JPH0679493B2 - Lead-acid battery function recovery agent and lead-acid battery function recovery method - Google Patents

Lead-acid battery function recovery agent and lead-acid battery function recovery method

Info

Publication number
JPH0679493B2
JPH0679493B2 JP61161943A JP16194386A JPH0679493B2 JP H0679493 B2 JPH0679493 B2 JP H0679493B2 JP 61161943 A JP61161943 A JP 61161943A JP 16194386 A JP16194386 A JP 16194386A JP H0679493 B2 JPH0679493 B2 JP H0679493B2
Authority
JP
Japan
Prior art keywords
lead
acid battery
function recovery
acid
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61161943A
Other languages
Japanese (ja)
Other versions
JPS6319771A (en
Inventor
正彦 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI SANGYO KK
Original Assignee
TOKAI SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI SANGYO KK filed Critical TOKAI SANGYO KK
Priority to JP61161943A priority Critical patent/JPH0679493B2/en
Publication of JPS6319771A publication Critical patent/JPS6319771A/en
Publication of JPH0679493B2 publication Critical patent/JPH0679493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉛蓄電池(バツテリー)の電解液に添加するこ
とにより鉛蓄電池の極板を洗浄すると共に機能の低下し
た鉛蓄電池の能力を急速に回復させ、鉛蓄電池の使用寿
命を大幅に延長することのできる有機ゲルマニウム配合
の鉛蓄電池の機能回復剤及びその機能回復方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is intended to clean the electrode plate of a lead acid battery (battery) by adding it to the electrolytic solution of the lead acid battery and to rapidly improve the ability of the lead acid battery with deteriorated function. The present invention relates to a function recovery agent for a lead storage battery containing an organic germanium compound, which can be recovered and greatly extend the service life of the lead storage battery, and a function recovery method thereof.

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be Solved by Prior Art and Invention]

鉛蓄電池は極(陰極)及び極(陽極)の両極端子か
ら成り、電気分解により電気エネルギーを化学エネルギ
ーに変えて蓄積することができ、必要に応じて再び化学
エネルギーを電気エネルギーに変える所謂、電気分解に
よる酸化還元作用を利用して電流を取り出す装置であ
る。
A lead-acid battery consists of both pole (cathode) and pole (anode) terminals, can convert electrical energy into chemical energy by electrolysis, and can store it. It is a device that takes out the electric current by utilizing the redox action by decomposition.

自動車用の鉛蓄電池の場合、走行中は発電機(ダイナ
モ)から絶えず電流が補給され、レギユレーターにより
調節されている。ところが、自動車用の鉛蓄電池の場
合、起電力(電気抵抗を通して測定した電圧、自動車の
場合、セルモーターを回転する力ということができ
る。)が問題となる。たとえば12Vの自動車用の鉛蓄電
池の場合合、電圧が12V以上であつても起電力が10V以下
になるとセルモーターを廻すことはできない。また、セ
ルモーターの回転にはその定格の3倍程度の電流が実際
上流れるため、数回セルモーターを廻し続けたときには
鉛蓄電池の電圧を急激に消耗する。したがつて、以上の
ような場合、充電が必要となる。
In the case of lead-acid batteries for automobiles, electric current is constantly supplied from a generator (dynamo) while traveling and regulated by a regulator. However, in the case of lead-acid batteries for automobiles, electromotive force (voltage measured through electric resistance, in the case of automobiles, it can be called the force to rotate the starter motor) is a problem. For example, in the case of a 12V lead-acid battery for automobiles, even if the voltage is 12V or higher, if the electromotive force is 10V or lower, the starter motor cannot be turned. In addition, since the electric current of about 3 times the rated current actually flows in the rotation of the cell motor, the voltage of the lead storage battery is rapidly consumed when the cell motor is continuously rotated several times. Therefore, in the above cases, charging is required.

ところで、鉛蓄電池の電解液には稀硫酸(H2SO4)が用
いられておりその比重は、自動車用の鉛蓄電池では1.20
0〜1.300のものが用いられている。最も電気を通すのに
良い状態は、+20℃のとき1.260であり、放電が進むに
つれて比重は低下し、完全放電状態となつたときの比重
は平均1.050となる。また、充電して行くと充電完了時
には比重は元の1.260になる。このように電解液の比重
と電気(充電量)は正比例しているので、電解液の比重
を測定することにより充電状態を知ることができる。通
常、電解液の比重は1.180〜1.260の範囲内であることが
好ましく、1.150未満の場合には充電が必要とされる。
By the way, dilute sulfuric acid (H 2 SO 4 ) is used as the electrolyte in lead acid batteries, and its specific gravity is 1.20 in lead acid batteries for automobiles.
The ones from 0 to 1.300 are used. The best condition for conducting electricity is 1.260 at + 20 ° C, the specific gravity decreases as the discharge progresses, and the average specific gravity when fully discharged is 1.050. Also, when the battery is charged, the specific gravity will be 1.260 when the charging is completed. Since the specific gravity of the electrolytic solution and the electricity (charge amount) are thus directly proportional to each other, the state of charge can be known by measuring the specific gravity of the electrolytic solution. Generally, the specific gravity of the electrolytic solution is preferably in the range of 1.180 to 1.260, and when it is less than 1.150, charging is required.

電極は極が鉛(Pb)、極が酸化鉛(PbO2)から成
り、放電状態では電流はは極から極に、充電状態で
は極から極に流れる。
The electrodes consist of lead (Pb) in the pole and lead oxide (PbO 2 ) in the pole, and current flows from pole to pole in the discharged state and from pole to pole in the charged state.

鉛蓄電池内での化学作用は、放電時には極は硫酸鉛
(PbSO4)に、そして極も硫酸鉛になり、電解液は稀
硫酸と水から電気分解により水に変わわる。一方、充電
時には電極は極が鉛、極が酸化鉛に、また電解液は
稀硫酸と水のようにそれぞれ元に戻る。
During discharge, the chemical action in lead-acid batteries is that the electrode becomes lead sulfate (PbSO 4 ) and the electrode also becomes lead sulfate, and the electrolytic solution changes from dilute sulfuric acid and water to water by electrolysis. On the other hand, at the time of charging, the electrodes of the electrodes return to lead, the electrodes return to lead oxide, and the electrolytic solution returns to its original state like diluted sulfuric acid and water.

したがつて、この充放電作用の原理では、適宜充電を行
うことにより相当長期に亘り使用できる筈であるが、次
の4つの大きな弱点があり、劣化を免れない。
Therefore, according to the principle of this charging / discharging action, it should be possible to use it for a considerably long period of time by appropriately charging it, but there are the following four major weak points and it cannot avoid deterioration.

i)サルフエーシヨン〔硫酸鉛(PbSO4)白色不導体の
生成〕 ii)水素弊害 iii)自己放電 IV)温度変化とその影響 まずサルフエーシヨンとは、電解液の減少により極板が
液面から露出したり放電してくると極の鉛、極の酸
化鉛がともに硫酸鉛になる現象である。鉛蓄電池が完全
に放電するとサルフエーシヨンを起こし、この硫酸鉛は
不導体であるから電気を通さなくなり、充電を全く受け
つけなくなる。このサルフエーシヨンは、多かれ少なか
れいずれの鉛蓄電池でも生じる現象で、本来100%の起
電力を持つ鉛蓄電池でも著しく力を失い、また稀硫酸の
比重が低下してくる。一度内部にできた硫酸鉛は、充電
を継続したり繰返えしても取り除くことはできない。
i) Sulfation [Production of lead sulfate (PbSO 4 ) white non-conductor] ii) Hydrogen adverse effect iii) Self-discharge IV) Temperature change and its effect First, the sulfation is that the electrode plate is exposed from the liquid surface due to the decrease of the electrolytic solution. This is a phenomenon in which both lead in the pole and lead oxide in the pole become lead sulfate when discharged. When the lead acid battery is completely discharged, it causes sulfation, and since this lead sulfate is a non-conductor, it stops conducting electricity and cannot accept any charge. This sulfation is a phenomenon that occurs in more or less lead-acid batteries, and even if it is a lead-acid battery with 100% electromotive force, it loses its power significantly and the specific gravity of dilute sulfuric acid decreases. Once the lead sulfate is formed inside, it cannot be removed even if charging is continued or repeated.

次に、鉛蓄電池にとつて最大の弱点がii)の水素弊害で
ある。鉛蓄電池に充電すると電気分解により極より水
素ガスが、また極より酸素ガスが発生する。水素ガス
が極の表面に気泡の状態で付着すると表面が分極現象
を起こして絶縁状態となり、完全に付着すると全く電流
が流れなくなる。しかも、一極でも電流の流れにくいと
ころができると、その極だけ熱を持つて特に電解液が減
少するため、サルフエーシヨンを起こし易くなる。
Next, the greatest weakness of the lead-acid battery is the harmful effect of hydrogen of ii). When the lead storage battery is charged, hydrogen gas is generated from the electrode and oxygen gas is generated from the electrode due to electrolysis. When hydrogen gas adheres to the surface of the electrode in the form of bubbles, the surface causes a polarization phenomenon and becomes an insulating state, and when completely adhered, no current flows. Moreover, if there is a place where current does not easily flow even with one pole, heat will be generated only in that pole and the amount of the electrolyte solution will particularly decrease, so that sulfation will occur easily.

また、iii)の自己放電とは、ii)の様に水素が発生
し、極に付着すると分極現象を起こし、そのため一つ
の半電池を作り、その結果どんどん自己放電して行く現
象である。
In addition, the self-discharge of iii) is a phenomenon in which hydrogen is generated as in ii), and when it is attached to the electrode, a polarization phenomenon occurs, so that one half cell is made, and as a result, self-discharge gradually occurs.

さらにiv)の温度変化とその影響は、外的な気温条件に
より起こるものである。鉛蓄電池の電解液である稀硫酸
は前記した如く+20℃で比重1.260に設定されており、
1℃の温度変化に対して比重は0.007変化する。従つ
て、+20℃で100%の起電力を持つ鉛蓄電池でも−10℃
では70%の起電力に低下し、寒冷地などで−30℃以下に
なると起電力は50%を割り、また氷結によるトラブルが
発生しやすくなる。この氷結によるトラブルは、放電が
進行して電解液が水に近くなつている場合により発生し
やすい。一方、高温時にはクーラーを頻繁に使用した
り、ボンネツトの内部が90℃を越える状態となるため、
電解液が急速に減少し、電気密度が散慢になり、トラブ
ルが発生しやすくなる。
In addition, iv) temperature changes and their effects are caused by external temperature conditions. Dilute sulfuric acid, which is the electrolyte of lead-acid battery, has a specific gravity of 1.260 at + 20 ° C as described above.
The specific gravity changes 0.007 for a temperature change of 1 ° C. Therefore, even with a lead-acid battery with 100% electromotive force at + 20 ℃, it is -10 ℃.
Then, the electromotive force drops to 70%, and in cold regions such as below -30 ° C, the electromotive force falls below 50%, and problems due to freezing tend to occur. The trouble due to the freezing is more likely to occur when the discharge progresses and the electrolytic solution is close to water. On the other hand, when the temperature is high, the cooler is frequently used and the inside of the bonnet exceeds 90 ° C.
The electrolytic solution is rapidly decreased, the electric density is scattered, and troubles easily occur.

以上のように鉛蓄電池には4つの大きな弱点があり、劣
化を免れない。
As described above, the lead acid battery has four major weaknesses and is inevitably deteriorated.

従来より電解液の比重を測定し、比重の低下した鉛蓄電
池に対し稀硫酸を添加して、電解液の比重を上昇させる
ことが行なわれている。しかしがら、この比重の低下は
前記のサルフエーシヨンになつた状態であるので、稀硫
酸を添加すると、電解液容量オーバーになり極板を著し
く痛め、極板の沈澱短絡及び水素ガスの異常発生の最大
原因になり、鉛蓄電池の寿命を大きく縮めることとな
る。
Conventionally, the specific gravity of an electrolytic solution has been measured, and diluted sulfuric acid has been added to a lead storage battery having a reduced specific gravity to increase the specific gravity of the electrolytic solution. However, this decrease in specific gravity is in the state where it has reached the above-mentioned sulfation.Therefore, when diluted sulfuric acid is added, the capacity of the electrolytic solution is exceeded and the electrode plate is seriously damaged, and the precipitation short circuit of the electrode plate and the abnormal occurrence of hydrogen gas are the maximum. As a result, the life of the lead acid battery is greatly shortened.

そこで本発明者らは、上記従来の問題点を解消するため
鋭意検討を重ねた。その結果、特定の有機ゲルマニウム
化合物が特異な電子効果を有し、また強力な酸素供給能
を有する化合物であつて鉛蓄電池の機能回復剤として有
効なものであることを見出し、この知見に基いて既に特
許出願している(特開昭59−194367号)。
Therefore, the present inventors have made extensive studies in order to solve the above conventional problems. As a result, it was found that a specific organogermanium compound has a specific electronic effect, and is a compound having a strong oxygen supply ability, which is effective as a function recovery agent for a lead storage battery, and based on this finding A patent application has already been filed (JP-A-59-194367).

本発明は上記発明の改良技術に関し、鉛蓄電池の使用寿
命をより一層延長することのできる機能回復剤とその機
能回復方法を提供することを目的とするものである。
The present invention relates to the improved technology of the above invention, and an object thereof is to provide a function recovery agent and a method for recovering the function thereof, which can further extend the service life of a lead acid battery.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は第1に 式 で表わされるビス−β−エチルカルボン酸ゲルマニウム
セスキオキサイド及びアルカリ金属またはアルカリ土類
金属の水酸化物を有効成分として含有する鉛蓄電池の機
能回復剤を提供するものである。
That is, the present invention is The present invention provides a function recovery agent for a lead-acid battery containing bis-β-ethylcarboxylic acid germanium sesquioxide represented by and an alkali metal or alkaline earth metal hydroxide as active ingredients.

さらに本発明は第2に、鉛蓄電池の電解液に、上記本発
明の第1の鉛蓄電池の機能回復剤を添加することを特徴
とする鉛蓄電池の機能回復方法を提供するものである。
Further, the present invention secondly provides a function recovery method for a lead storage battery, which is characterized in that the function recovery agent for the first lead storage battery according to the first invention of the present invention is added to the electrolytic solution of the lead storage battery.

本発明の第1においては有機ゲルマニウム化合物として
上記式〔I〕で表わされるビス−β−エチルカルボン酸
ゲルマニウムセスオキサイドを用いる。有機ゲルマニウ
ム化合物として、他のものを用いたとしても本発明の効
果を得ることはできない。
In the first aspect of the present invention, bis-β-ethylcarboxylic acid germanium cesoxide represented by the above formula [I] is used as the organic germanium compound. Even if another organic germanium compound is used, the effect of the present invention cannot be obtained.

また、本発明の第1においては上記のビス−β−エチル
カルボン酸ゲルマニウムセスキオキサイドと共に、アル
カリ金属(リチウム,ナトリウム,カリウム,ルビジウ
ム,セシウム)またはアルカリ土類金属(カルシウム,
ストロンチウム,バリウム,ラジウム)の水酸化物を用
いる。
Further, in the first aspect of the present invention, an alkali metal (lithium, sodium, potassium, rubidium, cesium) or an alkaline earth metal (calcium, together with the above-mentioned bis-β-ethylcarboxylic acid germanium sesquioxide) is used.
Strontium, barium, and radium) hydroxides are used.

本発明の第1の鉛蓄電池の機能回復剤は上記原料を有効
成分として含有するものであり、通常水溶液の形態で用
いられるこの場合、ビス−β−エチルカルボン酸ゲルマ
ニウムセスキオキサイド0.2〜0.05重量%、好ましくは
0.2〜0.1重量%、アルカリ金属またはアルカリ土類金属
の水酸化物は0.02〜0.002重量%、好ましくは0.01〜0.0
01重量%の割合で配合される。
The first lead-acid battery function recovery agent of the present invention contains the above raw materials as an active ingredient, and is usually used in the form of an aqueous solution. In this case, bis-β-ethylcarboxylic acid germanium sesquioxide 0.2 to 0.05% by weight is used. ,Preferably
0.2 to 0.1% by weight, 0.02 to 0.002% by weight of alkali metal or alkaline earth metal hydroxide, preferably 0.01 to 0.0
It is blended in a proportion of 01% by weight.

ここで、それぞれを上限を越えて配合しても、配合量に
見合うだけの効果を得ることはできない。一方、配合量
が下限未満であると、所期の効果を達成することはでき
ない。
Here, even if each is blended in excess of the upper limit, it is not possible to obtain an effect commensurate with the blended amount. On the other hand, if the blending amount is less than the lower limit, the desired effect cannot be achieved.

叙上の如き本発明の第1の鉛蓄電池の機能回復剤には必
要に応じて他の添加剤を適宜配合することもできる。
If necessary, other additives may be appropriately added to the function recovery agent of the first lead storage battery of the present invention as described above.

次に本発明の第2では上記本発明の第1の機能回復剤を
鉛蓄電池の電解液に添加する。添加量としては、12Vバ
ッテリーでは水溶液60ml、24Vバツテリーでは120mlが適
当である。
Next, in the second aspect of the present invention, the first function recovery agent of the present invention is added to the electrolytic solution of the lead storage battery. Appropriate addition amount is 60 ml of aqueous solution for 12V battery and 120 ml for 24V battery.

〔発明の効果〕〔The invention's effect〕

本発明によれば、サルフエーシヨンを完全に元に戻す作
用があり、極板を洗浄して導通性を回復し、極板を保護
することができる。特に用いられる有機ゲルマニウム化
合物の半導体としての電子効果によりすばやく極板を洗
浄し電位差を高めるので鉛蓄電池が無理なく速かに充電
を受けつける。また、その電子特性により電圧の低下を
押え、低下した電圧を回復して鉛蓄電池の電気容量の増
加(機能回復)が可能である。
According to the present invention, there is an action of completely returning the sulfation to the original state, and the electrode plate can be washed to restore the conductivity and protect the electrode plate. In particular, the organic germanium compound used as a semiconductor quickly cleans the electrode plate by the electronic effect to increase the potential difference, so that the lead-acid battery can be charged quickly without difficulty. In addition, it is possible to suppress the decrease in voltage due to the electronic characteristics, recover the decreased voltage, and increase the electric capacity (function recovery) of the lead storage battery.

さらに本発明によれば鉛蓄電池の電解液に多量の酸素が
供給されるため、鉛蓄電池にに生成した水素と結合して
水となり、前記の如き水素弊害を完全に押えて鉛蓄電池
の機能を高めることができる。しかも、サルフエーシヨ
ンの除去と共にこのように水素も除去することができる
ため極板が非常にきれいになり電流の流れが良好とな
る。また、このことにより自己放電を防止することもで
きる。
Further, according to the present invention, since a large amount of oxygen is supplied to the electrolyte of the lead storage battery, it is combined with hydrogen generated in the lead storage battery to form water, which completely suppresses the harmful effects of hydrogen as described above and improves the function of the lead storage battery. Can be increased. Moreover, since the hydrogen can be removed in this way together with the removal of the sulfation, the electrode plate becomes very clean and the current flow becomes good. Further, this can prevent self-discharge.

また、その電子特性により充電時の場合、両極の分極が
小さくなり充電に要する電圧が少なくて済み、充電時間
を短縮することができる。放電時の場合も両極の分極が
小さいため放電電圧が大きくなり、長時間放電に耐える
ことができる。
In addition, due to the electronic characteristics, when charging, the polarization of both electrodes becomes small and the voltage required for charging can be small, and the charging time can be shortened. Even during discharge, the polarization of both electrodes is small, so that the discharge voltage increases and it is possible to withstand discharge for a long time.

以上のように本発明の機能回復剤を機能の低下した鉛蓄
電池の電解液に添加することにより、速やかにその機能
を回復させることができる。また、常時添加しておくこ
とにり常に良好な性能の鉛蓄電池に保つことができ、自
動車の始動性能の向上に寄するところ大である。
As described above, by adding the function recovery agent of the present invention to the electrolytic solution of a lead storage battery having a deteriorated function, the function can be promptly recovered. Moreover, by always adding the lead-acid battery, it is possible to keep the lead-acid battery with good performance, and this is a great contribution to the improvement of the starting performance of the automobile.

〔実施例〕〔Example〕

以下に本発明を実施例によつて説明する。 The present invention will be described below with reference to examples.

実施例1 中古蓄電池(YUASA Pafecta MF,湯浅電池(株)製)の
各セルに、ビス−β−エチルカルボン酸ゲルマニウムセ
スキオキサイド0.1重量%および水酸化リチウム0.01重
量%を含有する水溶液60mlを平均に添加し、下記に示す
充電機を用いて充電を行ない、充電特性を下記の測定装
置を用いて測定した。なお充電特性は充電電圧と充電時
間との関係(第1図)、比重と充電時間との関係(第2
図)、充電電流と充電時間との関係(第3図)で示し
た。
Example 1 To each cell of a used storage battery (YUASA Pafecta MF, manufactured by Yuasa Battery Co., Ltd.), 60 ml of an aqueous solution containing 0.1% by weight of germanium sesquioxide bis-β-ethylcarboxylic acid and 0.01% by weight of lithium hydroxide was averaged. The mixture was added and charged using the charger shown below, and the charging characteristics were measured using the following measuring device. The charging characteristics are the relationship between charging voltage and charging time (Fig. 1) and the relationship between specific gravity and charging time (Fig. 2).
FIG. 3) and the relationship between charging current and charging time (FIG. 3).

充電機 Kelly Moel KC−6 定格電圧 100V 定格入力容量 30VA 定格出力電圧 12V (無負荷時 14.1V) 測定装置 KAISE Digital Multitester 実施例2 実施例1の如くして添加及び充電した中古蓄電池につい
てヘッドライトを点灯し、消灯するまで放電した。1時
間後に再びヘッライトを点灯するまで放電し、これを4
回繰り返すことにより完全放電させた。
Charger Kelly Moel KC-6 Rated voltage 100V Rated input capacity 30VA Rated output voltage 12V (No load 14.1V) Measuring device KAISE Digital Multitester Example 2 Headlights of used storage batteries added and charged as in Example 1 It turned on and discharged until it went out. After 1 hour, discharge the light until the lights are turned on again,
It was completely discharged by repeating the operation once.

この状態で実施例1と同様にして充電を行ない、充電特
性を測定した。その結果を実施例1と同様に第1図乃至
第3図に示す。
In this state, charging was performed in the same manner as in Example 1 and the charging characteristics were measured. The results are shown in FIGS. 1 to 3 as in the first embodiment.

実施例3 実施例2により充電した蓄電池を実施例2と同様にして
放電させた後、実施例1と同様にして充電した。その充
電特性を測定した結果を実施例1と同様に第1図乃至第
3図に示す。
Example 3 The storage battery charged according to Example 2 was discharged in the same manner as in Example 2, and then charged in the same manner as in Example 1. The results of measuring the charging characteristics are shown in FIGS. 1 to 3 as in Example 1.

比較例1 実施例1において、ビス−β−エチルカルボン酸ゲルマ
ニウムセスキオキサイドおよび水酸化リチウムを含有す
る水溶液を添加しなかつたこと以外は、実施例1と同様
にして充電特性を測定した。その結果を第1図乃至第3
図の比較例1(無添加)として示す。
Comparative Example 1 The charging characteristics were measured in the same manner as in Example 1 except that the aqueous solution containing bis-β-ethylcarboxylic acid germanium sesquioxide and lithium hydroxide was not added. The results are shown in FIGS.
This is shown as Comparative Example 1 (no addition) in the figure.

本発明の機能回復剤を添加することにより、充電電圧お
よび比重が上昇するとともに、充電を速やかに受けつ
け、鉛蓄電池の機能を回復して使用寿命の延長を図るこ
とができることが判る。
It is understood that by adding the function recovery agent of the present invention, the charging voltage and the specific gravity are increased, and the charging can be accepted promptly, the function of the lead storage battery can be recovered, and the service life can be extended.

実施例4 9台の実車を用い、1ケ月間に亘り実車テストを行つ
た。すなわち、1ケ月間に亘り仕業前に、ビス−β−エ
チルカルボン酸ゲルマニウムセスキオキサイド0.1重量
%および水酸化リチウム0.01重量%を含有する水溶液60
ml入りのバッテリー強化液2本を鉛蓄電池(バッテリ
ー)の各セルへ注入し、バッテリーの電圧の変化を調べ
た。
Example 4 An actual vehicle test was conducted for one month using nine actual vehicles. That is, an aqueous solution containing 0.1% by weight of bis-β-ethylcarboxylic acid germanium sesquioxide and 0.01% by weight of lithium hydroxide before the operation for one month.
Two ml of the battery-enhancing liquid containing ml was injected into each cell of the lead acid battery (battery), and the change in the battery voltage was examined.

1ケ月後、次のような結果が得られた。After one month, the following results were obtained.

電圧の上昇したもの 6台 電圧のそのままのもの 2台 電圧の下降したもの 1台 この実車テストにより次のことが判る。すなわち、一般
に鉛蓄電池は使用することにより電圧が下がり、充電す
る必要が生じてくるが、本発明の機能回復剤(バツテリ
ー強化剤)を添加することにより電圧は上昇し、電気容
量の増加、つまり電池の機能増加、寿命の延長等の効果
を生ずる。
6 units with increased voltage 2 units with unchanged voltage 2 units with reduced voltage 1 unit From this actual vehicle test, the following can be found. That is, in general, a lead storage battery has a voltage drop due to use and needs to be charged, but the addition of the function recovery agent (battery enhancer) of the present invention increases the voltage and increases the electric capacity, that is, The effects of increasing the function of the battery and extending the life of the battery are produced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例および比較例における充電電圧
と充電時間との関係を示すグラフ図、第2図は比重と充
電時間との関係を示すグラフ図、第3図は充電電流と充
電時間との関係を示すグラフ図である。
FIG. 1 is a graph showing the relationship between charging voltage and charging time in Examples and Comparative Examples of the present invention, FIG. 2 is a graph showing the relationship between specific gravity and charging time, and FIG. 3 is charging current and charging. It is a graph which shows the relationship with time.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】式 で表わされるビス−β−エチルカルボン酸ゲルマニウム
セスキオキサイド及びアルカリ金属またはアルカリ土類
金属の水酸化物を有効成分として含有する鉛蓄電池の機
能回復剤。
1. A formula A function recovery agent for a lead-acid battery containing bis-β-ethylcarboxylic acid germanium sesquioxide represented by and an alkali metal or alkaline earth metal hydroxide as an active ingredient.
【請求項2】鉛蓄電池の電解液に、 式 で表わされるビス−β−エチルカルボン酸ゲルマニウム
セスキオキサイド及びアルカリ金属またはアルカリ土類
金属の水酸化物を有効成分として含有する鉛蓄電池の機
能回復剤を添加することを特徴とする鉛蓄電池の機能回
復方法。
2. An electrolytic solution for a lead storage battery, comprising: Functional recovery of a lead-acid battery characterized by adding a function recovery agent for a lead-acid battery containing bis-β-ethylcarboxylic acid germanium sesquioxide represented by and an alkali metal or alkaline earth metal hydroxide as an active ingredient Method.
JP61161943A 1986-07-11 1986-07-11 Lead-acid battery function recovery agent and lead-acid battery function recovery method Expired - Lifetime JPH0679493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61161943A JPH0679493B2 (en) 1986-07-11 1986-07-11 Lead-acid battery function recovery agent and lead-acid battery function recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161943A JPH0679493B2 (en) 1986-07-11 1986-07-11 Lead-acid battery function recovery agent and lead-acid battery function recovery method

Publications (2)

Publication Number Publication Date
JPS6319771A JPS6319771A (en) 1988-01-27
JPH0679493B2 true JPH0679493B2 (en) 1994-10-05

Family

ID=15744988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161943A Expired - Lifetime JPH0679493B2 (en) 1986-07-11 1986-07-11 Lead-acid battery function recovery agent and lead-acid battery function recovery method

Country Status (1)

Country Link
JP (1) JPH0679493B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1323397C (en) * 1987-08-31 1993-10-19 Akio Komaki Lead accumulators
GB2247344B (en) * 1987-08-31 1992-06-10 I Kabushiki Kaisha Shinj Saito Lead accumulators
US5738956A (en) * 1994-01-28 1998-04-14 Kyowa Hakko Kogyo Agent for maintaining and recovering the function of lead storage battery and electrolyte for lead storage battery using the same
JP6203472B2 (en) * 2011-10-03 2017-09-27 株式会社Gsユアサ Lead acid battery

Also Published As

Publication number Publication date
JPS6319771A (en) 1988-01-27

Similar Documents

Publication Publication Date Title
KR20070122430A (en) Additives for electrolyte solution of storage battery, and method for preparing the same
JP2002260714A (en) Valve controlled lead storage battery
US7160645B2 (en) Lead-acid battery having an organic polymer additive and process thereof
JPH0679493B2 (en) Lead-acid battery function recovery agent and lead-acid battery function recovery method
JP3386801B1 (en) Lead-acid battery electrolyte composition
JPH11307115A (en) Reinforcing agent for lead-acid battery
JP2007035339A (en) Control valve type lead-acid storage battery
JPH05225999A (en) Function restoration agent for lead-acid battery and function restoration method for lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
JP4411860B2 (en) Storage battery
CA1323397C (en) Lead accumulators
JPH0542114B2 (en)
JPS59194367A (en) Function recovery agent of storage battery and its method
JP4923399B2 (en) Lead acid battery
JP3582068B2 (en) How to charge lead storage batteries
JP4742424B2 (en) Control valve type lead acid battery
JP3675027B2 (en) Charging method for sealed lead-acid batteries
JPH02162649A (en) Lead-acid battery
JPS59217962A (en) Electrolyteless lead-acid battery
JPH0654661B2 (en) Sealed lead acid battery
Wilke Dry Cell Designed to Operate at− 40° C Containing Lithium Chloride in the Electrolyte
JPS61198574A (en) Lead storage battery
JP2004171982A (en) Lead-acid battery
JPH08162147A (en) Electrolyte for lead-acid battery