JPS5956368A - Performance recovery method for lead-acid battery - Google Patents

Performance recovery method for lead-acid battery

Info

Publication number
JPS5956368A
JPS5956368A JP57167295A JP16729582A JPS5956368A JP S5956368 A JPS5956368 A JP S5956368A JP 57167295 A JP57167295 A JP 57167295A JP 16729582 A JP16729582 A JP 16729582A JP S5956368 A JPS5956368 A JP S5956368A
Authority
JP
Japan
Prior art keywords
lead
battery
gas
acid battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57167295A
Other languages
Japanese (ja)
Inventor
Kunio Yonezu
米津 邦雄
Masashi Iwata
政司 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP57167295A priority Critical patent/JPS5956368A/en
Publication of JPS5956368A publication Critical patent/JPS5956368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To recover, with easy way, performance of a negative plate having a lead-antimony alloy grid of a lead-acid battery by generating hydrogen sulfide gas in electrolyte, especially by compulsorily charging a battery at an electrolyte temperature of 60-100 deg.C. CONSTITUTION:Performance of a lead-acid battery having a lead-antimony alloy grid is recovered by generating hydrogen sulfide gas in electrolyte. To supply H2S gas to a practically battery, a supply pipe, or an H2S bottle of H2S generator are necessary. When a battery is compulsorily charged at high temperature, a small amount of H2S gas is generated and the same effect as H2S gas supply is expected. Therefore, a battery is compulsorily charged at electrolyte temperature of 60-100 deg.C to recover discharge capacity and self discharge.

Description

【発明の詳細な説明】 本発明はアンチモンによって汚染され、いわゆるサルフ
エーションを起した負倫仮を育才る鉛蓄を池の特性回復
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for restoring the characteristics of lead ponds contaminated with antimony and causing so-called sulfation.

周知のようにて電工充電で使用される鉛−アンチモン合
金格子を用いπ鉛蓄電池は、正−格子の腐食によって宕
出しにアンチモンまγこはそのイオンが負−仮に析出し
て寿命となる。アンチモンによって汚染されると負自板
は水素過電工が小さくなり、次式の反応で硫酸鉛を生成
し、これが発達して充電不能となる、いわゆるサルフエ
ーンヨンを起こす。
As is well known, a π lead acid battery using a lead-antimony alloy lattice used in electrician charging reaches the end of its life due to corrosion of the positive lattice, and antimony ions are precipitated in the negative lattice. When contaminated with antimony, the hydrogen overvoltage of the negative plate becomes small, and lead sulfate is produced by the following reaction, which develops and causes the so-called sulfur ion, which makes it impossible to charge.

Pb + 21:[+804  → Pb80< + 
H!これを防ぐfこめに低ア゛ノチモン合金や鉛−カル
シウム合金からなる格子が実用され始めている。
Pb + 21: [+804 → Pb80< +
H! In order to prevent this, grids made of low anotimony alloys or lead-calcium alloys are beginning to be put into practical use.

しかしこれらの!池では、iE鋤格子と活物質との界面
に伝導性の無い鉛化合物からなるバリヤーが形成されや
すく、短嵜命となることがある。
But these! In ponds, a barrier made of a lead compound with no conductivity is likely to be formed at the interface between the iE plow lattice and the active material, which may lead to a short life.

本発明は定WLEE充電で使用されろ鉛蓄電池の上記欠
点を解消し、長奢命化することを目的としている。
The present invention aims to eliminate the above-mentioned drawbacks of lead-acid batteries used in constant WLEE charging and to extend their lifespan.

本発明の要旨は電解液中で硫化水素ガスを発生させるこ
とにあり、とくに電解液温度60〜100 ”Cで強制
的に光電することにある。
The gist of the present invention is to generate hydrogen sulfide gas in an electrolytic solution, and particularly to forcibly photoelectrically generate hydrogen sulfide gas at an electrolytic solution temperature of 60 to 100''C.

アンチモン5%を含む鉛−アンチモン系合金格子を用い
た据置電池を約10年間2.11)v/ナセル定電FE
充電した電池の9囁活物質のア′シチモン電は0.15
% で、その大部分は動板表面fζ付着していTコ。こ
の負―板と新しい負fMl&とについて光放電Wl、流
と1111(至)電位との関係を銅1図に示す。なお、
第1図において実線は新しい負−仮の場合、点線は10
年間経過後の負−)の場合を示す。10 年間経過し1
こ負自仮では水素過電圧が小さく、自己放電。
Stationary batteries using a lead-antimony alloy lattice containing 5% antimony for about 10 years 2.11) v/nacelle constant current FE
The charge of the active material of the charged battery is 0.15.
%, most of which is attached to the moving plate surface fζ. The relationship between the photodischarge Wl, current and the 1111 (to) potential for this negative plate and the new negative fMl& is shown in Figure 1. In addition,
In Figure 1, the solid line is the new negative-temporary case, and the dotted line is 10
Shows the case of negative -) after a year has elapsed. 10 years have passed 1
In this case, the hydrogen overvoltage is small and self-discharge occurs.

の速度は約100倍になっている。この自己放電速度は
第1図の充電反応と放電反応の電位の交点から求ぬられ
る、すなわち、自己放電の反応はすでに述べfこように
、 とfζ分けられ、その交点、すなわち電位が同じ点曲に
硫化水素(Hs8)をバブリ゛ノグし1このち、前記と
同様に充放電電流と小壜電位との関係を求めて第1図に
破線で示す。自己放電の反応速度は約】イ0 に減少し
ている。
The speed is approximately 100 times faster. This self-discharge rate can be found from the intersection of the potentials of the charging reaction and the discharging reaction in Figure 1. In other words, the self-discharge reaction is divided into f and fζ as described above, and the intersection, that is, the point where the potential is the same. Hydrogen sulfide (Hs8) was bubbled into the tube.1Then, the relationship between the charging/discharging current and the pot potential was determined in the same manner as described above and is shown by the broken line in FIG. The reaction rate of self-discharge is reduced to about ]i0.

実用の電池に対してH2S  ガスを送入するのは送入
パイプを設けるとか、H2S  ガスのボンベや3− 発生装置を準備することが必映である。しかし、電池を
高温度で強制的に充電すると生型の口28放電反応を求
めTこ結果で@1表に示す。
In order to supply H2S gas to a practical battery, it is necessary to provide a supply pipe, prepare a cylinder for H2S gas, and prepare a generator. However, when the battery is forcibly charged at a high temperature, a green discharge reaction is obtained and the results are shown in Table 1.

自已放電速1i[は60′C以上で低下しているが、−
万放!@量は110°C以上で低下している。すなわ 
4 ち放電容量と自己放電速度とを共に回復させるには電解
液温間を60〜100”Cとして強制的に充電すればよ
いことが判る。
Although the self-discharge rate 1i [decreases above 60'C, -
Million releases! @The amount decreases above 110°C. Sunawa
4. It can be seen that in order to recover both the discharge capacity and self-discharge rate, it is necessary to forcefully charge the electrolyte at a temperature of 60 to 100''C.

以上のようiζH28ガスで負動仮の自己放電速度が小
さくなる理由は 2Sb −1−3H28−+ Hbs8g −1−3H
zなる反応で8bが負勤板から除去されろものと考えら
れる。
As mentioned above, the reason why the negative self-discharge rate becomes smaller with iζH28 gas is 2Sb -1-3H28-+ Hbs8g -1-3H
It is thought that 8b is removed from the negative plate by the reaction z.

まTコ高温邸で強制的に充電してHt8ガスが発生する
のは Ign + 804−1−1ie −Ht8−1−4f
l*0という反応と考えられるが、未だ確証はない。
Well, Ht8 gas is generated by forcibly charging in the Tko high temperature residence is Ign + 804-1-1ie -Ht8-1-4f
It is thought to be a reaction of l*0, but there is no confirmation yet.

本発明は以上lこ詳述し1こように沿−アンチモン合金
格子を宵するfFI蓄電池の負陰仮の特性を簡易な方法
で回復させるもbである。
The present invention has been described in detail above, and it is an object of the present invention to recover the negative negative characteristics of an fFI storage battery using an antimony alloy lattice in a simple manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉛蓄電池の充電を流と負−電位との関係を示す
特性図である。  5 − 河  1  目 l        /θ        /ρp   
     tlz6θ      /σρ7117六依
 誉 畳重 (側A)
FIG. 1 is a characteristic diagram showing the relationship between charging current and negative potential of a lead-acid battery. 5 - River 1st l /θ /ρp
tlz6θ /σρ7117 Rokuyori Homare Tatamige (Side A)

Claims (1)

【特許請求の範囲】 (11電解液中で硫化水素ガスを発生させることを特徴
と才る沿−アンチモン合金格子を有する鉛蓄電池の特性
回復方法つ (21電解液温度60〜100″Cで強制的に光電する
ことfこより、負勤仮から硫化水素ガスを発生させろこ
とを特徴と才る鉛−アンチモン合金格子を有する鉛蓄電
池の特性回復方法。
[Claims] (11) A method for restoring the characteristics of a lead-acid battery having an antimony alloy lattice characterized by generating hydrogen sulfide gas in the electrolyte (21) A method for restoring the characteristics of a lead-acid battery having a lead-antimony alloy lattice, characterized in that hydrogen sulfide gas is generated from the photovoltaic process.
JP57167295A 1982-09-25 1982-09-25 Performance recovery method for lead-acid battery Pending JPS5956368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167295A JPS5956368A (en) 1982-09-25 1982-09-25 Performance recovery method for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167295A JPS5956368A (en) 1982-09-25 1982-09-25 Performance recovery method for lead-acid battery

Publications (1)

Publication Number Publication Date
JPS5956368A true JPS5956368A (en) 1984-03-31

Family

ID=15847100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167295A Pending JPS5956368A (en) 1982-09-25 1982-09-25 Performance recovery method for lead-acid battery

Country Status (1)

Country Link
JP (1) JPS5956368A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584250B1 (en) 2005-01-24 2006-05-26 주식회사 배리텍 Recycling method of waste battery for vehicles
KR100805075B1 (en) 2007-08-20 2008-02-20 주식회사 울트라 Recycling method of waste battery for vehicles
CN106972213A (en) * 2017-05-09 2017-07-21 超威电源有限公司 A kind of capacity quick recovery method of lead-acid accumulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343842A (en) * 1976-10-01 1978-04-20 Yuasa Battery Co Ltd Method of recovering lead battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343842A (en) * 1976-10-01 1978-04-20 Yuasa Battery Co Ltd Method of recovering lead battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584250B1 (en) 2005-01-24 2006-05-26 주식회사 배리텍 Recycling method of waste battery for vehicles
KR100805075B1 (en) 2007-08-20 2008-02-20 주식회사 울트라 Recycling method of waste battery for vehicles
CN106972213A (en) * 2017-05-09 2017-07-21 超威电源有限公司 A kind of capacity quick recovery method of lead-acid accumulator

Similar Documents

Publication Publication Date Title
US8927143B2 (en) Aluminum storage battery
JPS5956368A (en) Performance recovery method for lead-acid battery
WO2013058079A1 (en) Method for operating molten salt battery
US4046642A (en) Method of making electric storage batteries
Hampson et al. The effect of alloying with bismuth on the electrochemical behavior of lead
JP3216450B2 (en) Electrolyte for lead-acid batteries
JPS58117658A (en) Sealed lead-acid battery
JPS5916279A (en) Lead storage battery
JP2578633B2 (en) Zinc electrode for alkaline storage batteries
JP3185300B2 (en) Sealed lead-acid battery
JPS60198066A (en) Alkaline storage battery
JP3102000B2 (en) Lead storage battery
JPS61198574A (en) Lead storage battery
JPS607061A (en) Manufacture of plate for sealed lead storage battery
JP3582068B2 (en) How to charge lead storage batteries
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPS59194367A (en) Function recovery agent of storage battery and its method
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPS5810376A (en) Lead accumulator using lead-calcium system alloy grid
CN116344977A (en) Lead-acid storage battery repairing method
JPS586275B2 (en) lead acid battery
JPH07226225A (en) Positive grid of lead-acid battery
JPS61128465A (en) Electrode plate for lead-acid battery
JPS6047376A (en) Lead storage battery
JPS58169872A (en) Base unit for lead storage battery