JPS59194367A - Function recovery agent of storage battery and its method - Google Patents

Function recovery agent of storage battery and its method

Info

Publication number
JPS59194367A
JPS59194367A JP58067869A JP6786983A JPS59194367A JP S59194367 A JPS59194367 A JP S59194367A JP 58067869 A JP58067869 A JP 58067869A JP 6786983 A JP6786983 A JP 6786983A JP S59194367 A JPS59194367 A JP S59194367A
Authority
JP
Japan
Prior art keywords
storage battery
electrode
lead
electrolyte
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58067869A
Other languages
Japanese (ja)
Inventor
Shoichi Hara
正一 原
Shinya Sato
真也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI SANGYO KK
Original Assignee
TOKAI SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI SANGYO KK filed Critical TOKAI SANGYO KK
Priority to JP58067869A priority Critical patent/JPS59194367A/en
Publication of JPS59194367A publication Critical patent/JPS59194367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To quickly recover the function of a storage battery and to keep good performance by adding bis-beta-ethylcarboxylicgermaniumsesquioxide to electrolyte of a lead-acid battery. CONSTITUTION:Bis-beta-ethylcarboxylicgermaniumsesquioxide is added to electrolyte of a lead-acid battery. By adding this compound, a harmful influence by hydrogen and sulfation are prevented, and polarization of Pb electrode and PbO2 electrode in charging is decreased, and voltage required in charge is lowered. Since polarization of both electrodes is low, discharge voltage is high and kept for a long time.

Description

【発明の詳細な説明】 本発明は、蓄電池(ノセンテリー)の電解液に添加して
極板を洗浄すると共に能力の落ちた性能を急速に回復さ
せることができる機能回復剤及びこれによる機能回復方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a function recovery agent that can be added to the electrolyte of a storage battery (nocentary) to clean the electrode plates and rapidly recover degraded performance, and a function recovery method using the same. It is related to.

周知の如く、蓄−電池は、e極(陰極)、■極(陽極)
の両極端子から成9、電気分解によシミ気エネルギーを
化学エネルギーに変えて蓄積でき、必要に応じて再び化
学エネルギーを電気エネルギーに変える所謂、電気分解
による酸化還元作用を利用して電流を取シ出す装置であ
る。
As is well known, a storage battery has an e electrode (cathode) and a ■ electrode (anode).
It consists of two polar terminals, and can be stored by converting the stain energy into chemical energy through electrolysis, and when necessary, converts the chemical energy into electric energy again. It is a device that emits water.

電解液には通常稀硫酸を用い、その比重は、例えば自動
車用の蓄電池では1.200〜1.300のものが用い
られる。最も電気を通すのに良い状態は、+20℃の時
1.260であシ放電が進むに従い比重が低下し完全放
電状態になった時の比重は平均1.050となる。また
、充電して行くと充電完了時には元の比重の1.260
になる。
Dilute sulfuric acid is usually used as the electrolytic solution, and its specific gravity is, for example, 1.200 to 1.300 for automobile storage batteries. The best condition for conducting electricity is 1.260 at +20°C, and as the discharge progresses, the specific gravity decreases, and the specific gravity averages 1.050 when a fully discharged state is reached. In addition, when charging is completed, the original specific gravity is 1.260.
become.

電極は、O極が晶(Pb)、■極が酸化鉛(PbO,)
から成シ、放電状態では電流は■極からO極に、充電状
態ではθ極から■極に流れる。
The O electrode is crystal (Pb), and the ■ electrode is lead oxide (PbO,).
In the discharge state, the current flows from the ■ pole to the O pole, and in the charged state, the current flows from the θ pole to the ■ pole.

蓄電池内での化学作用は、放電時にはe極は硫酸鉛(P
bSO41に、そして■極も硫酸鉛になシ、電解液の硫
酸は電気分解によシ水に変わる。充電時には電極は元の
e極鉛と■極酸化鉛に、また、電解液は水から元の稀硫
酸にもどる。
The chemical action inside the storage battery is that during discharge, the e-electrode is lead sulfate (P).
bSO41, and (1) the electrode is also replaced by lead sulfate, and the sulfuric acid in the electrolyte is converted to water by electrolysis. During charging, the electrodes change back to their original e-electrode lead and ■-electrode lead oxide, and the electrolyte returns from water to its original dilute sulfuric acid.

この充放電作用の原理では蓄電池は無期限に使用できる
はづであるが、次の4つの大きな弱点かあシ劣化がまぬ
がれない。
Although storage batteries should be able to be used indefinitely based on this charging/discharging principle, the following four major weaknesses are inevitable:

1)水素弊害 ii)サルフエイション〔硫酸鉛(PbSO4)白色不
導体の生成〕 111)自己放電 +v)温度変化とその影響 このうち1)の「水素弊害」は、蓄電池にとって最大の
弱点である。蓄電池に充電すると電気分解に工りe極よ
シ水素ガスが、また、■極に酸素ガスが廃生ずる。水素
が■極の表面に気泡の状態で付着すると表面が分極現象
をかこして絶縁状態となり、完全に付着すると全く電流
が流れなくなる。
1) Hydrogen adverse effects ii) Sulfation (formation of lead sulfate (PbSO4) white nonconductor) 111) Self-discharge + v) Temperature changes and their effects Of these, 1) "Hydrogen adverse effects" are the biggest weakness of storage batteries. . When a storage battery is charged, electrolysis occurs and hydrogen gas is produced at the e-electrode, and oxygen gas is produced at the -electrode. When hydrogen adheres to the surface of the electrode in the form of bubbles, the surface undergoes a polarization phenomenon and becomes insulating, and when it completely adheres, no current flows at all.

n)の「サルフエイション」とは、極板が液面から露出
したシ放電してくると○極の鉛、■極の酸化鉛とも硫酸
鉛になる現象である。蓄電池が完全に放電するとサルフ
ェイションをおこし硫酸鉛は不導体であるから電気を通
さなくなシ充電を全く受つけなくなる。このサルフェイ
ションは、多かれ少なかれいづれの蓄電池でも生じる現
象で本来100チの起電力を持つ蓄電池でも著しく力を
失い、また稀硫酸の比重が低下してくる。一度内部にで
きた硫酸鉛は、どんなに充電しても取ることが出来ない
"Sulfation" (n) is a phenomenon in which when the electrode plates are exposed from the liquid surface and discharge occurs, both the lead in the ○ electrode and the lead oxide in the ■ electrode become lead sulfate. When a storage battery is completely discharged, sulfation occurs, and since lead sulfate is a nonconductor, it no longer conducts electricity and cannot be charged at all. This sulfation is a phenomenon that occurs in more or less all storage batteries, and even a storage battery that originally had an electromotive force of 100 cm loses power significantly and the specific gravity of dilute sulfuric acid decreases. Once the lead sulfate is formed inside the battery, it cannot be removed no matter how much you charge it.

111)の「自己放電」は、ti)の様に水素が発生し
■極に付着すると分極現象をおこし、そのため一つの半
電池を作シ、そのためKどんどん自身で放電してゆく現
象である。
``Self-discharge'' in 111) is a phenomenon in which, as in ti), when hydrogen is generated and adheres to the electrode, a polarization phenomenon occurs, thereby creating one half-cell, and therefore K discharges itself more and more.

+V)の「温度変化とその影響」は、外的な気温条件に
よシおこるものであり、蓄電池の電解液(稀硫酸)は+
20℃で比重1.260に設定し、温度1℃に対して比
重が0.007変化する。従って+20℃で100%の
起電力をもつ蓄電池T%−10℃では70%の起電力に
低下することになる。
+V) "Temperature change and its effects" is caused by external temperature conditions, and the electrolyte (dilute sulfuric acid) of the storage battery is
The specific gravity is set to 1.260 at 20°C, and the specific gravity changes by 0.007 per 1°C. Therefore, when the storage battery T% has an electromotive force of 100% at +20°C -10°C, the electromotive force decreases to 70%.

以上の工9に蓄電池の4つの弱点のうちl)水素弊害、
11)サルフエイションおよびi)に付随スる111)
自己放電線化学的方法によって解決し得る可能性がある
Among the four weaknesses of storage batteries in the above work 9, l) Hydrogen adverse effects;
11) Sulfation and sulphation accompanying i) 111)
There is a possibility that this problem can be solved by self-discharge line chemical method.

本発明者らは、有機ゲルマニウム化合物、特ニビスーβ
−エテルカルゼン酸ケルマニウムセスキオキサイドが特
異な電子効果を有し、また強力な酸素供給能を有する化
合物であることに着目し、この性質を利用し蓄電池の性
能回復について鋭意検討の結果、非常に有効であること
を見出し、本発明に至った。
The present inventors have discovered that organic germanium compounds, especially nibi-β
- Focusing on the fact that kermanium ethercarzenate sesquioxide is a compound that has a unique electronic effect and a strong ability to supply oxygen, we have conducted intensive studies to utilize this property to restore the performance of storage batteries, and as a result, we have found that it is extremely effective. It was discovered that this was the case, and the present invention was developed.

即ち、蓄電池の電解液に少量のビスーβ−エチルカルゼ
ン酸ゲルマニウムセスキオキサイドの水溶液を添加する
ことによってこの化合物から多量の酸素が供給されるた
め、蓄電池に生成した水素と結合して水となシ、“所謂
前述の如き水素弊害を完全におさえて蓄電池の機能を高
めることが判明した。また、このととにょシ自己放電の
防止にも役豆つ。
That is, by adding a small amount of an aqueous solution of germanium bis-β-ethylcarzenate sesquioxide to the electrolyte of the storage battery, a large amount of oxygen is supplied from this compound, which combines with the hydrogen generated in the storage battery and becomes water. “It has been found that the above-mentioned adverse effects of hydrogen can be completely suppressed and the functionality of storage batteries can be enhanced.This method is also useful in preventing self-discharge.

また、このゲルマニウム化合物の添加によってサルフエ
イションを完全に元の稀硫酸にもどす作用があル、極板
をきれいにして電気金流れ易くシ、極板の保護にもなる
ことが判った。また、ゲルマニウムの電子効果にょ9す
ばやく極板を洗浄し電位差を高めるので蓄電池が無理な
く速やかに充電を受けつける。
It has also been found that the addition of this germanium compound has the effect of completely returning the sulfation to its original dilute sulfuric acid, cleaning the electrode plate, making it easier for the electrolyte to flow, and protecting the electrode plate. In addition, the electronic effect of germanium quickly cleans the electrode plates and increases the potential difference, so the storage battery accepts charge easily and quickly.

更にゲルマニウム化合物添加による電子特性は、充電時
の場合pb極、 PbO2極の分極が小さくなシ充電に
要する電圧が少なくてすみ、充電時間を短縮する仁とが
できる。放電時の場合も両極の分極が小さいため放電電
圧が大きくなシ、長時間放電に耐え得ることも判明した
Furthermore, the electronic properties due to the addition of germanium compounds are such that during charging, the polarization of the Pb and PbO2 poles is small, so less voltage is required for charging, and the charging time can be shortened. It was also found that during discharge, since the polarization of both poles is small, the discharge voltage is high and the discharge can be withstood for a long time.

以上のように本発明によれば、ビス−β−エテルカルジ
ン酸ゲルマニウムオキサイドを機能の落ちた蓄電池の電
解液に添加することにょって速やかにその機能を回復さ
せ得る。また、常時添加しておくことによって常に良好
な性能の蓄電池に保つことができる。
As described above, according to the present invention, by adding bis-β-ethercaldic acid germanium oxide to the electrolytic solution of a storage battery whose function has deteriorated, its function can be quickly restored. Further, by constantly adding it, it is possible to maintain a storage battery with good performance at all times.

以下に本発明を具体例によって説明する。The present invention will be explained below using specific examples.

実施例1 ビスーβ−エチルカルゼン酸ケルマニウムセスキオキサ
イドの0.1係水溶液60罰を機能を失った1 2 V
 、 12v〜60Aの蓄電池の各セルに平均に添加し
て充電したところ短時間で充電を完了し、その電圧も通
常の値全示し、放電も最高の機能全発揮した。即ち10
.2 V Lかなかった起電力が11.4 Vに回復し
た。
Example 1 0.1% aqueous solution of kermanium sesquioxide bis-β-ethylcarzenate 12V
When it was added on average to each cell of a 12V to 60A storage battery and charged, charging was completed in a short time, the voltage showed all the normal values, and discharge performed at its best. That is 10
.. The electromotive force, which was not present at 2 V L, recovered to 11.4 V.

実施例2 機能の若干低下した自動車用鉛蓄電池(12V、12A
〜60A)に対し、ビス−β−エチルカル昶ン酸ゲルマ
ニウムセスキオキサイドの0.054水溶液50ydi
各セル平均に添加した。
Example 2 Automotive lead-acid battery (12V, 12A) with slightly reduced functionality
~60 A), 50 ydi of 0.054 aqueous solution of bis-β-ethylcarboxylic acid germanium sesquioxide
Added to each cell average.

それまで暗かったヘッドライトが明るさ全増し、また低
温で始動が困難であったものが一発で始動することがで
きた。最初10゜4■の起電力のものが11,5 Vに
回復していた。
The headlights, which were previously dark, became brighter, and I was able to start things that were difficult to start due to low temperatures in one go. Initially, the electromotive force was 10°4■, but it had recovered to 11.5V.

特許出願人 東海産業株式会社 同        佐  藤  真  也手続補正書 昭和58年6月−0日 特許庁長官 若杉和夫殿 1、事件の表示 昭和58年特許出  願m 67869  号2発明の
名称 蓄電池の機能回復剤及び蓄電池の機能回復方法 3 補正をする者 知性との関係 特許出願人 4、代 理 人〒105 5、 補正命令の日付 自 発 6、  i’llf止により増加する発明の数別紙の通
り。
Patent Applicant: Tokai Sangyo Co., Ltd. Shinya Sato Procedural Amendment June 1980-0 Director-General of the Patent Office Kazuo Wakasugi 1, Indication of the Case 1982 Patent Application No. 67869 2 Name of Invention Function of Storage Battery Restoration agent and method for restoring the function of storage batteries 3 Relationship with the intelligence of the person making the amendment Patent applicant 4, Agent 〒105 5, Date of amendment order Voluntary 6, Number of inventions increasing due to i'llf suspension As shown in the attached sheet .

8、補正の内容 (1)明細書第4頁第15行目の「11」とあるを「i
」と訂正する。
8. Contents of amendment (1) “11” on page 4, line 15 of the specification has been replaced with “i”
” he corrected.

(2)  明細書第6頁第19行目の「ゲルマニウム」
とある後ニ、「セスキ」と加入する。
(2) “Germanium” on page 6, line 19 of the specification
After a certain time, he joined the group as ``Sesuki''.

Claims (1)

【特許請求の範囲】 1、鉛蓄電池の電解液に添加するための機能回復剤であ
って、 式  0 = Ge−OH,−0H2−000H0= 
Ge−0H2−OH2−C00Hで表わされるビス−β
−エチルカルジン酸ゲルマニウムセスキオキサイドを水
に溶解させたもの 2、式0 = Ge−0H2−OH,−C!OOH0=
 Ge −OH,−CH2−000Hで表わされるビス
−β−エチルカルジン酸ゲルマニウムセスキオキサイド
を鉛蓄電池の電解液に添加することを特徴とする蓄電池
の機能回復方法。
[Claims] 1. A function restoring agent to be added to the electrolyte of a lead-acid battery, which has the formula 0 = Ge-OH, -0H2-000H0=
Bis-β represented by Ge-0H2-OH2-C00H
- Ethylcaldic acid germanium sesquioxide dissolved in water 2, formula 0 = Ge-0H2-OH, -C! OOH0=
A method for restoring the function of a storage battery, which comprises adding bis-β-ethylcaldic acid germanium sesquioxide represented by Ge -OH, -CH2-000H to an electrolytic solution of a lead-acid battery.
JP58067869A 1983-04-19 1983-04-19 Function recovery agent of storage battery and its method Pending JPS59194367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58067869A JPS59194367A (en) 1983-04-19 1983-04-19 Function recovery agent of storage battery and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58067869A JPS59194367A (en) 1983-04-19 1983-04-19 Function recovery agent of storage battery and its method

Publications (1)

Publication Number Publication Date
JPS59194367A true JPS59194367A (en) 1984-11-05

Family

ID=13357359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067869A Pending JPS59194367A (en) 1983-04-19 1983-04-19 Function recovery agent of storage battery and its method

Country Status (1)

Country Link
JP (1) JPS59194367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738956A (en) * 1994-01-28 1998-04-14 Kyowa Hakko Kogyo Agent for maintaining and recovering the function of lead storage battery and electrolyte for lead storage battery using the same
JP2011076930A (en) * 2009-09-30 2011-04-14 Nissan Motor Co Ltd Capacity recovery method of lithium ion secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155931A (en) * 1974-11-13 1976-05-17 Noboru Higashide Jukigerumaniumu nyoru namarichikudenchino saiseiho
JPS5310827A (en) * 1976-07-19 1978-01-31 Raika Kk Method of regenerating lead battery with organic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155931A (en) * 1974-11-13 1976-05-17 Noboru Higashide Jukigerumaniumu nyoru namarichikudenchino saiseiho
JPS5310827A (en) * 1976-07-19 1978-01-31 Raika Kk Method of regenerating lead battery with organic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738956A (en) * 1994-01-28 1998-04-14 Kyowa Hakko Kogyo Agent for maintaining and recovering the function of lead storage battery and electrolyte for lead storage battery using the same
US5780183A (en) * 1994-01-28 1998-07-14 Kyowa Hakko Kogyo Co., Ltd. Agent for maintaining and recovering the function of lead storage battery and electrolyte for lead storage battery using the same
JP2011076930A (en) * 2009-09-30 2011-04-14 Nissan Motor Co Ltd Capacity recovery method of lithium ion secondary battery

Similar Documents

Publication Publication Date Title
GB2083273A (en) Method for increasing recycling life of non-aqueous cells
CN100461527C (en) Sulfuration restoration agent for lead acid battery
US3964927A (en) Lead dioxide-zinc rechargeable-type cell and battery and electrolyte therefor
JPS59194367A (en) Function recovery agent of storage battery and its method
JP3386801B1 (en) Lead-acid battery electrolyte composition
US20140023917A1 (en) High Performance Lead Acid Battery with Advanced Electrolyte System
JP2007035339A (en) Control valve type lead-acid storage battery
JP4081698B2 (en) Lead-acid battery charging method
JPS6319771A (en) Function recovery agent of lead-acid battery and its function recovery method
RU2303841C1 (en) Storage battery and its operating process
JP2005063876A (en) Storage battery regenerant, and regeneration method of deteriorated storage battery using it
JPS58117658A (en) Sealed lead-acid battery
KR950004457B1 (en) Lead battery
Ji Discussion on Charge Discharge and Repair Technology of Lead Acid Battery
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
JP3216450B2 (en) Electrolyte for lead-acid batteries
Boudieb et al. Influence of surfactant as an electrolyte additive on the electrochemical and corrosion behaviors of lead-acid battery
Turaev Zinc-Bromine Alkali-Salt Membrane Chemical Power Cell
KR20190088161A (en) Electrolyte based on the composition of 2 organic redox couples for RFB
JP3344152B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPS5956368A (en) Performance recovery method for lead-acid battery
US408287A (en) Secondary battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JP3428555B2 (en) How to recover the capacity of alkaline storage batteries
JP3582068B2 (en) How to charge lead storage batteries