storage batteries. [Conventional technology] Sealed alkaline storage batteries do not allow gas generated in overcharged cells to be discharged into the battery. The system uses a structure that absorbs water.

すなわち、正極容量に対し、負極容量を過剰に設け、過
充電時に正極で発生する酸素ガスを、負極活物質に環元
させる方法である。
That is, this is a method in which the negative electrode capacity is provided in excess of the positive electrode capacity, and oxygen gas generated at the positive electrode during overcharging is converted into a negative electrode active material.

しかし急速充電を行なった場合、充電電流が増加するた
めに、それに対応して、充電完了後正極よシ発生する酸
素ガス量が増大する結果、電池内圧が上昇して、電池の
特性を損うことがある。この対策として従来電解液量を
規制してセパレータや、電解液層の気孔部分を増し、酸
素ガスをより多く正極より負極へ透過させ、電池内圧の
上昇を抑制していた。
However, when rapid charging is performed, the charging current increases, and the amount of oxygen gas generated from the positive electrode increases accordingly after charging is completed, resulting in an increase in battery internal pressure, which impairs battery characteristics. Sometimes. Conventionally, as a countermeasure to this problem, the amount of electrolyte was regulated and the number of pores in the separator and electrolyte layer was increased to allow more oxygen gas to permeate from the positive electrode to the negative electrode, thereby suppressing the increase in battery internal pressure.

発明が解決しようとする課題 しかし、こうした従来の方法、すなわち電解液量を規制
して急速充電性能を改善する方法では電極中の電解液が
不足して、放電時の電極反応が円滑に進行せず、放電電
圧が低下する問題があった。
Problems to be Solved by the Invention However, with these conventional methods, that is, methods of improving rapid charging performance by regulating the amount of electrolyte, there is a shortage of electrolyte in the electrode, making it difficult for the electrode reaction to proceed smoothly during discharge. First, there was a problem that the discharge voltage decreased.

課題を解決するための手段 本発明は上記の問題を解決するものであり、電極活物質
を保持し、かつ集電を行っている三次元構造の多孔体を
構成する金層骨格の表面層に平均粒径5μm以下の無数
の細孔を設けたものである。
Means for Solving the Problems The present invention solves the above-mentioned problems. It has countless pores with an average particle diameter of 5 μm or less.

作用 前記の細孔を設けることにより、多孔体内部およびその
表面に電解液が侵入し、保持される。このため電解液量
をその相当量だけ増加させても従来通りの急速充電が可
能で放電特性も長期に優れることとなる。つまり、増加
金せた電解液は電極の多孔基板の表面にのみ保持され、
充放電サイクルの進行につれて起きる電極の膨張に起因
する電極の電解液不足が前記した多孔基板表面の電解液
で補なわれることにより充放電特性の劣化が抑制される
Effect: By providing the above-mentioned pores, the electrolyte enters the inside of the porous body and its surface and is retained therein. Therefore, even if the amount of electrolyte is increased by a corresponding amount, rapid charging as before is possible and the discharge characteristics are excellent over a long period of time. In other words, the increased gold electrolyte is retained only on the surface of the porous substrate of the electrode,
Deterioration of charge and discharge characteristics is suppressed by supplementing the electrolyte solution on the surface of the porous substrate to compensate for the shortage of electrolyte in the electrode due to expansion of the electrode as the charge/discharge cycle progresses.

実施例 以下本発明の詳細な説明する。三次元構造の多孔体とし
て市販の発泡状ニッケル基体を用い、以下の手順にて単
玉型公称容量50011Ahの密閉式アルカリ蓄電池を
作成した。
EXAMPLES The present invention will be described in detail below. Using a commercially available foamed nickel substrate as a porous body with a three-dimensional structure, a single-cell sealed alkaline storage battery with a nominal capacity of 50,011 Ah was created in the following manner.

まず発泡状ニッケル基体(以後基体と呼ぶ)1に真空中
でアルミニウム2を体積比で1 /40 。
First, aluminum 2 was added to a foamed nickel substrate (hereinafter referred to as the substrate) 1 in a vacuum at a volume ratio of 1/40.

1/20.115 、4/s 、9/10に相当する量
を蒸着し基体b〜、fを作成した。なお、蒸着処理を行
なわなかった基体をaとする。
Amounts corresponding to 1/20.115, 4/s, and 9/10 were deposited to create substrates b to f. Note that the substrate that was not subjected to the vapor deposition treatment is designated as a.

基体b−fは蒸着したアルミニウムを、ニッケル基体中
へ分散させるために不活性ガス雰囲気中で1000℃に
て30分間焼成した。これ等基体IL % fに対し活
物質として水素吸蔵合金粉末3を充填し、加圧成形後、
定寸に切断して厚さ0.5rrrIn、寸法39111
111X801111111公称容量800mムho負
極g−1を得た。
Substrates b-f were fired at 1000° C. for 30 minutes in an inert gas atmosphere to disperse the deposited aluminum into the nickel substrate. These substrates IL % f are filled with hydrogen storage alloy powder 3 as an active material, and after pressure molding,
Cut to size, thickness 0.5rrrIn, size 39111
A 111×801111111 negative electrode g-1 with a nominal capacity of 800 mm was obtained.

つぎに、同様の基体に水酸化ニッケル粉末を充填し、加
圧成形後に、定寸に切断して厚さ0.6 ran寸−法
39mX56m、公称容量500mAhの正極mを得た
。なお電極の長辺端部にはニッケルリードを溶接し、集
電端子とした。
Next, the same substrate was filled with nickel hydroxide powder, and after being pressure-molded, it was cut into a fixed size to obtain a positive electrode m having a thickness of 0.6 ran, dimensions of 39 m x 56 m, and a nominal capacity of 500 mAh. Note that a nickel lead was welded to the long side end of the electrode to serve as a current collector terminal.

次に前述のgの負極2枚を用意し、厚さo、2rrrI
n寸法40 X 150MMのポリプロピレンセパレー
タ2枚、正極m2枚を用いて2個の渦巻状の電極群を構
成し単3型金属ケースに挿入後、電解液である8Mの苛
性カリ水溶液を1つの群に2.0m/、いま一方の群に
2.2−注液して封口板を取り付けて封口し電池n、o
を得た。また負極h〜lを各々1枚づつ用意し、前記と
同じ正極及びセパレータを用いて渦巻状の電極群に構成
し、同様に8Mの苛性カリ水溶液を2.2−づつ注液封
口し電池p〜tを得た。これ等の電池を20”(、にて
充電電流soomムで1.5時間充電した後に5001
+1Aで放電し、電池放電電圧を測定した。さらに同じ
条件で充放電を30サイクル繰シかえし電池の安全弁の
作動を確認した。下表に1サイクル目の放電中間電圧の
値と弁作動の有無を示す。
Next, prepare two negative electrodes of the above g, thickness o, 2rrrI
Two spiral electrode groups were constructed using two polypropylene separators with n dimensions of 40 x 150 mm and two positive electrodes, and after inserting them into an AA metal case, an 8M caustic potassium aqueous solution as an electrolyte was added to one group. 2.0m/, now inject 2.2-liquid into one group and attach a sealing plate to seal the batteries n, o.
I got it. In addition, one each of negative electrodes h to l was prepared, and formed into a spiral electrode group using the same positive electrode and separator as above, and similarly, 8M caustic potassium aqueous solution was injected in 2.2-hour portions and sealed, and batteries p to I got t. After charging these batteries for 1.5 hours at a charging current of 20",
The battery was discharged at +1A and the battery discharge voltage was measured. Furthermore, the battery was repeatedly charged and discharged for 30 cycles under the same conditions, and the operation of the battery's safety valve was confirmed. The table below shows the value of the discharge intermediate voltage in the first cycle and the presence or absence of valve operation.

(以下余白) 以上の結果より、負極基体中にアルミニウムを1 /2
0〜415 マOl %添加した場合はo〜1/40v
ol %添加したものに比べ、電池内圧が低く、弁作動
をしていない。またアルミニウムを添加せず、電解液を
2.2−より2.0−へ減少させたものは、弁作動は生
じなかったが放電電圧の低下が見られた。この様に基体
中にアルミニウムを添加したものは電池組立後電解液中
へアルミニウムが溶出し、細孔からなる保液部分が形成
され、この細孔部分に電解液が保持される。従ってセパ
レータの保液量は増大せずセパレータ中に気孔が生じて
ガフの透過を容易としたため弁作動を防止することが出
来た。またアルミニウムを9/10’IO1%添加した
ものは放電電圧が低く分解調査を行なったところ、負極
基体が崩れていた。これは添加量が多過ぎ基体強度が低
下したためである。以上の様にアルミニウムの添加は1
/2o〜415マOE%程度が好ましい。なお本実施例
では、ニッケル・水素蓄電池の負極ニッケル基体にアル
ミニウムを添加した例を示したが電池系としてはニッケ
ルカドミウム電池など他の電池系でも良く、また、添加
については負極に限らず正極基体にも効果があシ、添加
物もアルミニウムに限らず、他のアルカリ金属、アルカ
リ土類金属、およびその塩類であっても良好な効果があ
る。また本実施例では、基体へのアルミニウムの配合を
真空蒸着と熱処理で行なっているが真空蒸着のみや他の
方法としてイオンスパッタ法、ニッケルーアルミニウム
合金蒸着法でも効果がある。
(Left below) From the above results, we found that 1/2 of aluminum was added to the negative electrode substrate.
0~415 MaOl % o~1/40v when added
The internal pressure of the battery was lower than that of the battery with 0.1% added, and the valve did not operate. In addition, when aluminum was not added and the electrolyte was reduced from 2.2 to 2.0, no valve operation occurred, but a decrease in discharge voltage was observed. In the case where aluminum is added to the base in this way, the aluminum dissolves into the electrolyte after the battery is assembled, forming a liquid-retaining portion consisting of pores, in which the electrolyte is retained. Therefore, the amount of liquid retained in the separator did not increase, and pores were formed in the separator to facilitate the passage of the gaff, thereby preventing valve operation. In addition, when 9/10'IO 1% aluminum was added, the discharge voltage was low and a disassembly investigation was conducted to find that the negative electrode substrate had collapsed. This is because the addition amount was too large and the base strength decreased. As mentioned above, the addition of aluminum is 1
/2o~415ma OE% is preferable. Although this example shows an example in which aluminum is added to the negative electrode nickel base of a nickel-metal hydride storage battery, other battery systems such as nickel-cadmium batteries may also be used, and the addition is not limited to the negative electrode but can also be applied to the positive electrode base. The additives are not limited to aluminum, but other alkali metals, alkaline earth metals, and their salts also have good effects. Further, in this embodiment, aluminum is blended into the substrate by vacuum evaporation and heat treatment, but vacuum evaporation alone or other methods such as ion sputtering or nickel-aluminum alloy evaporation are also effective.

発明の効果 以上の様に本発明によれば、優れた高率放電性能を有す
る密閉式アルカリ蓄電池を提供出来る。
Effects of the Invention As described above, according to the present invention, a sealed alkaline storage battery having excellent high rate discharge performance can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよびb−fは従来例と本発明の三次元構造多
孔体の全体図ならびに断面の部分拡大図、1′@ 第2図枠これらの多孔体に水素吸蔵合金を充填しL) た負極の全体図および部分拡大図、第3図授電池とし充
放電を行なった後分解して得られた従来例と本発明によ
る負極の全体図および部分拡大図、s 第4図に本実施例1により構成した電池の構造図である
。 1・・・・・・ニッケル基体、2・・・・・・ニッケル
アルミニウム合金。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第3
図 第4FA 4−m−うオー二−ノケ/L禾俸 5−一一正4を 6−−−セ八′L−ダ 手続補正書(方式) 平成2年9月70日
Figures 1 a and b-f are general views and partially enlarged cross-sectional views of three-dimensional porous bodies of the conventional example and the present invention, 1' @ Figure 2 frame These porous bodies are filled with a hydrogen storage alloy L) An overall view and a partially enlarged view of the negative electrode, Figure 3. An overall view and a partially enlarged view of the negative electrode according to the conventional example and the present invention obtained by disassembling the battery after charging and discharging. 1 is a structural diagram of a battery constructed according to Example 1. FIG. 1...Nickel base, 2...Nickel aluminum alloy. Name of agent: Patent attorney Shigetaka Awano and 1 other person No. 3
Figure No. 4FA 4-m-Uo-ni-noke/L-yen 5-11-sho 4 to 6--Se8'L-da Procedural Amendment (Method) September 70, 1990

Claims (7)

【特許請求の範囲】[Claims] (1)金属を主成分とする三次元構造の多孔体に活物質
を充填した電極を用いる密閉式アルカリ蓄電池であって
、該多孔体を構成する金属骨格の表面層付近には、平均
孔径6μm以下の無数の孔を設けたことを特徴とする密
閉式アルカリ蓄電池。
(1) A sealed alkaline storage battery using an electrode in which a porous body with a three-dimensional structure containing metal as the main component is filled with an active material, and near the surface layer of the metal skeleton constituting the porous body, an average pore size of 6 μm is formed. A sealed alkaline storage battery characterized by having numerous holes as shown below.
(2)三次元構造の多孔体の主成分が、ニッケルである
特許請求の範囲第1項記載の密閉式アルカリ蓄電池。
(2) The sealed alkaline storage battery according to claim 1, wherein the main component of the porous body having a three-dimensional structure is nickel.
(3)三次元構造の多孔体は、その骨格表面もしくは骨
格表面から内部に及ぶ部分に、あらかじめ主構成金属と
アルカリ金属、アルカリ土類金属およびそれ等の塩類か
ら選ばれた1種又は2種以上の物質の混合層を設け、つ
いでアルカリ性溶液により該物質の一部もしくは全部を
溶出させるものである密閉式アルカリ蓄電池の製造法。
(3) A porous body with a three-dimensional structure has a main constituent metal and one or two selected from alkali metals, alkaline earth metals, and their salts on the skeletal surface or the part extending from the skeletal surface to the inside. A method for manufacturing a sealed alkaline storage battery, which comprises providing a mixed layer of the above substances and then eluting some or all of the substances with an alkaline solution.
(4)三次元構造の多孔体に設ける混合層が、主として
ニッケルとアルミニウムからなる特許請求の範囲第3項
記載の密閉式アルカリ蓄電池の製造法。
(4) The method for manufacturing a sealed alkaline storage battery according to claim 3, wherein the mixed layer provided in the porous body having a three-dimensional structure mainly consists of nickel and aluminum.
(5)三次元構造の多孔体へ混合するアルミニウムの量
は、体積比でニッケルに対し4/6〜1/20である特
許請求の範囲第4項記載の密閉式アルカリ蓄電池の製造
法。
(5) The method for manufacturing a sealed alkaline storage battery according to claim 4, wherein the amount of aluminum mixed into the porous body having a three-dimensional structure is 4/6 to 1/20 of nickel by volume.
(6)三次元構造の多孔体の骨格表面層にアルカリ金属
、アルカリ土類金属のうち1種類もしくは2種類以上を
主成分とする金属もしくは合金の層をイオンスパッタ法
により形成した特許請求の範囲第3項記載の密閉式アル
カリ蓄電池の製造法。
(6) Claims in which a metal or alloy layer containing one or more of alkali metals and alkaline earth metals as a main component is formed on the skeletal surface layer of a porous body with a three-dimensional structure by ion sputtering. A method for manufacturing a sealed alkaline storage battery according to item 3.
(7)三次元構造の多孔体の骨格表面に、アルカリ金属
、アルカリ土類金属のうち1種類もしくは2種類以上を
主成分とする金属もしくは合金の層を真空蒸着法により
形成した特許請求の範囲第3項記載の密閉式アルカリ蓄
電池の製造法。
(7) Claims in which a metal or alloy layer containing one or more of alkali metals and alkaline earth metals as a main component is formed on the skeleton surface of a porous body with a three-dimensional structure by vacuum evaporation. A method for manufacturing a sealed alkaline storage battery according to item 3.
JP2140945A 1990-05-30 1990-05-30 Enclosed type alkaline battery and manufacture thereof Pending JPH0434857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2140945A JPH0434857A (en) 1990-05-30 1990-05-30 Enclosed type alkaline battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2140945A JPH0434857A (en) 1990-05-30 1990-05-30 Enclosed type alkaline battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0434857A true JPH0434857A (en) 1992-02-05

Family

ID=15280469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2140945A Pending JPH0434857A (en) 1990-05-30 1990-05-30 Enclosed type alkaline battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0434857A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031306A1 (en) * 1995-04-03 1996-10-10 Mitsubishi Materials Corporation Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery
JP2011009608A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor
JP2011009609A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031306A1 (en) * 1995-04-03 1996-10-10 Mitsubishi Materials Corporation Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery
US5848351A (en) * 1995-04-03 1998-12-08 Mitsubishi Materials Corporation Porous metallic material having high specific surface area, method of producing the same, porous metallic plate material and electrode for alkaline secondary battery
US6117592A (en) * 1995-04-03 2000-09-12 Mitsubishi Materials Corporation Porus metallic material having high specific surface area, method of producing the same, porus metallic plate material and electrode for alkaline secondary battery
JP2011009608A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor
JP2011009609A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor

Similar Documents

Publication Publication Date Title
US5077149A (en) Nickel/hydrogen storage battery and method of manufacturing the same
KR940011937B1 (en) Rechargeable battery and electrode used therein
JPH0434857A (en) Enclosed type alkaline battery and manufacture thereof
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS60109174A (en) Manufacture of hydrogen absorption electrode
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH01130467A (en) Hydrogen occlusive alloy electrode
JPH028419B2 (en)
JPH01161674A (en) Manufacture of alkaline secondary battery using hydrogen storage alloy
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JPH0562706A (en) Metal oxide-hydrogen storage battery and manufacture thereof
JPS62252072A (en) Manufacture of negative electrode for alkaline storage battery
JP3096464B2 (en) Nickel-hydrogen alkaline storage battery
JPH04163861A (en) Secondary battery with non-aqueous electrolyte
JPH05159799A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JPH06163071A (en) Sealed type nickel-hydrogen battery and its manufacture
JPS60130063A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JPS62154582A (en) Manufacture of sealed metal oxide-hydrogen storage battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPS6220258A (en) Sealed nickel-cadmium storage battery