JP3099356B2 - Battery forming method for sealed lead-acid batteries - Google Patents

Battery forming method for sealed lead-acid batteries

Info

Publication number
JP3099356B2
JP3099356B2 JP02281199A JP28119990A JP3099356B2 JP 3099356 B2 JP3099356 B2 JP 3099356B2 JP 02281199 A JP02281199 A JP 02281199A JP 28119990 A JP28119990 A JP 28119990A JP 3099356 B2 JP3099356 B2 JP 3099356B2
Authority
JP
Japan
Prior art keywords
battery
formation
battery case
electrode plate
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02281199A
Other languages
Japanese (ja)
Other versions
JPH04155762A (en
Inventor
雅之 井出
健二 小林
洋一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP02281199A priority Critical patent/JP3099356B2/en
Publication of JPH04155762A publication Critical patent/JPH04155762A/en
Application granted granted Critical
Publication of JP3099356B2 publication Critical patent/JP3099356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉型鉛蓄電池の電槽化成方法に関し、特
にセル内壁に設けたリブの形状と化成末期の充電電流の
電流密度を改善した電槽化成方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a battery case for a sealed lead-acid battery, and more particularly, to a battery case in which the shape of a rib provided on the inner wall of a cell and the current density of a charging current at the end of formation are improved. It relates to a chemical formation method.

従来の技術 従来の電槽化成は充電が進行し負極電位がカドミウム
極に対して卑になった後(転極と以後いう)もそのまま
の電流密度(約0.72A/dm2)で化成を行なうため、電槽
内壁の負極板と対向する両側の面に設けたリブの役割と
しては単に極板を電槽に挿入しやすくするためのもの
で、リブの高さも0.1mm程度のものであった。
Conventional technology In conventional battery case formation, even after the charge progresses and the negative electrode potential becomes lower than that of the cadmium electrode (hereinafter referred to as “inversion”), the formation is performed at the same current density (about 0.72 A / dm 2 ). Therefore, the role of the ribs provided on both sides of the inner wall of the battery case opposite to the negative electrode plate was simply to make it easier to insert the electrode plate into the battery case, and the height of the ribs was also about 0.1 mm. .

発明が解決しようとする課題 密閉型鉛蓄電池において容量を向上させるためには、
極板高さを高くして極板を大きくする場合、極板高さを
高くすると、電解液面が高くなり電槽化成中に充電中の
ガス発生により液面が上がり、電解液があふれてしまう
ため注液可能な電解液量が規制される。また充電電気量
も多くしなければならず電槽化成中に電解液がガス発生
で失なわれ電池に必要な電解液は多くなったにもかかわ
らず少なくなるため容量が出なくなり同一電槽内で容量
を向上させるには限度があった。
Problems to be Solved by the Invention To improve the capacity of a sealed lead-acid battery,
When increasing the electrode plate height to increase the electrode plate, increasing the electrode plate height causes the electrolyte surface to rise, causing the liquid surface to rise due to gas generation during charging during battery case formation and overflowing the electrolyte. Therefore, the amount of electrolyte solution that can be injected is restricted. Also, the amount of charged electricity must be increased, and during the formation of the battery case, the electrolyte is lost due to gas generation, and the amount of electrolyte required for the battery is reduced despite the increase, so the capacity does not come out and the same battery case is used. There was a limit in improving the capacity.

本発明は、前記のような従来の問題点を解決し、極板
を従来よりも高さを高くすることにより大きくし、容量
アップを図っても電槽化成を可能にする密閉型鉛蓄電池
の電槽化成方法を提供することを目的とする。
The present invention solves the conventional problems as described above, and makes the electrode plate larger by increasing the height than the conventional one. It is an object to provide a battery case formation method.

課題を解決するための手段 この課題を解決するため本発明の密閉型鉛蓄電池の電
槽化成方法は、おのおののセルの電槽内壁の負極板と対
向する両側の面に、高さ0.3mm以上のリブを2本以上設
けた前記セル中に収納した、未化成極板からなる未充電
電池に電解液を注入して行う電槽化成の転極後に、充電
電流の電流密度を0.2A/dm2以下にしたものである。
Means for Solving the Problems To solve this problem, the battery container forming method of the sealed lead-acid battery according to the present invention comprises: After inversion of battery formation performed by injecting an electrolyte into an uncharged battery comprising an unformed electrode plate, which was accommodated in the cell provided with two or more ribs, the current density of the charging current was 0.2 A / dm. 2 or less.

作用 このような方法によると、電槽化成中の電解液の減少
が少なく効率よく化成できる。これはおのおののセルの
電槽内壁の負極板と対向する両側の面に、高さ0.3mm以
上のリブを2本以上設けることにより、電槽と極板との
間に隙間ができ、充電中に発生した酸素ガスを前記隙間
に拡散しやすくさせ、負極板とのガス吸収反応を促進す
ることとなる。または0.3mm以上の高さのリブを設ける
ことで初期における注液がスムーズになり液あふれもな
くなることとなる。また電池性能においても、極板が従
来よりも高形にできるため高率放電がよくなり、そして
さらに低い電流密度で充電するために充電効果が高くな
り充電電気量が従来の80%で現行と同等の容量を得るこ
とができることとなる。
According to such a method, the electrolyte can be efficiently formed with little decrease in the electrolytic solution during the formation of the battery case. This is because a gap is created between the battery case and the electrode plate by providing two or more ribs with a height of 0.3 mm or more on both sides of the inner wall of the battery case opposite to the negative electrode plate during charging. This facilitates the diffusion of the generated oxygen gas into the gap, thereby promoting the gas absorption reaction with the negative electrode plate. Alternatively, by providing a rib having a height of 0.3 mm or more, the liquid injection at the initial stage becomes smooth and the liquid does not overflow. Also, in terms of battery performance, the electrode plate can be made higher in shape than before so that high-rate discharge is improved, and the charging effect is higher because it is charged at a lower current density, and the charged amount of electricity is 80% of the conventional amount and the current The same capacity can be obtained.

実施例 以下本発明の一実施例の鉛蓄電池の電槽化成方法につ
いて図面を基にして詳細に説明する。
Embodiment Hereinafter, a method for forming a battery case of a lead storage battery according to an embodiment of the present invention will be described in detail with reference to the drawings.

電池は6V,4Ah(20HR)の密閉型鉛蓄電池を用いた。極
板の構成は正極板が2枚、負極板が3枚で、極板寸法は
ともに取りあえず従来と同じ高さ65mm,幅43mmのものを
用いた。第1図に今回の電流内壁の負極板に対向する両
側の面に設けたリブ1の形状と位置を示す。電槽2の上
端からは15mmの所からリブ1を設けた。上部のかどを落
としてあるのは極板を入れやすくするためである。リブ
1の横の方向の位置はセルの中心3に対して13mmの距離
に各1本ずつ合計2本設けた。またリブ1の高さ4は0.
3mmとした。電槽化成方法は、まず未化成極板からなる
極板群を従来と同一の電槽内に入れ、比重1.235の希硫
酸の電解液を従来より約10%少ない34cc/セル注液後、
0.8Aの定電流で充電し、第2図に示す実施例のように通
電開始後12時間目において0.8Aで放電を1時間実施す
る。そして放電後また0.8Aで4時間充電し、その後電流
値を0.2A(約0.18A/dm2)に下げて49時間充電を行な
う。今回化成末期の転極後の電流密度を0.2A/dm2以下に
した理由について説明する。鉛蓄電池は正極の充電が完
了に近づくにつれて次のような反応でO2ガスの発生を起
こすようになる。
The battery used was a 6V, 4Ah (20HR) sealed lead-acid battery. The configuration of the electrode plates was two for the positive electrode plate and three for the negative electrode plate, and the dimensions of the electrode plates were both the same. FIG. 1 shows the shapes and positions of the ribs 1 provided on both sides of the current inner wall facing the negative electrode plate this time. The rib 1 was provided from a position 15 mm from the upper end of the battery case 2. The upper corner is dropped to make it easier to insert the plates. A total of two ribs 1 were provided in the lateral direction at a distance of 13 mm from the center 3 of the cell. The height 4 of the rib 1 is 0.
3 mm. In the battery case formation method, first place the electrode group consisting of unformed electrode plates in the same battery case as before, and inject 34 cc / cell of a dilute sulfuric acid electrolyte with a specific gravity of 1.235, which is about 10% less than before,
The battery is charged at a constant current of 0.8 A, and discharged at 0.8 A for 1 hour at 12 hours after the start of energization as in the embodiment shown in FIG. After discharging, the battery is charged again at 0.8 A for 4 hours, and then the current value is reduced to 0.2 A (about 0.18 A / dm 2 ), and charging is performed for 49 hours. This time, the reason why the current density after the reversal in the final stage of chemical formation was reduced to 0.2 A / dm 2 or less will be described. As the charge of the positive electrode nears completion, the lead-acid battery generates O 2 gas by the following reaction.

2H2O→O2+4H++4e- ……(1) 密閉型鉛蓄電池では発生したO2を充電より負極で生成
したPbと反応させてPbOとするしくみである。
2H 2 O → O 2 + 4H + + 4e (1) In a sealed lead-acid battery, O 2 generated reacts with Pb generated at the negative electrode from charging to form PbO.

2Pb+O2+H2SO4→PbO+PbSO4+H2O ……(2) しかし、従来の電槽化成では化成時の電流密度が高い
ため(反応効率が悪いこと、および充電電流が大きいた
め)O2ガスの発生量がかなり多く、負極(特に端板)は
そのO2ガスをほとんど吸収することができず、そのため
化成中に電解液が大量に減少してしまう。よって電解液
をなるべく減少させないようにし、かつ化成を促進させ
るためには(1)式と(2)式の反応が平衡となる電流
密度を見つけなければならない。化成末期の転極後の電
流密度を変化させて電池の重量減を調べた結果を第3図
に示す。各電流密度における全充電電気量は同一であ
る。この結果、0.2A/dm2の電流密度を境に重量が減少し
ていることから0.2A/dm2以下の電流密度を採用した。次
に第1図におけるリブ1の高さ4の決定であるが、端板
の負極2枚がもっともO2ガスを吸収しやすいが電槽内壁
と負極板がくっついていればO2ガスが拡散しにくいと考
え、リブ1の高さ4を変えることで拡散の効果を観察し
た。その結果を第4図に示す。第4図よりリブ1の高さ
4は0.3mm以上は必要であることがわかる。0.2mm以下で
は、リブ1がペースト1にくい込み電槽内壁と負極板の
間にほとんど隙間ができないためにO2ガスの拡散がしに
くくなり大きな重量減をおこすものと考えられる。さら
に電池容量についての結果を第5図に示す。本実施例の
電槽化成方法では充電末期に低い電流密度で充電するた
めに充電効果が高くなり全充電電気量が従来の約80%ほ
どで従来と同等の容量を得ることができ、電池の重量減
も従来の半分になった。
2Pb + O 2 + H 2 SO 4 → PbO + PbSO 4 + H 2 O (2) However, in the conventional battery case formation, the O 2 gas has a high current density during formation (because of poor reaction efficiency and a large charging current). The negative electrode (especially the end plate) is hardly able to absorb the O 2 gas, so that a large amount of the electrolyte solution is reduced during the formation. Therefore, in order to prevent the electrolyte solution from decreasing as much as possible and to promote the formation, it is necessary to find a current density at which the reactions of the equations (1) and (2) are in equilibrium. FIG. 3 shows the result of examining the weight loss of the battery by changing the current density after the inversion at the end of chemical formation. The total amount of charge at each current density is the same. As a result, since the weight decreased at the current density of 0.2 A / dm 2, a current density of 0.2 A / dm 2 or less was adopted. Next, the height 4 of the rib 1 in FIG. 1 is determined. The two negative electrodes on the end plate absorb the O 2 gas most easily, but the O 2 gas is diffused if the inner wall of the battery case and the negative electrode plate are stuck together. The diffusion effect was observed by changing the height 4 of the ribs 1. The result is shown in FIG. From FIG. 4, it is understood that the height 4 of the rib 1 needs to be 0.3 mm or more. 0.2mm Hereinafter, it is believed that the rib 1 cause significant weight loss diffusion is less likely to be of the O 2 gas to hardly a gap in biting the container inner wall and the negative electrode plates to the paste 1. Further, the results regarding the battery capacity are shown in FIG. In the battery case formation method of the present embodiment, the charging effect is increased because the battery is charged at a low current density at the end of charging, and the total charge amount is about 80% of the conventional one, and the same capacity as the conventional one can be obtained. Weight has also been reduced by half.

上記のように、高さが0.3mm以上のリブを電槽内壁の
負極板と対向する両側の面にそれぞれ設け、さらに化成
末期の転極後に電槽化成の電流密度を0.2A/dm2以下に減
少させることにより、端板の負極でノイマン反応を促進
させることができ、電槽化成時の重量減を少なくするこ
とができるので、その分、極板を大きくすることができ
る。また、化成末期の転極後に電流値をかなり減少させ
るので電槽化成時間が長くなるが、充電電気量は従来の
約80%で従来と同じ容量が出るため、これもコストダウ
ンとなる。さらに以上説明した結果から本実施例によれ
ば、将来従来と同一の電槽を用いても従来の極板より若
干極板高さを高くして、容量アップを実現する見通しを
得ることができた。
As described above, ribs with a height of 0.3 mm or more are provided on both sides of the inner wall of the container opposite to the negative electrode plate, and the current density of the container formation is 0.2 A / dm 2 or less after the inversion of the last stage of formation. In this case, the Neumann reaction can be promoted at the negative electrode of the end plate, and the weight loss during battery case formation can be reduced, so that the electrode plate can be enlarged accordingly. In addition, since the current value is significantly reduced after the end of the chemical conversion, the battery formation time is prolonged. However, the amount of electricity charged is about 80% of the conventional capacity, and the same capacity as the conventional one is obtained, which also reduces the cost. Further, from the results described above, according to the present embodiment, it is possible to obtain a prospect that the electrode plate height will be slightly higher than the conventional electrode plate even if the same battery case as the conventional one is used in the future, and the capacity will be increased. Was.

発明の効果 以上の実施例の説明で明らかなように本発明の密閉型
鉛蓄電池の電槽化成方法によれば、未化成極板からなる
未充電電池に電解液を注入して行なう電槽化成におい
て、転極後に電流密度を0.2A/dm2以下にした化成で、お
のおののセルの電槽内壁の負極板と対向する両側の面に
0.3mm以上の高さのリブを2本以上設けることにより負
極板と電槽内壁との間に隙間を設け、そこに電解液を確
保した電槽化成により、電槽化成中の化成効率を上げ電
槽化成中における電解液の減液量を大幅に減少させるこ
とができた。よって将来従来と同一の電極を用いても、
極板高さを高くして極板を大きくし、容量アップを図っ
ても支障なく密閉型鉛蓄電池の電槽化成を可能とするも
のである。
Effects of the Invention As is apparent from the above description of the embodiment, according to the battery case formation method for a sealed lead-acid battery of the present invention, the battery case formation is performed by injecting an electrolyte into an uncharged battery comprising an unformed electrode plate. In the formation, the current density was 0.2 A / dm 2 or less after the inversion, and on both sides of the inner wall of the battery case of each cell facing the negative electrode plate.
By providing two or more ribs with a height of 0.3 mm or more, a gap is provided between the negative electrode plate and the inner wall of the battery case, and the formation efficiency of the battery case is increased by forming a battery case in which the electrolyte is secured. It was possible to greatly reduce the amount of electrolyte solution reduced during battery case formation. Therefore, even if the same electrode is used in the future,
The height of the electrode plate is increased to increase the size of the electrode plate so that the capacity of the sealed lead-acid battery can be formed without any problem even if the capacity is increased.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の鉛蓄電池の電槽化成方法に
おけるリブの位置と形状を示すもので、(a)はリブの
側面図、(b)は(a)のA,A′断面図、(c)は
(b)の要部を拡大したリブの断面図、第2図は同電槽
化成中の充電および放電電流、電池電圧と化成経過時間
との関係を示すグラフ、第3図は同電槽化成中の末期電
流密度(転極後)と電池の重量減の関係を示すグラフ、
第4図は同リブの高さと電槽化成中の電池の重量減の関
係を示すグラフ、第5図は本発明の一実施例の密閉型鉛
蓄電池の電槽化成方法と従来の電槽化成方法における電
池容量と電槽化成中における重量減の比較を示すグラフ
である。
FIG. 1 shows the position and shape of a rib in a battery case forming method for a lead-acid battery according to one embodiment of the present invention, where (a) is a side view of the rib and (b) is A, A 'of (a). FIG. 2 (c) is a cross-sectional view of a rib in which a main part of FIG. 2 (b) is enlarged. FIG. 2 is a graph showing the relationship between charge and discharge currents during battery formation, battery voltage and formation elapsed time. FIG. 3 is a graph showing the relationship between the terminal current density (after reversal) and the weight loss of the battery during formation of the battery case;
FIG. 4 is a graph showing the relationship between the height of the rib and the weight reduction of the battery during battery case formation. FIG. 5 is a diagram showing a battery case formation method for a sealed lead-acid battery according to one embodiment of the present invention and a conventional battery case formation. 4 is a graph showing a comparison between battery capacity and weight loss during battery formation in the method.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/12 H01M 4/22 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/12 H01M 4/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】おのおののセルの電槽内壁の負極板と対向
する両側の面に、高さ0.3mm以上のリブを2本以上設け
た前記セル中に収納した、未化成極板からなる未充電電
池に電解液を注入して行なう電槽化成の転極後に、充電
電流の電流密度を0.2A/dm2以下にした密閉型鉛蓄電池の
電槽化成方法。
1. An unformed electrode plate comprising two or more ribs having a height of 0.3 mm or more provided on both sides of the inner wall of a battery case of each cell opposite to the negative electrode plate. A method for forming a sealed lead-acid battery in which the current density of the charging current is reduced to 0.2 A / dm 2 or less after inversion of the battery formation performed by injecting an electrolytic solution into the rechargeable battery.
JP02281199A 1990-10-18 1990-10-18 Battery forming method for sealed lead-acid batteries Expired - Fee Related JP3099356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02281199A JP3099356B2 (en) 1990-10-18 1990-10-18 Battery forming method for sealed lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02281199A JP3099356B2 (en) 1990-10-18 1990-10-18 Battery forming method for sealed lead-acid batteries

Publications (2)

Publication Number Publication Date
JPH04155762A JPH04155762A (en) 1992-05-28
JP3099356B2 true JP3099356B2 (en) 2000-10-16

Family

ID=17635729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02281199A Expired - Fee Related JP3099356B2 (en) 1990-10-18 1990-10-18 Battery forming method for sealed lead-acid batteries

Country Status (1)

Country Link
JP (1) JP3099356B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992226B2 (en) * 2005-11-09 2012-08-08 パナソニック株式会社 Lead acid battery
CN113675397B (en) * 2021-08-23 2023-04-11 浙江巨江电源制造有限公司 Deep-cycle long-life lead-acid storage battery lead paste for parking, battery thereof and manufacturing process method of battery

Also Published As

Publication number Publication date
JPH04155762A (en) 1992-05-28

Similar Documents

Publication Publication Date Title
JP3099356B2 (en) Battery forming method for sealed lead-acid batteries
US4031293A (en) Maintenance free lead storage battery
JPH08264202A (en) Lead-acid battery
JP3047463B2 (en) Lead storage battery
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
JPH0750616B2 (en) Lead acid battery
JP3018406B2 (en) Battery forming method for sealed lead-acid batteries
JP3185300B2 (en) Sealed lead-acid battery
JP2964555B2 (en) Battery storage method for lead-acid batteries
JP4742424B2 (en) Control valve type lead acid battery
JP3010691B2 (en) Battery forming method for sealed lead-acid batteries
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
JP3637797B2 (en) Lead acid battery
Das Preliminary studies on a rechargeable acidic lead/mercury battery
JPH012254A (en) sealed lead acid battery
JP2553598B2 (en) Sealed lead acid battery
JPH0887999A (en) Manufacture of lead-acid battery
JPS58158874A (en) Lead storage battery
JPH07288128A (en) Activation method for sealed lead-acid battery
JPH053709B2 (en)
JPH0536435A (en) Sealed lead-acid battery
JPH0480511B2 (en)
JPS61140058A (en) Separator for cell
JPH0654661B2 (en) Sealed lead acid battery
JPS58212076A (en) Charging method of lead storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees