JPH02112158A - Metal-hydrogen alkaline storage battery - Google Patents

Metal-hydrogen alkaline storage battery

Info

Publication number
JPH02112158A
JPH02112158A JP63263768A JP26376888A JPH02112158A JP H02112158 A JPH02112158 A JP H02112158A JP 63263768 A JP63263768 A JP 63263768A JP 26376888 A JP26376888 A JP 26376888A JP H02112158 A JPH02112158 A JP H02112158A
Authority
JP
Japan
Prior art keywords
battery
electrode
hydrogen storage
storage alloy
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63263768A
Other languages
Japanese (ja)
Inventor
Takanao Matsumoto
松本 孝直
Sanehiro Furukawa
古川 修弘
Kenji Inoue
健次 井上
Seiji Kameoka
亀岡 誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63263768A priority Critical patent/JPH02112158A/en
Publication of JPH02112158A publication Critical patent/JPH02112158A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance charge-discharge cycle performance and to increase high rate discharge performance after repeating charge-discharge cycles by increasing the amount of a binder in a hydrogen storage alloy layer on the surface of an electrode than its current collector side. CONSTITUTION:When an electrode is manufactured, the concentration of a binder in negative paste is decreased on the current collector side and that is increased on the electrode surface side so that the binder has concentration gradient in a hydrogen storage alloy layer. Movement of hydrogen storage alloy fine particles formed from current collector side to electrode surface side is retarded, and increase in binder concentration in the vicinity of a current collector can be retarded. Electric conductivity in the electrode is kept high, and high rate discharge performance after repeating charge discharge cycles is improved. Since the binder concentration on the surface of the electrode is high, coming off of hydrogen storage alloy powder existing on the electrode surface is retarded, and charge-discharge cycle performance is increased.

Description

【発明の詳細な説明】 、産」瞥−ト辺−利一用づ1順 本発明は、水素を吸蔵、放出することのできる水素吸蔵
合金を負極に備えた金属−水素アルカリ蓄電池に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal-hydrogen alkaline storage battery having a negative electrode equipped with a hydrogen storage alloy capable of storing and releasing hydrogen.

市Uンに子グ」支44I− 従来からよく用いられている蓄電池としてはニッケルー
カドミウム蓄電池の如きアルカリ蓄電池、あるいは鉛蓄
電池などがある。近年、これらの電池より軽量且つ高容
量で高エネルギー密度となる可能性のある、水素吸蔵合
金を用いてなる水素吸蔵電極を負極に備えた金属−水素
アルカリ蓄電池が注目されている。
Storage batteries that have been commonly used include alkaline storage batteries such as nickel-cadmium storage batteries, and lead storage batteries. In recent years, metal-hydrogen alkaline storage batteries, which have a negative electrode equipped with a hydrogen-absorbing electrode made of a hydrogen-absorbing alloy, have attracted attention because they are lighter, have higher capacity, and can have higher energy density than these batteries.

この種電池の負極に用いられている水素吸蔵合金として
は、例えば特公昭5!]−49671号公報に開示され
ているように、La N i sやその改良である三元
素系のL a N i a Co 、 L a N i
 aCu及びL a N i4.、 F e5.2など
の合金が知られており、これら水素吸蔵合金粉末と導電
材粉末との混合物を耐電解液性の粒子状結着剤によって
電極支持体に固着させて水素吸蔵電極とする方法(特公
昭57−30273号公報)などによって負極が製造さ
れている。具体的には、水素吸蔵合金粉末と結着剤とを
均一に混合し、集電体に圧着した構成となっている。
Examples of hydrogen storage alloys used in the negative electrode of this type of battery include the Special Publication No. 5! ]-49671, La Nis and its improved three-element system La Ni Co, La Ni
aCu and L a N i4. , F e5.2 and other alloys are known, and a mixture of these hydrogen storage alloy powders and conductive material powder is fixed to an electrode support using an electrolyte-resistant particulate binder to form a hydrogen storage electrode. A negative electrode is manufactured by the method (Japanese Patent Publication No. 57-30273). Specifically, a hydrogen storage alloy powder and a binder are uniformly mixed and pressed onto a current collector.

尚、上記合金の他にも、IL aO代わりにMm(ミソ
シュメタル)を用いた各種希土類系水素吸蔵合金も開発
されており、また正極としては、ニッケルーカドミウム
蓄電池に用いられる焼結式ニソケル極等が用いられてい
る。
In addition to the above-mentioned alloys, various rare earth hydrogen storage alloys have been developed that use Mm (Misoshmetal) instead of IL aO, and as positive electrodes, sintered Nisokel electrodes used in nickel-cadmium storage batteries, etc. is used.

が”しようとする 金属−水素アルカリ蓄電池では充放電により水素吸蔵合
金が微粒化する。ところが、上記従来の金属−水素アル
カリ蓄電池では、水素吸蔵合金層中の結着剤濃度が均一
であるため、上記微粒化した水素吸蔵合金粉末が電極内
部(集電体側)から電極表面方向に移動する。このため
、水素吸蔵合金粉末が負極から脱落して充放電ナイクル
特性か低下する。加えて、水素吸蔵合金粉末の移動によ
り水素吸蔵合金層の集電体側の結着剤の量が多くなるた
め、負極の電気抵抗が高くなり、充放電・リイクル経過
後の高率放電特性が低下するという課題を有していた。
However, in the conventional metal-hydrogen alkaline storage battery, the concentration of the binder in the hydrogen-absorbing alloy layer is uniform; The above-mentioned atomized hydrogen storage alloy powder moves from the inside of the electrode (current collector side) toward the electrode surface.As a result, the hydrogen storage alloy powder falls off from the negative electrode and the charge/discharge characteristics deteriorate.In addition, hydrogen storage As the amount of binder on the current collector side of the hydrogen storage alloy layer increases due to the movement of the alloy powder, the electrical resistance of the negative electrode increases and the high rate discharge characteristics after charging/discharging/recycling deteriorate. Was.

本発明は上記課題を考慮してなされたものであって、充
放電サイクル特性を向」ニさせると共に、充放電ザイク
ル経過後の高率放電特性の向1−を図りうる金属−水素
アルカリ蓄電池の提供を1」的とする。
The present invention has been made in consideration of the above-mentioned problems, and is a metal-hydrogen alkaline storage battery that can improve charge-discharge cycle characteristics and improve high-rate discharge characteristics after a charge-discharge cycle. The offer is targeted at 1.

騨1トし解裁−−t4−六1とΦ−f段本全本発明記目
的を達成するために、結着剤によって集電体表面6、二
水素吸蔵合金層が形成された負極と、金属酸化物よりな
る正極と、アルカリ電解液とを備えた金属−水素アルカ
リ蓄電池において、前記水素吸蔵合金層中の結着剤は、
前記集電体側より電極表面側に多(含有されていること
を特徴とする。
In order to achieve the purpose of this invention, a negative electrode with a current collector surface 6 formed with a binder, a dihydrogen storage alloy layer, and a metal In a metal-hydrogen alkaline storage battery comprising a positive electrode made of an oxide and an alkaline electrolyte, the binder in the hydrogen storage alloy layer is
It is characterized in that it is contained more on the electrode surface side than on the current collector side.

作−−−−−−用 従来の負極を用いた金属−水素アルカリ蓄電池を繰り返
し充放電した後、電池を分解して負極の分析及び観察を
行ったところ、負極を構成する水素吸蔵合金は微粉化が
進行し、負極板との結着が弱くなっていることがわかっ
た。そこで、この負極を水素吸蔵合金層の厚み方向に詳
細に検討したところ、微粉化した水素吸蔵合金粉末ば電
極表面部に主に分布していることか認められ、一方電極
内部(集電体側)は水素吸蔵合金粉末が少なくて電極ペ
ースト作製時に混合した結着剤が極めて多く存在してい
ることが認められた。また、電極内部の水素吸蔵合金と
、電極表面部の水素吸蔵合金との粒径及びX線回折を比
較すると、電極内部の水素吸蔵合金は微粒化が遅く、且
つ組成変化も少ないことが確認され、これにより充放電
反応が余り進んでいないことが判る。これに対して、電
極表面部では充放電反応による利用率が高くて水素吸蔵
合金の微粉化が進行し、且つ組成変化も大きいことが確
認され、これにより充放電反応が進んでいることが判る
。これは、充放電反応により微粉化した水素吸蔵合金が
、電気化学的反応性の高い電極表面に移動し、反応した
ためと思われる。
After repeatedly charging and discharging a metal-hydrogen alkaline storage battery using a conventional negative electrode, the battery was disassembled and the negative electrode was analyzed and observed. It was found that the bonding with the negative electrode plate was becoming weaker. Therefore, when this negative electrode was examined in detail in the thickness direction of the hydrogen storage alloy layer, it was found that the pulverized hydrogen storage alloy powder was mainly distributed on the electrode surface, while the inside of the electrode (current collector side) It was observed that the hydrogen storage alloy powder was small and the binder mixed during electrode paste production was extremely large. Furthermore, by comparing the particle size and X-ray diffraction of the hydrogen storage alloy inside the electrode and the hydrogen storage alloy on the surface of the electrode, it was confirmed that the hydrogen storage alloy inside the electrode is slow to atomize and has little change in composition. , which shows that the charge/discharge reaction is not progressing very much. On the other hand, it was confirmed that on the surface of the electrode, the utilization rate due to the charge/discharge reaction is high, the hydrogen storage alloy is pulverized, and the composition change is also large, indicating that the charge/discharge reaction is progressing. . This is thought to be because the hydrogen storage alloy, which was pulverized by the charge/discharge reaction, moved to the highly electrochemically reactive electrode surface and reacted with it.

ところで、本発明の如く電極作製時に集電体側の負極ペ
ーストの結着剤濃度を低くすると共に電極表面側の結着
剤濃度を高くして、水素吸蔵合金層中の結着剤濃度に勾
配をもたせると、微粒化した水素吸蔵合金粉末が集電体
側から電極表面側に移動するのを抑制し、集電体近傍で
結着剤濃度が高くなるを抑制することができる。したが
って、電極の電気伝導性が保たれ、充放電サイクル経過
後の高率放電特性が改良される。更に、電極表面側の結
着剤流度が高いので、電極表面側に存在する水素吸蔵合
金粉末の脱落が抑制され、充放電サイクル特性を向上さ
せることができる。加えて、電極表面側の結着剤濃度が
増加すれば水素吸蔵合金粒子と電解液とのぬれ性が低下
する。したがって、合金粒子と酸素ガスとの接触面が増
加するので、酸素ガスの消費効率が高まり、これによっ
て、酸素ガス吸収効率を向上させることができる。
By the way, as in the present invention, when manufacturing the electrode, the concentration of the binder in the negative electrode paste on the current collector side is lowered, and the concentration of the binder on the electrode surface side is increased, thereby creating a gradient in the concentration of the binder in the hydrogen storage alloy layer. By holding the hydrogen storage alloy powder, it is possible to suppress the movement of the finely divided hydrogen storage alloy powder from the current collector side to the electrode surface side, and to suppress the binder concentration from increasing near the current collector. Therefore, the electrical conductivity of the electrode is maintained, and the high rate discharge characteristics after the charge/discharge cycle are improved. Furthermore, since the flow rate of the binder on the electrode surface side is high, the hydrogen storage alloy powder present on the electrode surface side is suppressed from falling off, and the charge/discharge cycle characteristics can be improved. In addition, if the binder concentration on the electrode surface side increases, the wettability between the hydrogen storage alloy particles and the electrolytic solution decreases. Therefore, since the contact surface between the alloy particles and oxygen gas increases, the consumption efficiency of oxygen gas increases, and thereby the oxygen gas absorption efficiency can be improved.

第−LlfL例− 本発明の第1実施例を、第1図及び第2図に基ついて、
以下に説明する。
-LlfL Example- The first embodiment of the present invention is based on FIGS. 1 and 2.
This will be explained below.

〔実施例〕〔Example〕

水素吸蔵合金としての1、a N i Sを粉砕して微
粒化したものを95重量部に、結着剤としてPTFE(
フン素樹脂)のティスパージョンを5重量部添加した後
、これらを均一に混合して」二記PTFEを繊維化する
。次に、上記混合物に水を添加してペーストを作成した
後、ニッケルメッキが施されたパンチングメタル集電体
の両面に上記ペーストを圧着させ、ペーストの乾燥を行
う。次いで、電極をPTFEのデイスパージョン中に浸
漬した後、直ちに引き上げて乾燥さゼる。これにより、
集電体側の結着剤濃度が低く、電極表面側の結着剤濃度
が高いような濃度勾配を有する負極が作製される。しか
る後、上記負極と、公知の焼結式ニッケル正極とを耐ア
ルカリ性を有するセパレータと共に巻回して渦巻電極体
を作製する。この後、電池外装缶に上記渦巻電極体を挿
入した後、アルカリ電解液を注入し、更に電池外装缶の
封r1を11って、公称容量1200mAHの金属−水
素アルカリ蓄電池を作製した。
95 parts by weight of pulverized and atomized 1,aNiS as a hydrogen storage alloy, and PTFE (
After adding 5 parts by weight of Tispersion (fluorocarbon resin), these were mixed uniformly to form the PTFE into fibers. Next, water is added to the above mixture to create a paste, and then the above paste is pressure-bonded to both sides of a nickel-plated punched metal current collector, and the paste is dried. Next, the electrode is immersed in the PTFE dispersion and immediately pulled out to dry. This results in
A negative electrode having a concentration gradient such that the concentration of the binder on the current collector side is low and the concentration of the binder on the electrode surface side is high is produced. Thereafter, the negative electrode and a known sintered nickel positive electrode are wound together with an alkali-resistant separator to produce a spiral electrode body. Thereafter, after inserting the spiral electrode body into the battery outer can, an alkaline electrolyte was injected, and the battery outer can was further sealed 11 to produce a metal-hydrogen alkaline storage battery with a nominal capacity of 1200 mAh.

このようにして作製した電池を、以下(A)電池と称す
る。
The battery thus produced is hereinafter referred to as the (A) battery.

〔比較例〕[Comparative example]

電極をP TF Eのデイスパージョン中に浸漬するこ
となく負極を作製する他は、」−記実施例と同様にして
電池を作製した。
A battery was produced in the same manner as in Example 2, except that the negative electrode was produced without immersing the electrode in the PTFE dispersion.

このようにして作製した電池を、以下(X)電池と称す
る。
The battery thus produced is hereinafter referred to as the (X) battery.

〔実験1〕 上記本発明の(A)電池と比較例の(X)電池とのサイ
クル試験を行ったので、その結果を第1図に示す。尚、
充放電条件は、120mAで16時間充電し、240m
Aで電池電圧が1.0■になるまで放電するという条件
で行った。
[Experiment 1] A cycle test was conducted on the battery (A) of the present invention and the battery (X) of the comparative example, and the results are shown in FIG. still,
The charging and discharging conditions were: 16 hours of charging at 120mA, 240m
The test was carried out under the condition that the battery was discharged at A until the battery voltage reached 1.0 .

第1図より明らかなように、比較例の(X)電池では約
100サイクルで電池容量が70%まで低下するのに対
して、本発明の(A)電池では200サイクル以」−に
ならないと電池容量が70%まで低下しないことが認め
られる。これにより、本発明の(A)電池は比較例の(
X)電池に比べてザイクル特性が飛躍的に向上したこと
が伺える。
As is clear from FIG. 1, the battery capacity of the battery (X) of the comparative example decreases to 70% after approximately 100 cycles, whereas the battery capacity of the battery (A) of the present invention does not decrease after 200 cycles. It is observed that the battery capacity does not decrease to 70%. As a result, the battery (A) of the present invention is different from the battery (A) of the comparative example.
X) It can be seen that the cycle characteristics have been dramatically improved compared to batteries.

ところで、上記充放電サイクル経過中の(A)電池と(
X)電池を分解したところ、比較例の(X)電池では微
粒化した水素吸蔵合金粉末が負極から脱落しているのが
観察されたが、本発明の(A)電池では殆ど観察されな
かった。
By the way, (A) battery during the charge/discharge cycle described above and (
When the X) battery was disassembled, it was observed that atomized hydrogen storage alloy powder had fallen from the negative electrode in the battery (X) of the comparative example, but almost none was observed in the battery (A) of the present invention. .

また、負極の水素吸蔵合金層の厚み方向で(A)電池と
(X)電池とを観察したところ、(A)電池では略均−
に水素吸蔵合金粉末が存在していることが認められたが
、(X)電池では集電体側の水素吸蔵合金層が白っぽく
なっていることが認められた。これにより、(X)電池
では集電体側の水素吸蔵合金層はPTFE濃度が高く、
水素吸蔵合金粉末が減少していることが伺える。
In addition, when the (A) battery and the (X) battery were observed in the thickness direction of the hydrogen storage alloy layer of the negative electrode, it was found that the (A) battery had approximately
The presence of hydrogen-absorbing alloy powder was observed in the (X) battery, but it was observed that the hydrogen-absorbing alloy layer on the current collector side was whitish. As a result, in the (X) battery, the hydrogen storage alloy layer on the current collector side has a high PTFE concentration,
It can be seen that the amount of hydrogen storage alloy powder is decreasing.

ここで、上記の如く本発明の(A)電池では水素吸蔵合
金粉末が負極内に均一に存在しているのは、負極作製時
に、結着剤が集電体側より電極表面側に多く含有するよ
うにしているため、反応14゜の良い電極表面の水素吸
蔵合金を固定する能力が向上すると共に、水素吸蔵合金
の移動を抑制しうろことに起因すると考えられる。
Here, as mentioned above, in the battery (A) of the present invention, the hydrogen storage alloy powder is uniformly present in the negative electrode because the binder is contained more on the electrode surface side than on the current collector side at the time of negative electrode production. This is thought to be due to the fact that the ability to fix the hydrogen storage alloy on the electrode surface, which has a good response of 14°, is improved and the movement of the hydrogen storage alloy is suppressed.

〔実験■〕[Experiment■]

本発明の(A)電池と比較例の(X)電池とを5回、及
び50回充電した後、2.4Aで放電したときの高率放
電特性を調べたので、その結果を第2図に示す。
After charging the battery (A) of the present invention and the battery (X) of the comparative example 5 times and 50 times, the high rate discharge characteristics were investigated when discharging at 2.4A. The results are shown in Figure 2. Shown below.

第2図より明らかなように、5ナイクル後では(A)電
池と(X)電池とは路間等である。しかし、50サイク
ル後では(A)電池は(X)電池より作動電圧が高く、
充放電サイクル経過後も優れた高率放電特性を示してい
ることが認められる。
As is clear from FIG. 2, after 5 cycles, the (A) battery and the (X) battery are in the middle of the road. However, after 50 cycles, the (A) battery has a higher operating voltage than the (X) battery;
It is recognized that excellent high rate discharge characteristics are exhibited even after the charge/discharge cycle has passed.

第4−実箕例 本発明の第2実施例を、第3図に基づいて、以下に説明
する。
Fourth Practical Example A second example of the present invention will be described below with reference to FIG.

〔実施例〕〔Example〕

パンチングメタル集重体の両面に前記ペーストを圧着さ
ゼ、ペーストを乾燥させた後、L a N i5の微粉
末90重量部に、結着剤としてPTFEのディスバージ
ョンを10重量部添加することにより得たP T Fr
 E 濃度の高いペーストを圧着させる他は、上記第1
実施例の実施例と同様にして電池を作製した。
After pressing the paste onto both sides of the punched metal aggregate and drying the paste, 10 parts by weight of PTFE dispersion as a binder was added to 90 parts by weight of L a Ni5 fine powder. P T Fr
E Except for press-bonding the highly concentrated paste, the above 1st
A battery was produced in the same manner as in the example.

このようにして作製した電池を、以下(B)電池と称す
る。
The battery thus produced is hereinafter referred to as the (B) battery.

〔比較例〕[Comparative example]

比較例としては前記(X)電池を用いた。 As a comparative example, the battery (X) was used.

〔実験〕〔experiment〕

上記本発明の(B)電池と比較例の(X)電池との50
す゛イクル後の高率放電特性を副べたので、その結果を
第3図に示す。尚、実験条件は、上記第1実施例の実験
lと同様の条件で行った。
50% of the battery (B) of the present invention and the battery (X) of the comparative example.
The high rate discharge characteristics after cycling were investigated and the results are shown in FIG. The experimental conditions were the same as in Experiment 1 of the first example.

第3図より明らかなように、本発明の(B)電池は比較
例の(X)電池より作動電圧が高く、充放電サイクル経
過後も優れた高率放電特性を示していることが認められ
る。
As is clear from Figure 3, it is recognized that the (B) battery of the present invention has a higher operating voltage than the comparative example (X) battery, and exhibits excellent high rate discharge characteristics even after the charge/discharge cycle has elapsed. .

ところで、上記(B)電池を分解して観察したところ、
前記(A)電池と同様、水素吸蔵合金層では水素吸蔵合
金粉末が均一に分散しており、且つ電気伝導度も良好で
あることが認、められた。
By the way, when I disassembled and observed the battery (B) above, I found that
As with the battery (A), it was found that the hydrogen storage alloy powder was uniformly dispersed in the hydrogen storage alloy layer and that the electrical conductivity was also good.

第」J01跡 本発明の第3実施例を、第4図に基づいて、以下に説明
する。
A third embodiment of the present invention will be described below with reference to FIG. 4.

〔実施例〕〔Example〕

前記第1実施例の実施例と同様にしてペーストを作成し
た後、ニッケルラス網から成る集電体の片面にペースト
を圧着させて極板を作製する。次に、この極板の集電体
側表面にPTFEのディスバージョンを圧縮空気を用い
て発泡させて負極を作製した。このようにして負極を作
製する他は、前記第1実施例の実施例と同様にして電池
を作製した。
After preparing a paste in the same manner as in the first embodiment, the paste is pressed onto one side of a current collector made of a nickel lath mesh to prepare an electrode plate. Next, a negative electrode was produced by foaming PTFE dispersion on the current collector side surface of this electrode plate using compressed air. A battery was produced in the same manner as in the first embodiment except that the negative electrode was produced in this manner.

このようにして作製した電池を、以下(C)電池と称す
る。
The battery thus produced is hereinafter referred to as the (C) battery.

〔比較例1〕 電極表面にPTFEのデイスパージョンを発泡させて塗
着させる以外は、上記実施例と同様にして電池を作製し
た。
[Comparative Example 1] A battery was produced in the same manner as in the above example except that a PTFE dispersion was foamed and applied to the electrode surface.

このようにして作製した電池を、以下(Y)電池と称す
る。
The battery thus produced is hereinafter referred to as a (Y) battery.

〔比較例■〕[Comparative example ■]

比較例■としては前記(X)電池を用いた。 As Comparative Example (2), the battery (X) was used.

〔実験〕〔experiment〕

上記本発明の(B)電池と比較例の(X)電池(Y)電
池との50サイクル後の高率放電特性を調べたので、そ
の結果を第4図に示す。尚、実験条件は、−上記第1実
施例の実験11と同様の条件で行った。
The high rate discharge characteristics of the battery (B) of the present invention and the battery (X) and battery (Y) of the comparative example were examined after 50 cycles, and the results are shown in FIG. The experimental conditions were the same as in Experiment 11 of the first example.

第4図より明らかなように、本発明の(C)電池は比較
例の(X)電池、(Y)電池より作動型圧が高く、充放
電サイクル経過後も優れた高率放電特性を示しているこ
とが認められる。
As is clear from FIG. 4, the (C) battery of the present invention has a higher operating pressure than the comparative examples (X) battery and (Y) battery, and exhibits excellent high rate discharge characteristics even after the charge/discharge cycle. It is recognized that

ところで、上記(C)電池と(Y)電池とを分解して観
察したところ、(Y)電池の水素吸蔵合金層における集
電体近傍では水素吸蔵合金粉末が少なくなっているのに
対して、(C)電池では水素吸蔵合金が均一に分散して
いることが認められる。また、(Y)電池に比べて(C
)電池では、電気伝導度が向上していることも認められ
た。
By the way, when we disassembled and observed the (C) battery and (Y) battery, we found that there was less hydrogen storage alloy powder near the current collector in the hydrogen storage alloy layer of the (Y) battery. (C) In the battery, it is observed that the hydrogen storage alloy is uniformly dispersed. Also, compared to (Y) battery, (C
) It was also observed that the electrical conductivity of the battery was improved.

上記第1〜第3実施例より、負極の水素吸蔵合金層中の
結着剤濃度を集電体側より電極表面側を高くすれば、充
放電サイクル特性と充放電サイクル経過後の高率放電特
性とを向上させうろことがわかったが、同様の効果が他
の電池系にソケルカドミウム電池、ニッケルー亜鉛電池
、ニッケルー鉄電池)でもあるかをG’fl tp、す
るために、同様の方法で電池を作製した。しかしながら
、何れの電池系においても顕著な効果がみられない。し
たがって、本発明は金属−水素アルカリ蓄電池において
特に顕著に認められ、金属−水素アルカリ蓄電池固有の
ものであることが伺える。これは、上記他の電池系では
充放電を繰り返し行った場合でも活物質は微粒化しない
ということに起因している。更に、充放電サイクル経過
後に他の電池系の負極を観察したところ、負極中に活物
質が均一に分布しており、金属−水素アルカリ蓄電池に
みられるような集電体側の結着剤濃度が高くなるような
現象が見られなかったことからも明らかである。
From the first to third embodiments above, if the binder concentration in the hydrogen storage alloy layer of the negative electrode is made higher on the electrode surface side than on the current collector side, the charge/discharge cycle characteristics and the high rate discharge characteristics after the charge/discharge cycle have passed. However, in order to find out whether similar effects can be achieved with other battery systems (such as Soquel cadmium batteries, nickel-zinc batteries, and nickel-iron batteries), we will use a similar method to A battery was created. However, no significant effect was observed in any of the battery systems. Therefore, it can be seen that the present invention is particularly noticeable in metal-hydrogen alkaline storage batteries, and is unique to metal-hydrogen alkaline storage batteries. This is due to the fact that in the other battery systems mentioned above, the active material does not become atomized even after repeated charging and discharging. Furthermore, when we observed the negative electrodes of other battery systems after the charge/discharge cycle had elapsed, we found that the active material was uniformly distributed in the negative electrode, and the concentration of the binder on the current collector side was lower than that seen in metal-hydrogen alkaline storage batteries. This is clear from the fact that no phenomenon of increasing the value was observed.

尚、上記第1〜第3実施例では、水素吸蔵合金としてL
aNi5を用い、結着剤としてPTFEを用いたが、こ
れに限定するものではなく、その他いかなる水素吸蔵合
金及び結着剤であっても上記と同様の効果を奏すること
は勿論である。
In addition, in the above-mentioned first to third embodiments, L is used as the hydrogen storage alloy.
Although aNi5 was used and PTFE was used as the binder, the present invention is not limited thereto, and it goes without saying that any other hydrogen storage alloy and binder may have the same effect as described above.

光射■沫来 以上説明したように本発明によれば、微粒化した水素吸
蔵合金粉末が集電体側から電極表面側に移動するのを抑
制することかできるので、集電体近傍で結着剤の濃度が
増加するのを抑制することができる。したがって、電極
の電気伝導性が保たれ、充放電ザイクル経過後の高率放
電特性が改良4゜ される。更に、電極表面側の結着剤濃度が高いので、電
極表面側に存在する水素吸蔵合金粉末の脱落も抑制され
、充放電ザイクル特性を向」ニさせることができる。加
えて、水素吸蔵合金粒子と酸素ガスとの接触面が増加す
るので、酸素ガスの消費効率が高まり、これによって、
酸素ガス吸収効率を向上させることができる。
Light radiation As explained above, according to the present invention, it is possible to suppress the movement of the atomized hydrogen storage alloy powder from the current collector side to the electrode surface side, so that it can be prevented from binding near the current collector. It is possible to suppress the concentration of the agent from increasing. Therefore, the electrical conductivity of the electrode is maintained, and the high rate discharge characteristics after a charge/discharge cycle are improved by 4°. Furthermore, since the binder concentration on the electrode surface side is high, the hydrogen storage alloy powder present on the electrode surface side is suppressed from falling off, and the charge-discharge cycle characteristics can be improved. In addition, since the contact surface between the hydrogen storage alloy particles and oxygen gas increases, the consumption efficiency of oxygen gas increases, and thereby,
Oxygen gas absorption efficiency can be improved.

これらのことから、金属−水素アルカリ晶電池の性能を
飛躍的に向−ヒさせることかできるという効果を奏する
These results have the effect of dramatically improving the performance of metal-hydrogen alkaline crystal batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1回は本発明の(A>電池と比較例の(X)電池とに
おけるザイクル特性を示すグラフ、第2図は(A)電池
と(X)電池とにおりる5ナイクル後、50ザイクル後
の高率放電特性を示すグラフ、第3図は本発明の(B)
電池と比較例の(X)電池とにおける50サイクル後の
高率放電特性を示すグラフ、第4図は本発明の(C)電
池と比較例の(X)電池、 (Y〉電池とにお+jる5
0サイクル後の高率放電特性を示すグラフである。 41幻1−(ト)〉
The first is a graph showing the cycle characteristics of the (A> battery of the present invention and the (X) battery of the comparative example), and the second is a graph showing the cycle characteristics of the (A) battery and the (X) battery after 5 cycles. A graph showing the subsequent high rate discharge characteristics, FIG. 3 is (B) of the present invention.
Figure 4 is a graph showing the high rate discharge characteristics after 50 cycles of the battery and the comparative example (X) battery, and the comparison example (X) battery and the comparative example battery (Y). +jru5
It is a graph showing high rate discharge characteristics after 0 cycles. 41 Vision 1-(G)〉

Claims (1)

【特許請求の範囲】[Claims] (1)結着剤によって集電体表面に水素吸蔵合金層が形
成された負極と、金属酸化物よりなる正極と、アルカリ
電解液とを備えた金属−水素アルカリ蓄電池において、 前記水素吸蔵合金層中の結着剤は、前記集電体側より電
極表面側に多く含有されていることを特徴とする金属−
水素アルカリ蓄電池。
(1) In a metal-hydrogen alkaline storage battery comprising a negative electrode in which a hydrogen storage alloy layer is formed on the surface of a current collector with a binder, a positive electrode made of a metal oxide, and an alkaline electrolyte, the hydrogen storage alloy layer A metal material characterized in that the binder contained therein is contained in a larger amount on the electrode surface side than on the current collector side.
Hydrogen alkaline storage battery.
JP63263768A 1988-10-19 1988-10-19 Metal-hydrogen alkaline storage battery Pending JPH02112158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63263768A JPH02112158A (en) 1988-10-19 1988-10-19 Metal-hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63263768A JPH02112158A (en) 1988-10-19 1988-10-19 Metal-hydrogen alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH02112158A true JPH02112158A (en) 1990-04-24

Family

ID=17394015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63263768A Pending JPH02112158A (en) 1988-10-19 1988-10-19 Metal-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH02112158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967677A1 (en) * 1997-12-15 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139255A (en) * 1985-12-11 1987-06-22 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorbing electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139255A (en) * 1985-12-11 1987-06-22 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorbing electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967677A1 (en) * 1997-12-15 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery
EP0967677A4 (en) * 1997-12-15 2007-02-21 Mitsubishi Electric Corp Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US5077149A (en) Nickel/hydrogen storage battery and method of manufacturing the same
JP5119577B2 (en) Nickel metal hydride battery
EP0817291A2 (en) Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery
JPS5937667A (en) Metal oxide-hydrogen battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPH02112158A (en) Metal-hydrogen alkaline storage battery
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JP3429684B2 (en) Hydrogen storage electrode
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3384109B2 (en) Nickel plate
JP2854920B2 (en) Nickel-metal hydride battery
JP3267156B2 (en) Nickel hydride rechargeable battery
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPH0642374B2 (en) Metal-hydrogen alkaline storage battery
JPH11238507A (en) Alkaline storage battery
JPS6097560A (en) Sealed type alkaline storage battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery