JPH08162147A - Electrolyte for lead-acid battery - Google Patents

Electrolyte for lead-acid battery

Info

Publication number
JPH08162147A
JPH08162147A JP6306481A JP30648194A JPH08162147A JP H08162147 A JPH08162147 A JP H08162147A JP 6306481 A JP6306481 A JP 6306481A JP 30648194 A JP30648194 A JP 30648194A JP H08162147 A JPH08162147 A JP H08162147A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic solution
lead
sulfate
hydrogensulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6306481A
Other languages
Japanese (ja)
Other versions
JP3216450B2 (en
Inventor
Kazuo Toshima
和夫 戸島
Tomokazu Yamauchi
友和 山内
Yasuhiro Otsuka
康弘 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP30648194A priority Critical patent/JP3216450B2/en
Publication of JPH08162147A publication Critical patent/JPH08162147A/en
Application granted granted Critical
Publication of JP3216450B2 publication Critical patent/JP3216450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE: To improve the discharging capacity of a lead-acid battery and extend the service life by designing the additive to the electrolyte. CONSTITUTION: This electrolyte is used for lead-acid battery, and a hydrogensulfide is added thereto. Since the hydrogensulfide has a high solubility to electrolyte, compared with a conventional sulfate, the effect for suppressing the generation of Pb<2+> , at an over discharge, to suppress the crystal growth of PbSO4 or the reduction in conductivity of the electrolyte is improved by the portion that the adding concentration to the electrolyte can be increased. The precipitation of the hydrogensulfide on a grid-active material critical surface under low temperature can be also suppressed to suppress the problem that the shielding between grid-active materials by the precipitated material. Further, although PbSO4 repeats dissolution and precipitation to grow the crystal when the pH of the electrolyte is increased, the hydrogensulfide is advantageous for suppressing the crystal growth of PbSO4 because it has a high acidity, compared with the sulfate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉛蓄電池用の電解液に関
し、詳しくは鉛蓄電池の放電容量及び寿命の向上を図る
ことのできる鉛蓄電池用の電解液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for a lead storage battery, and more particularly to an electrolytic solution for a lead storage battery which can improve the discharge capacity and life of the lead storage battery.

【0002】[0002]

【従来の技術】従来より、硫酸を電解液とし、負極活物
質にPb粉、正極活物質にPbO2 を用い、これら活物
質をセパレータを中間において対置させ、ガラスあるい
は合成樹脂製電槽に収めた鉛蓄電池が知られている。こ
の鉛蓄電池においては、放電時に負極のPb及び正極の
PbO2 はPbSO4 になり、充電時に負極はPbに正
極はPbO2 に戻る。また、電解液の希硫酸は、放電時
に電気分解により水に変わり、充電時に水から希硫酸に
戻る。
2. Description of the Related Art Conventionally, sulfuric acid was used as an electrolytic solution, Pb powder was used as a negative electrode active material, and PbO 2 was used as a positive electrode active material, and these active materials were placed in the middle of a separator and placed in a glass or synthetic resin battery container. Lead acid batteries are known. In this lead acid battery, the negative electrode Pb and the positive electrode PbO 2 become PbSO 4 during discharging, and the negative electrode returns to Pb and the positive electrode returns to PbO 2 during charging. Further, the dilute sulfuric acid in the electrolytic solution is converted into water by electrolysis during discharge, and returns from water to dilute sulfuric acid during charge.

【0003】一般に、鉛蓄電池は長期間放置されたり、
過放電放置されると、自己放電により充電不可能な状態
となる。すなわち、過放電されると、電解液中の硫酸濃
度が低下して電解液比重が低下する。とくに極板表面よ
り極板内部の格子近傍で電解液比重が著しく低下する。
このように電解液比重が低下すると、格子としてのPb
や極板中に生成したPbSO4 の溶解度が増大してPb
2+が多量に溶出し、このPb2+はOH- 、O2-と結合し
てPbOX を生成する。また、このような酸化反応によ
り電解液のpHが高くなり電位が下がるため、正極格子
近傍でPbO2→PbSO4 への還元反応が起こり、ま
たPbSO4 はpHが高くなると溶解析出を繰り返する
ので非還元性の巨大なPbSO4 の結晶が格子−活物質
界面に析出する。したがって、上記PbOX の生成及び
PbSO4 の生成成長により高抵抗被膜が格子−活物質
界面に形成され、充電不可能状態となる。
Generally, lead-acid batteries are left for a long time,
If left over-discharged, it becomes unchargeable due to self-discharge. That is, when over-discharged, the concentration of sulfuric acid in the electrolytic solution is lowered and the specific gravity of the electrolytic solution is lowered. In particular, the specific gravity of the electrolytic solution is remarkably reduced in the vicinity of the grid inside the electrode plate from the surface of the electrode plate.
When the specific gravity of the electrolytic solution decreases in this way, Pb as a grid
And the solubility of PbSO 4 formed in the electrode plate increases
A large amount of 2+ is eluted, and this Pb 2+ combines with OH and O 2 to produce PbO x . Further, since the pH of the electrolytic solution increases and the potential decreases due to such an oxidation reaction, a reduction reaction of PbO 2 → PbSO 4 occurs near the positive electrode lattice, and PbSO 4 repeats dissolution and precipitation when the pH increases. Huge non-reducing PbSO 4 crystals are deposited at the lattice-active material interface. Therefore, a high resistance film is formed on the lattice-active material interface due to the generation and growth of PbO x and PbSO 4 , resulting in a non-chargeable state.

【0004】そこで、電解液中にNa2 SO4 やK2
4 などのアルカリ金属の硫酸塩や硫酸アンモニウムな
どを添加することにより、過放電放置性能を向上させる
ことが従来より行われている(特開平1−267965
号公報参照)。これらのアルカリ金属の硫酸塩や硫酸ア
ンモニウムは、過放電時に電解液比重が低下した場合、
Pb2+の生成を抑えてPbOX の発生やPbSO4 の結
晶成長を抑える働きをする。また過放電時、H2 SO4
はH2 OやPbSO4 になるため、充電電流を担うイオ
ンの存在が極めて少ない状態となり電解液の電導度が極
度に低下するが、電解液中に添加されたアルカリ金属の
硫酸塩や硫酸アンモニウムのイオンにより電導度低下が
抑えられ、回復充電特性が向上する。
Therefore, Na 2 SO 4 and K 2 S are added to the electrolytic solution.
It has been conventionally performed to improve the over-discharge leaving performance by adding an alkali metal sulfate such as O 4 or ammonium sulfate (Japanese Patent Laid-Open No. 1-267965).
(See the official gazette). Sulfates and ammonium sulfates of these alkali metals, when the specific gravity of the electrolyte decreases during overdischarge,
It functions to suppress the generation of Pb 2+ and suppress the generation of PbO x and the crystal growth of PbSO 4 . Also, during over discharge, H 2 SO 4
Becomes H 2 O or PbSO 4 , so that the number of ions that carry the charging current is extremely small, and the conductivity of the electrolytic solution is extremely reduced. However, the alkali metal sulfate or ammonium sulfate added to the electrolytic solution Ions suppress the decrease in conductivity and improve the recovery charge characteristics.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来の電
解液中にアルカリ金属の硫酸塩や硫酸アンモニウムを添
加する技術によっても、十分に放電容量を向上させるこ
とが困難で、さらなる放電容量の向上及び寿命延長が望
まれている。本発明は上記実情に鑑みてなされたもので
あり、電解液中への添加物の工夫により、さらなる放電
容量の向上及び寿命延長を図ることを解決すべき技術課
題とするものである。
However, it is difficult to sufficiently improve the discharge capacity even by the technique of adding an alkali metal sulfate or ammonium sulfate to the above-mentioned conventional electrolytic solution, and further improvement of the discharge capacity and Life extension is desired. The present invention has been made in view of the above circumstances, and it is a technical problem to be solved to further improve the discharge capacity and extend the life by devising an additive in the electrolytic solution.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する本発
明の鉛蓄電池用の電解液は、鉛蓄電池に用いられる電解
液であって、硫酸水素塩が添加されていることを特徴と
するものである。
An electrolytic solution for a lead-acid battery of the present invention which solves the above-mentioned problems is an electrolytic solution used for a lead-acid battery, characterized in that hydrogen sulfate is added. Is.

【0007】[0007]

【作用】本発明の鉛蓄電池用の電解液には硫酸水素塩が
添加されており、アルカリ金属の硫酸塩や硫酸アンモニ
ウムが添加された従来の電解液と比べて、鉛蓄電池の放
電容量の向上及び寿命の延長をより効果的に図ることが
できる。この理由は以下のように考えられる。
[Action] Hydrogen sulfate is added to the electrolytic solution for a lead storage battery of the present invention, which improves the discharge capacity of the lead storage battery and improves the discharge capacity of the lead storage battery as compared with a conventional electrolytic solution containing an alkali metal sulfate or ammonium sulfate. The life can be extended more effectively. The reason for this is considered as follows.

【0008】硫酸水素塩は、上記従来の硫酸塩と同様
に、過放電時に、Pb2+の生成を抑えてPbSO4 の結
晶成長を抑えたり、電解液の電導度低下を抑えたりする
効果に貢献する。すなわち、過放電時に電解液中の硫酸
濃度が低下して電解液比重が低下するとPbSO4 の溶
解度が増大してPb2+の生成が増大するが、弱電解質の
PbSO4 はSO4 2-という共通イオンをもつ硫酸水素
塩が共存するとその電離度が小さくなるため、Pb2+
生成を抑えることができる。また過放電時、H2SO4
はH2 OやPbSO4 になるため、充電電流を担うイオ
ンの存在が極めて少ない状態となり電解液の電導度が極
度に低下するが、電解液中に添加された硫酸水素塩のイ
オンにより電導度低下が抑えられ、回復充電特性の向上
により放電容量及び寿命の向上に貢献する。
Hydrogen sulphate has the effect of suppressing the production of Pb 2+ and suppressing the crystal growth of PbSO 4 and suppressing the decrease of the electric conductivity of the electrolytic solution at the time of over-discharge, like the above-mentioned conventional sulphate. To contribute. That is, when the sulfuric acid concentration in the electrolytic solution decreases and the specific gravity of the electrolytic solution decreases during overdischarge, the solubility of PbSO 4 increases and the production of Pb 2+ increases, but PbSO 4 of the weak electrolyte is called SO 4 2-. When hydrogensulfate having a common ion coexists, its ionization degree decreases, so that the production of Pb 2+ can be suppressed. Also, during over discharge, H 2 SO 4
Changes to H 2 O or PbSO 4 , the presence of the ions that carry the charging current is extremely low, and the conductivity of the electrolyte is extremely reduced. However, due to the hydrogen sulfate ion added to the electrolyte, the conductivity decreases. The decrease is suppressed and the recovery charge characteristics are improved, which contributes to the improvement of the discharge capacity and the life.

【0009】ここで、硫酸水素塩は、従来の硫酸塩と比
べて電解液に対する溶解度が大きく、電解液への添加濃
度を高くすることが可能である。例えば、K2 SO4
水に対する溶解度は12.05g/100g(25℃)
であるのに対し、KHSO4の水に対する溶解度は5
1.5g/100g(25℃)である.このため硫酸水
素塩は、電解液への添加濃度を高くすることができる分
だけ、過放電時に、Pb 2+の生成を抑えてPbSO4
結晶成長を抑えたり、電解液の電導度低下を抑えたりす
る効果が従来の硫酸塩より優れる。また、電解液に対す
る溶解度が大きいことから、硫酸水素塩が低温下で格子
−活物質界面に析出することを抑えることができ、析出
物質により格子−活物質間が遮蔽されて放電容量が低下
する問題を抑えることができる。
Here, the hydrogen sulfate is compared with the conventional sulfate.
All of them have high solubility in the electrolyte solution and
It is possible to increase the degree. For example, K2SOFourof
Solubility in water is 12.05g / 100g (25 ℃)
While KHSOFourSolubility in water is 5
It is 1.5 g / 100 g (25 ° C.). For this reason sulfuric acid water
Elementary salt is a component that can increase the concentration of addition to the electrolyte.
However, at the time of over discharge, Pb 2+Generation of PbSOFourof
It suppresses crystal growth and suppresses the decrease in the conductivity of the electrolyte.
Is superior to conventional sulfates. Also, for electrolyte
The high solubility of hydrogen sulphate makes it
-Precipitation at the active material interface can be suppressed,
The material shields the lattice-active material and reduces the discharge capacity.
You can suppress the problem.

【0010】また、前述したように電解液のpHが高く
なると、正極格子近傍でPbO2 →PbSO4 への還元
反応が起こるとともに、PbSO4 は溶解析出を繰り返
して非還元性の巨大なPbSO4 結晶として格子−活物
質界面に析出するが、硫酸水素塩は硫酸塩と比べて酸性
度が高いので、PbSO4 の結晶成長を抑えるのに有利
となる。
Further, as described above, when the pH of the electrolytic solution becomes high, a reduction reaction of PbO 2 → PbSO 4 occurs near the positive electrode lattice, and PbSO 4 is repeatedly dissolved and precipitated to form a large non-reducing PbSO 4 Although crystals are deposited at the lattice-active material interface, hydrogen sulfate has a higher acidity than sulfates, which is advantageous for suppressing the crystal growth of PbSO 4 .

【0011】[0011]

【実施例】以下、本発明の実施例を具体的に説明する。 (実施例1)希硫酸(濃度42.4wt%)に硫酸水素
カリウム(KHSO4 )を0.1mol/L添加した電
解液を準備した。この電解液を、微細なガラス繊維より
なるセパレータを介して正・負極板を配設した合成樹脂
製の電槽内に注入して、2Ah−6.0Vの鉛蓄電池を
作製した。なお、正極活物質はPbO2 よりなり、負極
は活物質はPbよりなる。
EXAMPLES Examples of the present invention will be specifically described below. Example 1 An electrolytic solution was prepared by adding 0.1 mol / L of potassium hydrogen sulfate (KHSO 4 ) to dilute sulfuric acid (concentration 42.4 wt%). This electrolytic solution was injected into a battery case made of synthetic resin in which positive and negative electrode plates were arranged via a separator made of fine glass fibers, to produce a lead storage battery of 2Ah-6.0V. The positive electrode active material is PbO 2 and the negative electrode active material is Pb.

【0012】(実施例2)硫酸水素カリウム(KHSO
4 )の代わりに硫酸水素アンモニウム(NH4 ・HSO
4 )を電解液に添加すること以外は、上記実施例1と同
様にして鉛蓄電池を作製した。 (比較例1)硫酸水素カリウム(KHSO4 )を電解液
に添加しないこと以外は、上記実施例1と同様にして鉛
蓄電池を作製した。
(Example 2) Potassium hydrogensulfate (KHSO
4 ) instead of ammonium hydrogen sulfate (NH 4 · HSO
A lead acid battery was produced in the same manner as in Example 1 except that 4 ) was added to the electrolytic solution. Except that (Comparative Example 1) without the addition of potassium hydrogen sulfate (KHSO 4) in the electrolytic solution, to prepare a lead-acid battery in the same manner as in Example 1.

【0013】(比較例2)硫酸水素カリウム(KHSO
4 )の代わりに硫酸カルシウム(CaSO4 )を電解液
に添加すること以外は、上記実施例1と同様にして鉛蓄
電池を作製した。 (比較例3)硫酸水素カリウム(KHSO4 )の代わり
に硫酸ヒドラジン(N2 4 ・H2SO4 )を電解液に
添加すること以外は、上記実施例1と同様にして鉛蓄電
池を作製した。
Comparative Example 2 Potassium hydrogen sulfate (KHSO
A lead acid battery was prepared in the same manner as in Example 1 except that calcium sulfate (CaSO 4 ) was added to the electrolytic solution instead of 4 ). (Comparative Example 3) A lead storage battery was prepared in the same manner as in Example 1 except that hydrazine sulfate (N 2 H 4 · H 2 SO 4 ) was added to the electrolytic solution instead of potassium hydrogen sulfate (KHSO 4 ). did.

【0014】(比較例4)硫酸水素カリウム(KHSO
4 )の代わりに硫酸ナトリウム(Na2 SO4 )を電解
液に添加すること以外は、上記実施例1と同様にして鉛
蓄電池を作製した。 (比較例5)硫酸水素カリウム(KHSO4 )の代わり
に硫酸カリウム(K2 SO4 )を電解液に添加すること
以外は、上記実施例1と同様にして鉛蓄電池を作製し
た。
(Comparative Example 4) Potassium hydrogen sulfate (KHSO
A lead acid battery was prepared in the same manner as in Example 1 except that sodium sulfate (Na 2 SO 4 ) was added to the electrolytic solution instead of 4 ). (Comparative Example 5) except that added to the electrolytic solution of potassium sulfate (K 2 SO 4) in place of potassium hydrogen sulfate (KHSO 4) was prepared lead-acid batteries in the same manner as in Example 1.

【0015】(比較例6)硫酸水素カリウム(KHSO
4 )の代わりに硫酸マグネシウム(MgSO4 )を電解
液に添加すること以外は、上記実施例1と同様にして鉛
蓄電池を作製した。 (比較例7)硫酸水素カリウム(KHSO4 )の代わり
に硫酸アンモニウム((NH4 2SO4 )を電解液に
添加すること以外は、上記実施例1と同様にして鉛蓄電
池を作製した。
Comparative Example 6 Potassium hydrogen sulfate (KHSO
A lead acid battery was prepared in the same manner as in Example 1 except that magnesium sulfate (MgSO 4 ) was added to the electrolytic solution instead of 4 ). Except that the addition (Comparative Example 7) Instead of ammonium sulfate potassium hydrogen sulfate (KHSO 4) ((NH 4 ) 2 SO 4) to the electrolytic solution, to prepare a lead-acid battery in the same manner as in Example 1.

【0016】(放電容量の評価)上記実施例1、2及び
比較例1〜7の鉛蓄電池について、放電容量を評価し
た。これは、放電:2A(1CA)で4.2Vまで、充
電:0.2A(0.1CA)で7Hrの条件で充・放電
し、電解液に何も添加していない比較例1に係る鉛蓄電
池の放電容量を基準として他のものを比較した。その結
果を図1に示す。
(Evaluation of Discharge Capacity) The discharge capacities of the lead storage batteries of Examples 1 and 2 and Comparative Examples 1 to 7 were evaluated. This is the lead according to Comparative Example 1, which was charged / discharged under the conditions of discharge: 2 A (1 CA) up to 4.2 V, charge: 0.2 A (0.1 CA) and 7 Hr, and nothing was added to the electrolytic solution. Others were compared based on the discharge capacity of the storage battery. The result is shown in FIG.

【0017】図1から明らかなように、電解液に硫酸水
素塩を添加した実施例1及び実施例2に係る鉛蓄電池
は、電解液に硫酸塩を添加した比較例2〜7に係る鉛蓄
電池と比べていずれも放電容量が向上した。また、電解
液に硫酸水素アンモニウムを添加した実施例2に係る鉛
蓄電池、及び電解液に何も添加していない比較例1に係
る鉛蓄電池について、上記と同様の条件で放電時間と放
電電圧との関係を調べた。実施例2についての結果を図
2に、比較例1についての結果を図3にそれぞれ示す。
As is apparent from FIG. 1, the lead storage batteries according to Examples 1 and 2 in which hydrogen sulfate was added to the electrolytic solution were the lead storage batteries according to Comparative Examples 2 to 7 in which sulfate was added to the electrolytic solution. In both cases, the discharge capacity was improved. Further, regarding the lead storage battery according to Example 2 in which ammonium hydrogen sulfate was added to the electrolytic solution and the lead storage battery according to Comparative Example 1 in which nothing was added to the electrolytic solution, the discharge time and the discharge voltage were changed under the same conditions as above. I investigated the relationship. The results for Example 2 are shown in FIG. 2, and the results for Comparative Example 1 are shown in FIG.

【0018】図2及び図3から明らかなように、実施例
2に係る鉛蓄電池は、2回目以降の放電時の放電時間が
比較例1に係る鉛蓄電池と比べて長くなっており、放電
容量が向上した。 (寿命の評価)45Ah、12Vの仕様で作製した上記
実施例1及び比較例1に係る鉛蓄電池について、寿命を
評価した。これは、75℃雰囲気下でのJIS軽負荷寿
命特性評価に基づいて行った。結果を図4に示す。
As is clear from FIGS. 2 and 3, the lead-acid battery according to Example 2 has a longer discharge time during the second and subsequent discharges than the lead-acid battery according to Comparative Example 1 and has a discharge capacity of Has improved. (Evaluation of Life) The lead storage batteries according to Example 1 and Comparative Example 1 manufactured under the specifications of 45 Ah and 12 V were evaluated for life. This was performed based on the evaluation of JIS light load life characteristics in an atmosphere of 75 ° C. FIG. 4 shows the results.

【0019】図4から明らかなように、電解液に硫酸水
素カリウムを添加した実施例1に係る鉛蓄電池は、電解
液に何も添加していない比較例1に係る鉛蓄電池と比べ
て寿命が20%程度延長された。なお、上記実施例では
硫酸水素塩として、硫酸水素カリウム、硫酸水素アンモ
ニウムを用いる例について説明したが、硫酸水素ナトリ
ウム等のアルカリ金属の硫酸水素塩等のその他の硫酸水
素塩についても同様の効果が得られると考えられる。
As is apparent from FIG. 4, the lead storage battery according to Example 1 in which potassium hydrogen sulfate was added to the electrolytic solution has a life longer than that of the lead storage battery according to Comparative Example 1 in which nothing was added to the electrolytic solution. It was extended by about 20%. In the above examples, as hydrogen sulfate, an example using potassium hydrogen sulfate and ammonium hydrogen sulfate was described, but similar effects can be obtained for other hydrogen sulfate such as hydrogen sulfate of alkali metal such as sodium hydrogen sulfate. It is thought to be obtained.

【0020】また、電解液への硫酸水素塩の添加量とし
ては、例えば鉛蓄電池の使用環境温度や硫酸水素塩の電
解液に対する溶解度に応じて適宜設定することができる
が、鉛蓄電池の使用環境温度下で、電解液に溶解し得る
最大限の硫酸水素塩を添加することにより、本発明の効
果を最大限に発揮することができる。電解液への硫酸水
素塩の添加量の好ましい範囲は、2〜100g/l(リ
ットル)であり、より好ましい範囲は10〜30g/l
(リットル)である。
The amount of hydrogen sulfate added to the electrolytic solution can be appropriately set depending on, for example, the environmental temperature of the lead storage battery and the solubility of the hydrogen sulfate in the electrolytic solution. The effect of the present invention can be maximized by adding the maximum amount of hydrogen sulfate that can be dissolved in the electrolytic solution at a temperature. A preferred range of the amount of hydrogen sulfate added to the electrolytic solution is 2 to 100 g / l (liter), and a more preferred range is 10 to 30 g / l.
(Liter).

【0021】[0021]

【発明の効果】以上詳述したように本発明の硫酸水素塩
が添加された電解液を鉛蓄電池に用いれば、アルカリ金
属の硫酸塩や硫酸アンモニウムが添加された従来の電解
液を用いた鉛蓄電池と比較して、鉛蓄電池の放電容量の
向上及び寿命の延長をより効果的に図ることができる。
そして、鉛蓄電池の使用環境温度下で、電解液に溶解し
得る最大限の硫酸水素塩を添加することにより、低温時
での放電容量を従来より向上させることが可能となる。
As described in detail above, when the electrolytic solution containing hydrogen sulfate of the present invention is used in a lead storage battery, a lead storage battery using a conventional electrolytic solution containing alkali metal sulfate or ammonium sulfate is used. Compared with the above, it is possible to more effectively improve the discharge capacity and extend the life of the lead storage battery.
Then, by adding the maximum amount of hydrogen sulfate that can be dissolved in the electrolytic solution under the environment temperature in which the lead storage battery is used, it becomes possible to improve the discharge capacity at low temperature more than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1〜2及び比較例1〜7に係る鉛蓄電池
について、放電容量を評価した結果を示す図である。
FIG. 1 is a diagram showing a result of evaluation of discharge capacities of lead acid batteries according to Examples 1 and 2 and Comparative Examples 1 to 7.

【図2】実施例2に係る鉛蓄電池について、放電時間と
放電電圧との関係を示した線図である。
FIG. 2 is a diagram showing a relationship between a discharge time and a discharge voltage of a lead storage battery according to a second embodiment.

【図3】比較例1に係る鉛蓄電池について、放電時間と
放電電圧との関係を示した線図である。
FIG. 3 is a diagram showing a relationship between a discharge time and a discharge voltage of the lead storage battery according to Comparative Example 1.

【図4】実施例1及び比較例1に係る鉛蓄電池につい
て、寿命特性を評価した結果を示す線図である。
FIG. 4 is a diagram showing the results of evaluating life characteristics of lead acid batteries according to Example 1 and Comparative Example 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉛蓄電池に用いられる電解液であって、
硫酸水素塩が添加されていることを特徴とする鉛蓄電池
用の電解液。
1. An electrolytic solution used in a lead storage battery, comprising:
An electrolytic solution for a lead storage battery, characterized in that hydrogen sulfate is added.
JP30648194A 1994-12-09 1994-12-09 Electrolyte for lead-acid batteries Expired - Fee Related JP3216450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30648194A JP3216450B2 (en) 1994-12-09 1994-12-09 Electrolyte for lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30648194A JP3216450B2 (en) 1994-12-09 1994-12-09 Electrolyte for lead-acid batteries

Publications (2)

Publication Number Publication Date
JPH08162147A true JPH08162147A (en) 1996-06-21
JP3216450B2 JP3216450B2 (en) 2001-10-09

Family

ID=17957543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30648194A Expired - Fee Related JP3216450B2 (en) 1994-12-09 1994-12-09 Electrolyte for lead-acid batteries

Country Status (1)

Country Link
JP (1) JP3216450B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800395B2 (en) 2000-11-13 2004-10-05 Nec Tokin Corporation Secondary battery of proton conductive polymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003254777A1 (en) * 2003-07-28 2005-02-14 Tsutomu Ishida Additive for electrolyte solution of lead acid battery and lead acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800395B2 (en) 2000-11-13 2004-10-05 Nec Tokin Corporation Secondary battery of proton conductive polymer

Also Published As

Publication number Publication date
JP3216450B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
NL8104056A (en) METHOD FOR EXTENDING THE RE-USE LIFE OF NON-AQUEOUS CELLS
CA1121448A (en) Cell having improved chargeability by oxidation of lower manganese oxides
JP2008130516A (en) Liquid lead-acid storage battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
KR20070122430A (en) Additives for electrolyte solution of storage battery, and method for preparing the same
JP3216450B2 (en) Electrolyte for lead-acid batteries
JP2007035339A (en) Control valve type lead-acid storage battery
JPH11307115A (en) Reinforcing agent for lead-acid battery
JP3694218B2 (en) Sealed lead acid battery
JP2959108B2 (en) Lead storage battery
JP4151825B2 (en) Negative electrode current collector for Li secondary battery
JPH0542114B2 (en)
JPH0679493B2 (en) Lead-acid battery function recovery agent and lead-acid battery function recovery method
JP3648752B2 (en) Lead storage battery charge control method
JP2518090B2 (en) Lead acid battery
JP2001160422A (en) Charging control method of lead storage battery
JPS63318070A (en) Lithium secondary cell
JPS6086759A (en) Nonaqueous electrolyte secondary battery
JPS6089068A (en) Nonaqueous electrolyte secondary battery
JPS5819876A (en) Electrolyte
JP3582068B2 (en) How to charge lead storage batteries
JPS58197664A (en) Alkaline zinc secondary battery
EP0144429A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPS61198574A (en) Lead storage battery
JPS6386369A (en) Lead storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees