JP3694218B2 - Sealed lead acid battery - Google Patents

Sealed lead acid battery Download PDF

Info

Publication number
JP3694218B2
JP3694218B2 JP2000158557A JP2000158557A JP3694218B2 JP 3694218 B2 JP3694218 B2 JP 3694218B2 JP 2000158557 A JP2000158557 A JP 2000158557A JP 2000158557 A JP2000158557 A JP 2000158557A JP 3694218 B2 JP3694218 B2 JP 3694218B2
Authority
JP
Japan
Prior art keywords
acid
lead
sealed lead
alkali metal
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000158557A
Other languages
Japanese (ja)
Other versions
JP2001338675A (en
Inventor
知伸 辻川
哲郎 村尾
有 本圖
祐司 川越
Original Assignee
株式会社エヌ・ティ・ティ ファシリティーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ ファシリティーズ filed Critical 株式会社エヌ・ティ・ティ ファシリティーズ
Priority to JP2000158557A priority Critical patent/JP3694218B2/en
Publication of JP2001338675A publication Critical patent/JP2001338675A/en
Application granted granted Critical
Publication of JP3694218B2 publication Critical patent/JP3694218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無停電電源等に用いられる密閉形鉛畜電池に関する。
【0002】
【従来の技術】
近年、コンピュータ等の電子機器に搭載される無停電電源装置として鉛蓄電池が使用されている。特に、内部に遊離の電解液が殆ど存在しないように電解液量を制限した密閉形鉛蓄電池は、設置方向の自由度が高く、さらに電解液の補充等の操作が不要であることから広く実用化されている。
【0003】
しかしながら、前記密閉形鉛蓄電池は前述したように電解液量が制限されるため、従来の遊離の電解液を含有する鉛蓄電池に比べて特に高率放電特性の点で劣るという問題があった。これは、高率放電時には主として極板近傍に存在する硫酸により放電が進行し、極板間に配置したセパレータ内に含浸された硫酸が殆ど放電に寄与しないためである。
【0004】
このようなことから、特開昭57−80670号公報には内部に遊離の電解液が殆ど存在しない形態の蓄電池のエネルギー効率を向上させる手段として内部にケイ素またはフッ素を含む界面活性剤を含有させることが開示されている。この蓄電池においては、極板表面と電解液との接触状態が界面活性剤により向上されるため、極板表面への硫酸の移動が容易になり、放電反応を円滑に進行させることが可能になる。
【0005】
しかしながら、前記公報に記載されたように界面活性剤をただ単に電解液中に単独で存在させるだけでは高率放電特性の向上効果の持続性に問題があることが判明した。これは、充放電反応によって電解液中に含有される界面活性剤が正極および負極の活物質中に取り込まれることにより高率放電特性の改善が持続しないものと考えられる。
【0006】
【発明が解決しようとする課題】
本発明は、高率放電特性を改善するとともに、その持続性の高い密閉形鉛蓄電池を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明に係わる密閉形鉛蓄電池は、二酸化鉛を活物質として含む正極、鉛を活物質として含む負極および電解液を具備した密閉形鉛蓄電池であって、
前記電解液は、希硫酸、Cn 2n+1 SO3Mで表されるパーフルオロアルキルスルホン酸のアルカリ金属塩およびリン酸ナトリウムを含有することを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明に係わる密閉形鉛蓄電池を詳細に説明する。
【0010】
この密閉形鉛蓄電池は、二酸化鉛を活物質として含む正極、鉛を活物質として含む負極および希硫酸およびCn 2n+1 SO3Mで表されるパーフルオロアルキルスルホン酸のアルカリ金属塩を含有する電解液を具備した構造を有する。
【0011】
前記Cn 2n+1 SO3Mで表されるパーフルオロアルキルスルホン酸のアルカリ金属塩は、パーフルオロアルキルスルホン酸リチウム塩(C817SO3Li)またはパーフルオロアルキルスルホン酸ナトリウム塩(C817SO3Na)が好ましい。
【0012】
前記パーフルオロアルキルスルホン酸のアルカリ金属塩は、電解液中に1.0〜1.5重量%含有することが好ましい。前記アルカリ金属塩の含有量を1.0重量%未満にすると、高率放電特性の向上を十分に達成することが困難になる。一方、前記アルカリ金属塩の含有量が1.5重量%を超えると高率放電特性が低下する恐れがある。より好ましい前記パーフルオロアルキルスルホン酸のアルカリ金属塩の含有量は1.0〜1.2重量%である。
【0013】
前記電解液中は、さらにリン酸ナトリウムを含有することを許容する。このリン酸ナトリウムは、前記電解液中に1.5〜2.0重量%含有することが好ましい。前記リン酸ナトリウムの含有量を1.5重量%未満にすると、高率放電特性の向上を十分に達成することが困難になる。前記リン酸ナトリウムの含有量が2.0重量%を超えると高率放電特性が低下するのみならず、サイクル寿命特性が低下する恐れがある。より好ましい前記リン酸ナトリウムの含有量は1.5〜1.8重量%である。
【0014】
特に、前記リン酸ナトリウムをさらに含有する電解液の場合には前記Cn 2n+1 SO3Mで表されるパーフルオロアルキルスルホン酸のアルカリ金属塩および前記リン酸ナトリウムの含有量をそれぞれ1.0〜1.5重量%、1.5〜2.0重量%にすることが好適である。
【0015】
次に、本発明に係わる別の密閉形鉛蓄電池を詳細に説明する。
【0016】
この密閉形鉛蓄電池は、二酸化鉛を活物質として含む正極、鉛を活物質として含む負極および希硫酸およびパーフルオロアルキルスルホン酸アンモニウム塩(C817SO3NH4)を含有する電解液を具備した構造を有する。
【0017】
前記パーフルオロアルキルスルホン酸アンモニウム塩は、前記電解液中に0.5〜1.5重量%含有することが好ましい。前記アンモニウム塩の含有量を0.5重量%未満にすると、高率放電特性の向上を十分に達成することが困難になる。一方、前記アンモニウム塩の含有量が1.5重量%を超えると高率放電特性が低下する恐れがある。より好ましい前記パーフルオロアルキルスルホン酸アンモニウム塩の含有量は0.5〜1.0重量%である。
【0018】
以上説明した本発明に係わる密閉形鉛蓄電池は、電解液として希硫酸およびCn 2n+1 SO3Mで表されるパーフルオロアルキルスルホン酸のアルカリ金属塩を含有するものを用いることによって、長期間にわたって高率放電特性向上を持続することができる。
【0019】
特に、前記効果はパーフルオロアルキルスルホン酸のアルカリ金属塩としてパーフルオロアルキルスルホン酸リチウム塩(C817SO3Li)またはパーフルオロアルキルスルホン酸ナトリウム塩(C817SO3Na)を選択した場合に顕著であり、さらにアルカリ金属塩の含有量を1.0〜1.5重量%に規定した場合に顕著である。
【0020】
また、電解液中にさらにリン酸ナトリウムを含有させることによって、より一層長期間にわたって高率放電特性向上を持続し得る密閉形鉛蓄電池を実現できる。このようなリン酸ナトリウムの作用・効果は不明であるが、特に充電時に負極活物質である鉛の結晶成長状態が変化することにより負極活物質中に取り込まれるCn 2n+1 SO3Mで表されるパーフルオロアルキルスルホン酸のアルカリ金属塩の量を抑制することができることによるものと推定される。
【0021】
前記リン酸ナトリウムをさらに含有する電解液において、前記Cn 2n+1 SO3Mで表されるパーフルオロアルキルスルホン酸のアルカリ金属塩および前記リン酸ナトリウムの含有量をそれぞれ1.0〜1.5重量%、1.5〜2.0重量%にすることによって、さらに一層長期間にわたって高率放電特性向上を持続し得る密閉形鉛蓄電池を実現できる。
【0022】
本発明に係わる別の密閉形鉛蓄電池は、電解液として希硫酸およびパーフルオロアルキルスルホン酸アンモニウム塩(C817SO3NH4)を含有するものを用いることによって、長期間にわたって高率放電特性向上を持続することができる。
【0023】
【実施例】
以下、本発明の好ましい実施例を詳細に説明する。
【0024】
(実施例1〜5および参照例1〜5
鉛−カルシウム−錫合金からなる格子体に二酸化鉛を水および希硫酸で混練したペースト状活物質を塗着し、熟成乾燥することにより正極板を作製した。
【0025】
また、鉛−カルシウム−錫合金からなる格子体に海綿状鉛を水および希硫酸で混練したペースト状活物質を塗着し、熟成乾燥することにより負極板を作製した。
【0026】
複数の前記正極板および負極板の間に微細なガラス繊維からなるセパレータそれぞれ介在させて組み立て、この極板群を容器内に収納するとともに電解液を前記容器内に遊離状態のものが殆ど存在しないように収容した後、前記容器を蓋体等で密閉することにより公称電圧12V、定格容量5Ahの10種の密閉形鉛蓄電池を製造した。
【0027】
なお、前記電解液は比重1.32の希硫酸と下記表1に示すーフルオロオクタンスルホン酸塩(またはーフルオロオクタンスルホン酸塩およびリン酸ナトリウム)とからなる組成のものを用い、かつ前記極板群に含浸保持できる量に設定した。
【0028】
(比較例1)
電解液として比重1.32の希硫酸からなるものを用いた以外、実施例1と同様な方法により公称電圧12V、定格容量5Ahの密閉形鉛蓄電池を製造した。
【0029】
得られた実施例1〜5、参照例1〜5および比較例1の密閉形鉛蓄電池について、3CA(15A)の高率放電電流での容量試験を行なった。その結果を下記表1に併記する。なお、実施例1〜5および参照例1〜5の鉛蓄電池における高率放電容量は比較例1の放電容量(100)に対する相対値で示した。
【0030】
また、実施例1〜5、参照例1〜5および比較例1の密閉形鉛蓄電池について、25℃中にて13.8Vで定電圧充電し、3CA(15A)で電池電圧が9.6Vになるまで放電する充放電を繰り返し、200サイクルの時点における各蓄電池の3CA(15A)の高率放電容量を調べた。その結果を下記表1に併記する。なお、実施例1〜5、参照例1〜5および比較例1の鉛蓄電池における200サイクル後の高率放電容量は1サイクル目の比較例1の放電容量(100)に対する相対値で示した。
【0031】
【表1】

Figure 0003694218
【0032】
前記表1から明らかなように電解液中にパーフルオロオクタンスルホン酸のリチウム塩およびナトリウム塩を含有する実施例1〜5および参照例1〜5の鉛蓄電池は、パーフルオロオクタンスルホン酸のアルカリ金属塩を含有しない電解液を用いた比較例1の鉛蓄電池に比べて優れた高率放電特性を有することがわかる。
【0033】
特に、電解液中にパーフルオロオクタンスルホン酸のリチウム塩に加えてリン酸ナトリウムを含有する実施例の鉛蓄電池は、電解液中にパーフルオロオクタンスルホン酸のリチウム塩のみを含有させた参照例2の鉛蓄電池に比べて優れた高率放電特性を有することがわかる。なお、同様な関係にある実施例参照例3の鉛蓄電池、実施例3〜5参照例4の鉛蓄電池から、電解液中にパーフルオロオクタンスルホン酸のアルカリ金属塩に加えてリン酸ナトリウムを含有させることによって、高率放電特性をより向上できることがわかる。
【0034】
また、前記表1から明らかなように電解液中にパーフルオロオクタンスルホン酸のリチウム塩およびナトリウム塩を含有する実施例1〜5および参照例1〜5の鉛蓄電池は、パーフルオロオクタンスルホン酸のアルカリ金属塩を含有しない電解液を用いた比較例1の鉛蓄電池に比べて充放電サイクルを経た後のおいても高率放電特性の改善効果を持続できることがわかる。
【0035】
特に、電解液中にパーフルオロオクタンスルホン酸のリチウム塩やナトリウム塩に加えてリン酸ナトリウムを含有する実施例1〜5の鉛蓄電池は、充放電サイクルを経た後のおいても高率放電特性の改善効果をより良好に持続できることがわかる。
【0036】
【発明の効果】
以上説明したように本発明によれば、電解液量が制限された密閉形鉛蓄電池において高率放電特性を向上できるとともに、充放電サイクルを経た後でも持続的にこの高率放電特性の向上効果を得ることができる等顕著な効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed lead-acid battery used for an uninterruptible power supply or the like.
[0002]
[Prior art]
In recent years, lead-acid batteries have been used as uninterruptible power supplies mounted on electronic devices such as computers. In particular, sealed lead-acid batteries that limit the amount of electrolyte so that there is almost no free electrolyte inside are highly practical because they have a high degree of freedom in installation direction and do not require replenishment of electrolyte. It has become.
[0003]
However, since the amount of the electrolytic solution is limited as described above, the sealed lead-acid battery has a problem that it is inferior particularly in terms of high rate discharge characteristics as compared with a conventional lead-acid battery containing a free electrolytic solution. This is because during high-rate discharge, discharge proceeds mainly due to sulfuric acid present in the vicinity of the electrode plates, and sulfuric acid impregnated in the separator disposed between the electrode plates hardly contributes to the discharge.
[0004]
For this reason, JP-A-57-80670 contains a surfactant containing silicon or fluorine as a means for improving the energy efficiency of a storage battery having almost no free electrolyte inside. It is disclosed. In this storage battery, the contact state between the electrode plate surface and the electrolyte is improved by the surfactant, so that the sulfuric acid can easily move to the electrode plate surface, and the discharge reaction can proceed smoothly. .
[0005]
However, as described in the above publication, it has been found that there is a problem in the sustainability of the improvement effect of the high rate discharge characteristics when the surfactant is simply present alone in the electrolytic solution. This is considered that the improvement of the high-rate discharge characteristics is not continued by incorporating the surfactant contained in the electrolytic solution into the active material of the positive electrode and the negative electrode by the charge / discharge reaction.
[0006]
[Problems to be solved by the invention]
The present invention is intended to provide a sealed lead-acid battery that improves high-rate discharge characteristics and has high sustainability.
[0007]
[Means for Solving the Problems]
A sealed lead-acid battery according to the present invention is a sealed lead-acid battery comprising a positive electrode containing lead dioxide as an active material, a negative electrode containing lead as an active material, and an electrolyte solution,
The electrolytic solution contains dilute sulfuric acid, an alkali metal salt of perfluoroalkylsulfonic acid represented by C n F 2n + 1 SO 3 M, and sodium phosphate.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the sealed lead-acid battery according to the present invention will be described in detail.
[0010]
The sealed lead-acid batteries, an alkali metal salt of a perfluoroalkylsulfonic acid represented by the negative electrode and diluted sulfuric acid and C n F 2n + 1 SO 3 M comprises a positive electrode containing lead dioxide as the active material, lead as active material It has a structure equipped with an electrolytic solution containing.
[0011]
The alkali metal salt of perfluoroalkylsulfonic acid represented by C n F 2n + 1 SO 3 M is perfluoroalkylsulfonic acid lithium salt (C 8 F 17 SO 3 Li) or perfluoroalkylsulfonic acid sodium salt ( C 8 F 17 SO 3 Na) is preferred.
[0012]
The alkali metal salt of perfluoroalkylsulfonic acid is preferably contained in an amount of 1.0 to 1.5% by weight in the electrolytic solution. When the content of the alkali metal salt is less than 1.0% by weight, it is difficult to sufficiently achieve high rate discharge characteristics. On the other hand, if the content of the alkali metal salt exceeds 1.5% by weight, the high rate discharge characteristics may be deteriorated. The content of the alkali metal salt of perfluoroalkylsulfonic acid is more preferably 1.0 to 1.2% by weight.
[0013]
The electrolyte solution further contains sodium phosphate. This sodium phosphate is preferably contained in the electrolytic solution in an amount of 1.5 to 2.0% by weight. When the content of the sodium phosphate is less than 1.5% by weight, it is difficult to sufficiently achieve high rate discharge characteristics. When the content of the sodium phosphate exceeds 2.0% by weight, not only the high-rate discharge characteristics but also the cycle life characteristics may be deteriorated. The content of the sodium phosphate is more preferably 1.5 to 1.8% by weight.
[0014]
In particular, in the case of the electrolytic solution further containing sodium phosphate, the content of the alkali metal salt of perfluoroalkylsulfonic acid represented by C n F 2n + 1 SO 3 M and the content of sodium phosphate is 1 respectively. It is suitable to make it 0.0 to 1.5 weight% and 1.5 to 2.0 weight%.
[0015]
Next, another sealed lead-acid battery according to the present invention will be described in detail.
[0016]
This sealed lead-acid battery has a positive electrode containing lead dioxide as an active material, a negative electrode containing lead as an active material, and an electrolyte containing dilute sulfuric acid and ammonium perfluoroalkylsulfonate (C 8 F 17 SO 3 NH 4 ). It has a built-in structure.
[0017]
The perfluoroalkylsulfonic acid ammonium salt is preferably contained in the electrolytic solution in an amount of 0.5 to 1.5% by weight. When the content of the ammonium salt is less than 0.5% by weight, it is difficult to sufficiently achieve high rate discharge characteristics. On the other hand, if the content of the ammonium salt exceeds 1.5% by weight, the high rate discharge characteristics may be deteriorated. The content of the ammonium perfluoroalkylsulfonic acid salt is more preferably 0.5 to 1.0% by weight.
[0018]
By using those described sealed lead acid battery according to the present invention that is containing an alkali metal salt of a perfluoroalkylsulfonic acid represented by dilute sulfuric acid and C n F 2n + 1 SO 3 M as the electrolyte solution above, Improvement of high rate discharge characteristics can be maintained over a long period of time.
[0019]
In particular, the effect is that perfluoroalkyl sulfonic acid lithium salt (C 8 F 17 SO 3 Li) or perfluoroalkyl sulfonic acid sodium salt (C 8 F 17 SO 3 Na) is selected as the alkali metal salt of perfluoroalkyl sulfonic acid. This is remarkable when the content of the alkali metal salt is specified to be 1.0 to 1.5% by weight.
[0020]
Further, by further containing sodium phosphate in the electrolytic solution, it is possible to realize a sealed lead-acid battery that can continue to improve the high-rate discharge characteristics for a longer period of time. The action and effect of such sodium phosphate is unknown, but C n F 2n + 1 SO 3 M incorporated into the negative electrode active material by changing the crystal growth state of lead, which is the negative electrode active material, during charging. It is presumed that the amount of the alkali metal salt of perfluoroalkylsulfonic acid represented by
[0021]
In the electrolyte solution further containing sodium phosphate, the content of the alkali metal salt of perfluoroalkylsulfonic acid represented by C n F 2n + 1 SO 3 M and sodium phosphate is 1.0 to 1, respectively. By setting the content to 0.5 wt% and 1.5 to 2.0 wt%, it is possible to realize a sealed lead-acid battery that can continue to improve the high-rate discharge characteristics for an even longer period of time.
[0022]
Another sealed lead-acid battery according to the present invention uses a material containing dilute sulfuric acid and perfluoroalkylsulfonic acid ammonium salt (C 8 F 17 SO 3 NH 4 ) as an electrolytic solution, thereby enabling high rate discharge over a long period of time. The characteristic improvement can be sustained.
[0023]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail.
[0024]
( Examples 1-5 and Reference Examples 1-5 )
A positive electrode plate was prepared by applying a paste-like active material obtained by kneading lead dioxide with water and dilute sulfuric acid to a lattice body made of a lead-calcium-tin alloy, and aging and drying.
[0025]
Also, a paste-like active material obtained by kneading sponge-like lead with water and dilute sulfuric acid was applied to a lattice body made of a lead-calcium-tin alloy, and then aged and dried to prepare a negative electrode plate.
[0026]
Assembled by interposing a separator made of fine glass fibers between the positive electrode plate and the negative electrode plate, and storing the electrode plate group in the container so that there is almost no electrolyte in the container. After accommodating, 10 types of sealed lead-acid batteries having a nominal voltage of 12 V and a rated capacity of 5 Ah were manufactured by sealing the container with a lid or the like.
[0027]
Incidentally, the electrolyte is used as a composition consisting of a path over perfluorooctane sulfonate shown in dilute sulfuric acid and the following Table 1 specific gravity 1.32 (or path over perfluorooctane sulfonate and sodium phosphate), and The amount was set so that the electrode plate group could be impregnated and retained.
[0028]
(Comparative Example 1)
A sealed lead-acid battery having a nominal voltage of 12 V and a rated capacity of 5 Ah was produced in the same manner as in Example 1 except that the electrolyte was made of dilute sulfuric acid having a specific gravity of 1.32.
[0029]
The obtained lead-acid batteries of Examples 1 to 5, Reference Examples 1 to 5 and Comparative Example 1 were subjected to a capacity test at a high rate discharge current of 3CA (15A). The results are also shown in Table 1 below. In addition, the high rate discharge capacity in the lead storage batteries of Examples 1 to 5 and Reference Examples 1 to 5 is shown as a relative value with respect to the discharge capacity (100) of Comparative Example 1.
[0030]
In addition, the sealed lead-acid batteries of Examples 1 to 5, Reference Examples 1 to 5 and Comparative Example 1 were charged at a constant voltage of 13.8 V at 25 ° C., and the battery voltage was 9.6 V at 3 CA (15 A). The charging / discharging which discharged until it became it was repeated, and the high rate discharge capacity of 3CA (15A) of each storage battery in the time of 200 cycles was investigated. The results are also shown in Table 1 below. In addition, the high rate discharge capacity after 200 cycles in the lead storage batteries of Examples 1 to 5, Reference Examples 1 to 5 and Comparative Example 1 is shown as a relative value to the discharge capacity (100) of Comparative Example 1 in the first cycle.
[0031]
[Table 1]
Figure 0003694218
[0032]
As apparent from Table 1, the lead acid batteries of Examples 1 to 5 and Reference Examples 1 to 5 containing lithium salt and sodium salt of perfluorooctane sulfonic acid in the electrolytic solution are alkali metals of perfluorooctane sulfonic acid. It turns out that it has the high-rate discharge characteristic excellent compared with the lead acid battery of the comparative example 1 using the electrolyte solution which does not contain salt.
[0033]
In particular, the lead acid battery of Example 1 containing sodium phosphate in addition to the lithium salt of perfluorooctane sulfonic acid in the electrolytic solution is a reference example in which only the lithium salt of perfluorooctane sulfonic acid is contained in the electrolytic solution . It turns out that it has the high-rate discharge characteristic outstanding compared with 2 lead acid battery. In addition, in addition to the alkali metal salt of perfluorooctane sulfonic acid in the electrolytic solution from the lead acid batteries of Example 2 and Reference Example 3 and the lead acid batteries of Examples 3 to 5 and Reference Example 4 having the same relationship, phosphoric acid It can be seen that high rate discharge characteristics can be further improved by containing sodium.
[0034]
Moreover, as is clear from Table 1, the lead acid batteries of Examples 1 to 5 and Reference Examples 1 to 5 containing perfluorooctane sulfonic acid lithium salt and sodium salt in the electrolytic solution are perfluorooctane sulfonic acid. It can be seen that the improvement effect of the high rate discharge characteristics can be maintained even after the charge / discharge cycle as compared with the lead storage battery of Comparative Example 1 using the electrolyte solution containing no alkali metal salt.
[0035]
In particular, the lead acid batteries of Examples 1 to 5 containing sodium phosphate in addition to lithium salt or sodium salt of perfluorooctane sulfonic acid in the electrolyte solution have high rate discharge characteristics even after undergoing a charge / discharge cycle. It can be seen that the improvement effect can be sustained more favorably.
[0036]
【The invention's effect】
As described above, according to the present invention, high-rate discharge characteristics can be improved in a sealed lead-acid battery with a limited amount of electrolyte, and the high-rate discharge characteristics can be continuously improved even after a charge / discharge cycle. It is possible to obtain a remarkable effect.

Claims (4)

二酸化鉛を活物質として含む正極、鉛を活物質として含む負極および電解液を具備した密閉形鉛蓄電池であって、
前記電解液は、希硫酸、Cn 2n+1 SO3Mで表されるパーフルオロアルキルスルホン酸のアルカリ金属塩およびリン酸ナトリウムを含有することを特徴とする密閉形鉛蓄電池。
A sealed lead-acid battery comprising a positive electrode containing lead dioxide as an active material, a negative electrode containing lead as an active material, and an electrolyte,
The electrolyte, sealed lead-acid battery, characterized by containing dilute sulfuric acid, alkali metal salts and sodium phosphate perfluoroalkylsulfonic acid represented by C n F 2n + 1 SO 3 M.
前記Cn 2n+1 SO3Mで表されるパーフルオロアルキルスルホン酸のアルカリ金属塩は、パーフルオロアルキルスルホン酸リチウム塩(C817SO3Li)であることを特徴とする請求項1記載の密閉形鉛蓄電池。The alkali metal salt of perfluoroalkylsulfonic acid represented by C n F 2n + 1 SO 3 M is perfluoroalkylsulfonic acid lithium salt (C 8 F 17 SO 3 Li). The sealed lead-acid battery according to 1. 前記Cn 2n+1 SO3Mで表されるパーフルオロアルキルスルホン酸のアルカリ金属塩は、パーフルオロアルキルスルホン酸ナトリウム塩(C817SO3Na)であることを特徴とする請求項1記載の密閉形鉛蓄電池。The alkali metal salt of perfluoroalkylsulfonic acid represented by C n F 2n + 1 SO 3 M is perfluoroalkylsulfonic acid sodium salt (C 8 F 17 SO 3 Na). The sealed lead-acid battery according to 1. 前記電解液は、前記Cn 2n+1 SO3Mで表されるパーフルオロアルキルスルホン酸のアルカリ金属塩が1.0〜1.5重量%含有し、前記リン酸ナトリウムが1.5〜2.0重量%含有することを特徴とする請求項1記載の密閉形鉛蓄電池。The electrolytic solution contains 1.0 to 1.5% by weight of an alkali metal salt of perfluoroalkylsulfonic acid represented by C n F 2n + 1 SO 3 M, and 1.5 to 1.5% of the sodium phosphate. 2. The sealed lead-acid battery according to claim 1, which is contained in an amount of 2.0% by weight.
JP2000158557A 2000-05-29 2000-05-29 Sealed lead acid battery Expired - Fee Related JP3694218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000158557A JP3694218B2 (en) 2000-05-29 2000-05-29 Sealed lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000158557A JP3694218B2 (en) 2000-05-29 2000-05-29 Sealed lead acid battery

Publications (2)

Publication Number Publication Date
JP2001338675A JP2001338675A (en) 2001-12-07
JP3694218B2 true JP3694218B2 (en) 2005-09-14

Family

ID=18663017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000158557A Expired - Fee Related JP3694218B2 (en) 2000-05-29 2000-05-29 Sealed lead acid battery

Country Status (1)

Country Link
JP (1) JP3694218B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091282B (en) * 2005-09-27 2014-09-03 古河电池株式会社 Lead storage battery and process for producing the same
JP2008152973A (en) * 2006-12-14 2008-07-03 Osaka Univ Electrolytic solution for lead storage battery, anode for lead storage battery, lead storage battery equipped with electrolytic solution and/or anode, and additive for lead acid battery
CN111600078A (en) * 2020-05-08 2020-08-28 衡阳瑞达电源有限公司 Lead-acid storage battery electrolyte capable of preventing anode from being corroded and preparation method thereof

Also Published As

Publication number Publication date
JP2001338675A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP3694218B2 (en) Sealed lead acid battery
JP5531746B2 (en) Lead acid battery
JP2001043849A (en) Sealed lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP3835093B2 (en) Sealed lead acid battery
JP3216450B2 (en) Electrolyte for lead-acid batteries
JPH0750616B2 (en) Lead acid battery
JP4411860B2 (en) Storage battery
JP2596273B2 (en) Anode plate for lead-acid battery
JP2007213896A (en) Lead-acid storage battery
JP4742424B2 (en) Control valve type lead acid battery
JP2001085046A (en) Sealed lead-acid battery
JP3648752B2 (en) Lead storage battery charge control method
JP2000058105A (en) Lead-acid battery
JP3951285B2 (en) Control valve type lead acid battery
JP2006202584A (en) Lead-acid battery and its manufacturing method
JP2001185227A (en) Maintenance method of lead-acid battery
JP2001160422A (en) Charging control method of lead storage battery
JP2002110220A (en) Lead-acid battery
JP2964555B2 (en) Battery storage method for lead-acid batteries
JPH06140042A (en) Sealed lead-acid battery
JP3637797B2 (en) Lead acid battery
JP2002270215A (en) Control valve type lead acid storage battery
JP2008034286A (en) Closed lead battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees