JPS63318070A - Lithium secondary cell - Google Patents

Lithium secondary cell

Info

Publication number
JPS63318070A
JPS63318070A JP62154249A JP15424987A JPS63318070A JP S63318070 A JPS63318070 A JP S63318070A JP 62154249 A JP62154249 A JP 62154249A JP 15424987 A JP15424987 A JP 15424987A JP S63318070 A JPS63318070 A JP S63318070A
Authority
JP
Japan
Prior art keywords
aluminum
alloy
charging
bond length
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62154249A
Other languages
Japanese (ja)
Inventor
Atsushi Watanabe
淳 渡辺
Hiromochi Muramatsu
弘望 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP62154249A priority Critical patent/JPS63318070A/en
Publication of JPS63318070A publication Critical patent/JPS63318070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the charging and discharging efficiency and the cyclic lifetime of a cell by constructing the aluminum alloy for the electrode with an alloying metal having a specified bond length between atoms of the same element and metallic aluminum. CONSTITUTION:A cell is constructed with the positive electrode 2 and the electrolytic solution 3 containing at least lithium ions and the negative electrode 1 made of an aluminum alloy, and the said aluminum alloy consists of an alloying metal having a bond length between atoms of the same element different from that of aluminum more than 0.3Angstrom (Angstron) and metalic aluminum. Desirable examples of such a metal having difference of the bond length more than 0.3Angstrom are silicon, copper and magnesium, and desirable fractional amount to be added is 5-15% and more preferably 5-10%. And any electrolytic solution containing dissolved lithium ions can be used. Thereby the charging and the discharging efficiency and the cyclic lifetime can be improved and the precipitation of dendrite and the micro-powdering of the electrode can be suppressed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は非水電解質2次電池のリチウム電池に係り、特
に負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a lithium battery of a non-aqueous electrolyte secondary battery, and particularly relates to an improvement of a negative electrode.

[従来の技術] 従来リチウム2次電池の負極としては、リチウム金属を
用いるもの(特開昭61−4164号公報)、アルミニ
ウム金属またはアルミニウムーリチウム合金を用いるも
の(特開昭61−203562号公報)、カドミウムを
含むリチウム合金(特開昭60−170172号公報)
、及びリチウムとアルミニウムにマグネシウム、カルシ
ウム、カリウム、インジウム、ケイ素、ゲルマニウム、
錫より選ばれる少なくとも一種の金属との合金を用いる
もの(特開昭61−66369号公報)などが知られて
いる。
[Prior Art] Conventional lithium secondary batteries have a negative electrode that uses lithium metal (Japanese Patent Application Laid-Open No. 61-4164), or uses aluminum metal or an aluminum-lithium alloy (Japanese Patent Application Laid-Open No. 61-203562). ), lithium alloy containing cadmium (JP-A-60-170172)
, and lithium and aluminum as well as magnesium, calcium, potassium, indium, silicon, germanium,
A method using an alloy with at least one metal selected from tin (Japanese Unexamined Patent Publication No. 61-66369) is known.

[発明が解決しようとする問題点] 上記の負極活物質がリチウム金属の場合には、充電時の
リチウムのプントライ1〜析出による正負極間の短絡が
発生する。アルミニウムまたはアルミニウムーリチウム
系合金の場合には、デンドライト析出は押さえられるが
リチウムの吸蔵、放出に伴う合金の微細粉状化による放
電容量の低下、及びサイクル寿命の低下がおこる。また
、カドミウムを含むリチウム合金の場合には、プントラ
イト析出、電極の微細粉状化はほとんど起こらないが、
リチウム金属に比べて起電力が低下する点、放電電圧が
時間に対して直線的に低下し、キャパシター的放電をす
る点、及び人体に有害なカドミウムを含んでいるといっ
た問題点があった。
[Problems to be Solved by the Invention] When the above-mentioned negative electrode active material is lithium metal, a short circuit between the positive and negative electrodes occurs due to precipitation of lithium during charging. In the case of aluminum or an aluminum-lithium alloy, dendrite precipitation can be suppressed, but the alloy becomes finely pulverized as lithium is inserted and released, resulting in a decrease in discharge capacity and a decrease in cycle life. In addition, in the case of lithium alloys containing cadmium, puntolite precipitation and fine powdering of the electrode hardly occur, but
There are problems in that the electromotive force is lower than that of lithium metal, that the discharge voltage decreases linearly with time, resulting in a capacitor-like discharge, and that it contains cadmium, which is harmful to the human body.

そこで、本発明ではリチウムのデンドライト析出を防止
し及び、電極の微細粉状化を防ぐことにより、吸蔵、放
出の効率を高め、電池のサイクル寿命を向上させたリチ
ウム2次電池を提供するものである。
Therefore, the present invention provides a lithium secondary battery that improves the efficiency of occlusion and desorption and the cycle life of the battery by preventing lithium dendrite precipitation and fine powder formation of the electrode. be.

[問題点を解決するための手段] 本発明のリチウム2次電池は、正極電極と少なくともリ
チウムイオンを含む電解液と、アルミニウム合金で形成
された負極電極とからなるリチウム2次電池であって、 該アルミニウム合金は、同一元素間の結合長がアルミニ
ウム元素間の結合長より0.3人(オングストローム)
以上の差を有する合金構成金属とアルミニウム金属とか
らなることを特徴とする。
[Means for Solving the Problems] The lithium secondary battery of the present invention is a lithium secondary battery comprising a positive electrode, an electrolytic solution containing at least lithium ions, and a negative electrode formed of an aluminum alloy, In this aluminum alloy, the bond length between the same elements is 0.3 angstroms (angstroms) longer than the bond length between aluminum elements.
It is characterized by being composed of alloy constituent metals and aluminum metal having the above-mentioned differences.

本発明のリチウム2次電池は、通常の電池と同一  3
 一 様に正極電極と負極電極と電解液とセパレーターとから
構成されている。
The lithium secondary battery of the present invention is the same as a normal battery 3
It is uniformly composed of a positive electrode, a negative electrode, an electrolyte, and a separator.

正極活物質は、二次電池の正極活物質として使用可能な
ものであれば特に限定されることはない。
The positive electrode active material is not particularly limited as long as it can be used as a positive electrode active material of a secondary battery.

好ましくは活性炭素であり形状は繊維が好ましい、その
他ポリアセチレン、ポリピロール、ポリチオフェン、ポ
リアニリン、−次元グラファイト、二硫化ヂタン、五酸
化バナジウム、二酸化マンガン、二硫化モリブデン、三
硫化モリブデン、二硫化鉄、硫化ジルコニウム、二硫化
ジルコニウム、二硫化ニオブ、三硫化リンニッケル、バ
ナジウムセレナイドなどが挙げられる。
Activated carbon is preferably used, and fibers are preferable in the form. Others include polyacetylene, polypyrrole, polythiophene, polyaniline, -dimensional graphite, titane disulfide, vanadium pentoxide, manganese dioxide, molybdenum disulfide, molybdenum trisulfide, iron disulfide, and zirconium sulfide. , zirconium disulfide, niobium disulfide, nickel phosphorous trisulfide, vanadium selenide, etc.

電解液は、リチウムイオンを溶解保持するものであれば
使用可能である。例えば有機電解液としては、1.2−
ツメ1ヘキシエタン、1.2−ジ工]〜キシエタン、プ
ロピレンカーボネート、γ−ブチロラク1−ン、ジメチ
ルスルホキサイド(DMSO)、ジメチルボルムアミド
(DMF)、アセトニトリル、テトラヒドロフラン、2
−メチルテトラヒドロフラン、1.3−ジオキソラン、
4−メチル−1,3−ジオキソランなどの単独または2
種以上の混合溶液にリチウムイオンを形成する塩化合物
を溶解したものが用いられる。リチウムイオン形成化合
物としてはLiCIO4、l  1PFe、LiBF4
、L+ASF6.I  tB (Cel15)4などが
用いられる。
Any electrolytic solution that dissolves and retains lithium ions can be used. For example, as an organic electrolyte, 1.2-
1-Hexyethane, 1,2-di-oxyethane, propylene carbonate, γ-butyrolactone, dimethyl sulfoxide (DMSO), dimethylborumamide (DMF), acetonitrile, tetrahydrofuran, 2
-Methyltetrahydrofuran, 1,3-dioxolane,
Single or double 4-methyl-1,3-dioxolane etc.
A solution obtained by dissolving a salt compound that forms lithium ions in a mixed solution of more than one species is used. Lithium ion forming compounds include LiCIO4, l1PFe, LiBF4
, L+ASF6. I tB (Cel15)4 or the like is used.

本発明の負極電極に用いる負極活物質は、アルミニウム
合金である。合金構成金属は同一元素間の結合長がアル
ミニウム元素間の結合長より0゜3Å以上の差を有する
金属が選ばれる。該元素間の結合長の差が0.3人以上
を有する金属元素の例を第1表に示す第1表中マンガン
、亜鉛、リチウムは範囲外の元素である。第1表に示す
合金構成金属中特に好ましい例としては、シリコン、銅
、マグネシウムが挙げられる。この合金構成金属の添加
量は20重但%まで添加することができる。
The negative electrode active material used in the negative electrode of the present invention is an aluminum alloy. The metals constituting the alloy are selected from metals in which the bond length between the same elements is different from the bond length between aluminum elements by 0°3 Å or more. Examples of metal elements having a bond length difference of 0.3 or more are shown in Table 1. In Table 1, manganese, zinc, and lithium are elements outside the range. Particularly preferable examples of the alloy constituent metals shown in Table 1 include silicon, copper, and magnesium. The amount of this alloy constituent metal added can be up to 20% by weight.

ここで例えば、合金構成金属がシリコンの場合において
は、このシリコンの添加量が増加するとシリコンの電気
抵抗が上昇し、充電時の電圧が上昇し、電池の性能が低
下するため好ましくない。;1第1表 た逆にシリコンの添加量を少なくすると添加効果が発現
しないため、電池性能向上には好ましくない。従って合
金構成金属の添加量は5〜15%、さらに好ましくは5
〜10%である。
For example, when the alloy constituent metal is silicon, an increase in the amount of silicon added increases the electrical resistance of the silicon, increases the voltage during charging, and deteriorates the performance of the battery, which is not preferable. ;1 On the contrary, as shown in Table 1, if the amount of silicon added is reduced, the effect of the addition will not be realized, which is not preferable for improving battery performance. Therefore, the amount of alloy constituent metal added is 5 to 15%, more preferably 5%.
~10%.

セパレーターは正極と負極を分離しかつイオンを通過さ
せる役目を有し、ポリプロピレンの不織布、ガラス繊維
布、セラミック布、ナイロン布などを用いることができ
る。
The separator has the role of separating the positive electrode and the negative electrode and allowing ions to pass therethrough, and may be made of polypropylene nonwoven fabric, glass fiber cloth, ceramic cloth, nylon cloth, or the like.

[発明の作用と効果] 本発明のリチウム2次電池は、リチウムイオンを含有す
る電解質を用い、負極活物質に特定の合金構成金属とア
ルミニウム合金を用いることにより、充放電効率に優れ
、かつザイクル寿命が長くなると共にデンドライトの析
出がなく電極微粉状化を抑制することができる。さらに
充電時の電圧を低く押さえることが可能なため電解液の
分解を抑制することができる。また人体に有害な物質を
含有しない優れた2次電池である。
[Operations and Effects of the Invention] The lithium secondary battery of the present invention uses an electrolyte containing lithium ions and uses a specific alloy constituent metal and an aluminum alloy for the negative electrode active material, thereby achieving excellent charge/discharge efficiency and cycle cycle performance. Not only does the lifespan become longer, but there is no dendrite precipitation, and pulverization of the electrode can be suppressed. Furthermore, since the voltage during charging can be kept low, decomposition of the electrolyte can be suppressed. It is also an excellent secondary battery that does not contain substances harmful to the human body.

本発明の電池は車載用を含めて各抄型子機器のメモリー
バックアップ用電源として使用でさ、また小型ラジオ、
テレビ、通信機、ヘッドホンステレオなどの電源として
ニラカド(N 1−Cd)電池あるいは鉛蓄電池の代わ
りとして使うことができる。
The battery of the present invention can be used as a memory backup power source for various paper-type devices including those for cars, and can also be used for small radios,
It can be used as a power source for televisions, communication devices, headphone stereos, etc. in place of Nil-Cd (N1-Cd) batteries or lead-acid batteries.

[実施例] 以下、実施例により本発明を説明する。[Example] The present invention will be explained below with reference to Examples.

第1図に本発明の電池の基本構成を示す。この電池は、
正極電極2と負極電極1とを短絡しないようにセパレー
ター4をはさんで電解液3中に浸した構成である。
FIG. 1 shows the basic configuration of the battery of the present invention. This battery is
The positive electrode 2 and the negative electrode 1 are immersed in an electrolytic solution 3 with a separator 4 sandwiched therebetween so as not to short-circuit the positive electrode 2 and the negative electrode 1.

負極活物質はシリコンを7.5重量%含有するアルミニ
ウム合金である。このアルミニウム合金は、アルミニウ
ム溶湯中にシリコンをそのまま添加して合金化させて形
成したものである。形状は40X35X0.1mmのシ
ート状のものである。
The negative electrode active material is an aluminum alloy containing 7.5% by weight of silicon. This aluminum alloy is formed by adding silicon as it is to molten aluminum and alloying it. The shape is a sheet of 40 x 35 x 0.1 mm.

正極活物質2はフェノールとホルムアルデヒドを酸触媒
で反応して得られるノボラック樹脂の繊維を布状に織っ
たものを熱処理賦活化して得られた活性炭素繊維(日本
カイノール社製ACC507−20)である。この活性
炭素繊維の比表面積は2000m2/Qであり寸法は4
0X35X0゜4mmである。
The positive electrode active material 2 is an activated carbon fiber (ACC507-20 manufactured by Nippon Kynol Co., Ltd.) obtained by heat treatment and activation of a cloth-like weave of novolak resin fibers obtained by reacting phenol and formaldehyde with an acid catalyst. . The specific surface area of this activated carbon fiber is 2000 m2/Q and the dimensions are 4
It is 0x35x0°4mm.

電解液3は過塩素酸リチウムを1モル/dm3濃度でプ
ロピレンカーボネートに溶解したものである。
Electrolyte 3 is a solution of lithium perchlorate dissolved in propylene carbonate at a concentration of 1 mol/dm3.

セパレーター4はポリプロピレンの不織布であり電極よ
り大きな寸法の50 X 50 x 0 、2 mmの
ものを使用した。
The separator 4 used was a polypropylene nonwoven fabric with dimensions of 50 x 50 x 0 and 2 mm, which were larger than the electrodes.

(実施例1) 上記の電池を用いて充放電の試験を行なった。(Example 1) A charge/discharge test was conducted using the above battery.

充電は、4.2mAの定電流で40分間行なった。Charging was performed for 40 minutes at a constant current of 4.2 mA.

放電は、4.2mAの定電流で行ない終止電圧を2■と
した。この充電・放電を1サイクルとして充放電試験を
行なった。
Discharge was carried out at a constant current of 4.2 mA, and the final voltage was set to 2. A charging/discharging test was conducted with this charging/discharging as one cycle.

第2図に充放電効率を、第3図に最高充N電圧の試験結
果を示ず。
Figure 2 shows the charge/discharge efficiency, and Figure 3 shows the test results for the maximum charging N voltage.

充放電効率−100X放電容吊/充電容量のザイクル変
化を示す。この場合充電容量は2,8mAh (4,2
mAX40分/60分)である。
Charging and discharging efficiency - 100X shows cycle change in discharge capacity/charging capacity. In this case, the charging capacity is 2.8mAh (4,2
mAX 40 minutes/60 minutes).

第2図は横軸に充放電サイクルの回数を示し、−9= 縦軸は上記に示す式で算出される充放電効率の百分率で
示す。負極活物質がアルミニウムーシリコンの合金であ
る実施例1の充放電効率は400サイクルを越えても9
0%以上ある。比較例として負極活物質に純アルミニウ
ムを用いた場合は充放電効率が70〜60%であり、充
放電サイクルも350回以降急激に低下している。従っ
て、実施例のアルミニウムーシリコン合金は純アルミニ
ウムに比べて効率が30%以上優れているし、また勺イ
クル寿命も20%程度向上した。
In FIG. 2, the horizontal axis shows the number of charge/discharge cycles, and the vertical axis shows the percentage of charge/discharge efficiency calculated by the formula shown above. The charge/discharge efficiency of Example 1, in which the negative electrode active material was an aluminum-silicon alloy, was 9 even after 400 cycles.
More than 0%. As a comparative example, when pure aluminum was used as the negative electrode active material, the charge/discharge efficiency was 70 to 60%, and the charge/discharge cycle also rapidly decreased after 350 times. Therefore, the aluminum-silicon alloy of the example is more than 30% more efficient than pure aluminum, and the cycle life is also improved by about 20%.

参考例として負極活物質にチタンとカドミウム合金を用
いた電池の充放電効率および最高充電圧をそれぞれ第2
図、第3図に合せて示す。カドミウム合金は、ビスマス
、鉛、カドミウムを52:/1. O: 8の割合で含
む合金を用いた。両者とも充放電効率は低く、純アルミ
ニウム以下であり、また充放電サイクルも40回以下で
あり、本実施例の場合の10%にも満たなかった。本実
施例のアルミニウムーシリコンにおいてはチタンの場合
に見られるようなリチウムのデンドライト成長は観察さ
れず、また電極が微粉化して電解液中へこぼれて(る現
象も、純アルミニウムの場合に比べて低く押さえること
ができた。
As a reference example, the charge/discharge efficiency and maximum charging pressure of a battery using titanium and cadmium alloy as negative electrode active materials are
It is shown in conjunction with FIG. The cadmium alloy contains bismuth, lead, and cadmium in a ratio of 52:/1. An alloy containing O: at a ratio of 8 was used. In both cases, the charge/discharge efficiency was low, lower than that of pure aluminum, and the charge/discharge cycle was 40 times or less, which was less than 10% of that in this example. In the aluminum-silicon of this example, dendrite growth of lithium, which is observed in the case of titanium, was not observed, and the phenomenon of the electrode becoming fine and spilling into the electrolyte was also less pronounced than in the case of pure aluminum. I was able to keep it low.

またカドミウムのように人体に有害な物質を使用せずに
、性能の向上が図れた。
Furthermore, performance was improved without using substances that are harmful to the human body, such as cadmium.

第3図は横軸に充放電サイクル回数を、縦軸には最高充
電電圧をVで示す。第3図において実施例1の充電時の
電圧は、150サイクル以降、純アルミニウムの場合に
比べて、低く押さえることができるため、電解液の分解
によるガスの発生や充放電効率の低下を防ぐことができ
る。参考例のチタン、カドミウム合金の場合は、充放電
サイクルが50回以下で異常となり、本発明に比して性
能が劣る。
In FIG. 3, the horizontal axis shows the number of charge/discharge cycles, and the vertical axis shows the maximum charging voltage in V. In Fig. 3, the voltage during charging in Example 1 can be kept lower than that in the case of pure aluminum after the 150th cycle, which prevents the generation of gas due to decomposition of the electrolytic solution and the reduction in charging and discharging efficiency. Can be done. In the case of the titanium and cadmium alloy of the reference example, an abnormality occurs after 50 charge/discharge cycles, and the performance is inferior to that of the present invention.

(実施例2) 負極活物質として銅(4・Qwt%)とアルミニウムの
合金を用い実施例1と同じ構成の電池を作成し、実施例
と同様のサイクル特性試験を行なった。結果を第4図、
第5図に示す。
(Example 2) A battery having the same configuration as in Example 1 was prepared using an alloy of copper (4·Qwt%) and aluminum as the negative electrode active material, and the same cycle characteristic test as in the example was conducted. The results are shown in Figure 4.
It is shown in FIG.

第4図の充放電効率は実施例1のシリコンーアルミニウ
ム合金の場合よりも高くサイクル寿命も40%以上向上
した。すなわち充放電効率が90%以上で600回の→
J−イクル青命を有していた。
The charge/discharge efficiency shown in FIG. 4 was higher than that of the silicon-aluminum alloy of Example 1, and the cycle life was improved by more than 40%. In other words, the charging/discharging efficiency is 90% or more and 600 times →
He had a J-Ikuru blue life.

また純アルミニウムの場合よりもサイクル寿命は70%
以上向上している。第5図の最高充電電圧は本実施例の
アルミニウムー銅合金では、6001ノイクルまで4v
を保持しており、純アルミニウムのように上昇しない優
れた電池である。
Also, the cycle life is 70% longer than that of pure aluminum.
This has improved. The maximum charging voltage in Fig. 5 is 4V up to 6001 Nokle for the aluminum-copper alloy of this example.
It is an excellent battery that does not rise like pure aluminum.

(実施例3) 負極活物質として、マグネシウム(2,5wt%)とア
ルミニウムとの合金を用いて、実施例1と同様の構成の
電池を作成した。実施例1と同様にナイゲル特性試験を
行なった。結果を第6図、第7図に示す。第6図の充放
電効率及びサイクル寿命ともに実施例1と同程度であり
、90%で500サイクル保持した。第7図の最高充電
電圧は実施例1の場合より全体的に0.2V程高いが純
アルミニウムの場合と同程度の4■の最高電圧を400
サイクル保持した。
(Example 3) A battery having the same configuration as in Example 1 was created using an alloy of magnesium (2.5 wt%) and aluminum as the negative electrode active material. A Nigel characteristic test was conducted in the same manner as in Example 1. The results are shown in FIGS. 6 and 7. Both the charge/discharge efficiency and cycle life shown in FIG. 6 were comparable to those of Example 1, and were maintained at 90% for 500 cycles. The maximum charging voltage in Figure 7 is approximately 0.2V higher overall than in Example 1, but the maximum voltage of 4cm is about the same as in the case of pure aluminum.
The cycle was maintained.

(比較例1) 負極活物質としてマンガン(0,2wt%)とアルミニ
ウムの合金を用いた他は実施例1と同様の構成の電池を
作成した。
(Comparative Example 1) A battery having the same configuration as in Example 1 was created except that an alloy of manganese (0.2 wt%) and aluminum was used as the negative electrode active material.

マンガンはシリコン、銅、マグネシウムに比べて元素間
の結合長がアルミニウムの結合長に近いため合金中では
結晶構造にあまり大きな歪を与えない元素である。すな
わち結合長の差が−0,132大で0.3人より小さい
Compared to silicon, copper, and magnesium, manganese is an element that does not cause much strain on the crystal structure in alloys because the bond length between elements is closer to that of aluminum. That is, the difference in bond length is -0,132, which is smaller than 0.3 people.

第8図に示すように充放電効率は純アルミニウムの場合
より高いが、サイクルか命は純アルミニウムの場合の4
0%の150サイクル以下と短い。
As shown in Figure 8, the charge/discharge efficiency is higher than that of pure aluminum, but the cycle or life is 40% lower than that of pure aluminum.
It is short, less than 150 cycles at 0%.

また第9図の最高充電電圧も純アルミニウムよりも全体
的に0.5〜0.7Vも高く150サイクル以下の寿命
しかなく、好ましくない。
Further, the maximum charging voltage shown in FIG. 9 is also higher overall by 0.5 to 0.7 V than that of pure aluminum, and the life span is only 150 cycles or less, which is not preferable.

(比較例2) 負極活物質として亜鉛(4,0wt%)とアルミニウム
の合金を用いた他は実施例1と同様の構成の電池を作成
した。試験条件も実施例1と同じである。
(Comparative Example 2) A battery having the same configuration as Example 1 was created except that an alloy of zinc (4.0 wt%) and aluminum was used as the negative electrode active material. The test conditions were also the same as in Example 1.

マンガンと同様亜鉛も元素間の結合長がアルミニウム元
素量の結合長との差が−0,194人と0.3人より少
なく合金を作った時に、結晶構造にはあまり大きな歪を
与えないため負極活物質としての効率は期待し得ない。
Similar to manganese, zinc also does not cause much strain on the crystal structure when the alloy is made with a difference between the bond length of the aluminum element and the bond length of -0,194 and less than 0.3. Efficiency as a negative electrode active material cannot be expected.

第10図に示すように充放電効率は純アルミニウムより
高いが安定した充放電効率を示さずサイクル寿命も32
0回と短い。また第11図に示すように最高充電電圧が
純アルミニウムに比べて全体的に0.2〜0.3V高く
、サイクルか命も320回と短い。また充放電サイクル
は純アルミニウムの90%止まりであった。したがって
亜鉛の場合は好ましくない。
As shown in Figure 10, the charging and discharging efficiency is higher than that of pure aluminum, but it does not show stable charging and discharging efficiency and the cycle life is 32.
It was short, 0 times. Moreover, as shown in FIG. 11, the maximum charging voltage is generally 0.2 to 0.3 V higher than that of pure aluminum, and the cycle life is short at 320 times. Further, the charge/discharge cycle was only 90% that of pure aluminum. Therefore, zinc is not preferred.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電池の構成を示す模式平面図第2図〜
第11図は充放電試験結果を示すグラフであり、第2図
は実施例1の充放電効率、第3図は実施例1の最高充電
電圧、第4図は実施例2の充放電効率、第5図は実施例
2の最高充電電圧、第6図は実施例3の充放電効率、第
7図は実施例3の最高充電電圧、第8図は比較例1の充
放電効率、第9図は比較例1の最高充電電圧、第10図
は比較例2の充放電効率、第11図は比較例2の最高充
電電圧を示すグラフである。 1・・・負極電極    2・・・正極電極3・・・電
解液     4・・・セパレーター特許出願人   
日本電装株式会社 代理人    弁理士 大川 宏 =  15 − 第1図
FIG. 1 is a schematic plan view showing the structure of the battery of the present invention.
Fig. 11 is a graph showing the charge/discharge test results, Fig. 2 is the charge/discharge efficiency of Example 1, Fig. 3 is the maximum charging voltage of Example 1, Fig. 4 is the charge/discharge efficiency of Example 2, Fig. 5 shows the maximum charging voltage of Example 2, Fig. 6 shows the charging/discharging efficiency of Example 3, Fig. 7 shows the maximum charging voltage of Example 3, Fig. 8 shows the charging/discharging efficiency of Comparative Example 1, and Fig. 9 shows the charging/discharging efficiency of Example 3. 10 is a graph showing the maximum charging voltage of Comparative Example 1, FIG. 10 is a graph showing the charging/discharging efficiency of Comparative Example 2, and FIG. 11 is a graph showing the maximum charging voltage of Comparative Example 2. 1... Negative electrode 2... Positive electrode 3... Electrolyte 4... Separator patent applicant
Nippondenso Co., Ltd. Agent Patent Attorney Hiroshi Okawa = 15 - Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)正極電極と、少なくともリチウムイオンを含む電
解液と、アルミニウム合金で形成された負極電極とから
なるリチウム2次電池であって、該アルミニウム合金は
、同一元素間の結合長がアルミニウム元素間の結合長よ
り0.3Å(オングストローム)以上の差を有する合金
構成金属と、アルミニウム金属とからなることを特徴と
するリチウム2次電池。
(1) A lithium secondary battery consisting of a positive electrode, an electrolyte containing at least lithium ions, and a negative electrode formed of an aluminum alloy, in which the bond length between the same elements is 1. A lithium secondary battery comprising an alloy constituent metal having a bond length difference of 0.3 Å (angstrom) or more from that of an aluminum metal and an aluminum metal.
(2)前記合金構成金属は、シリコン、銅、マグネシウ
ムの少なくとも一種であることを特徴とする特許請求の
範囲第1項記載のリチウム2次電池。
(2) The lithium secondary battery according to claim 1, wherein the alloy constituent metal is at least one of silicon, copper, and magnesium.
JP62154249A 1987-06-19 1987-06-19 Lithium secondary cell Pending JPS63318070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154249A JPS63318070A (en) 1987-06-19 1987-06-19 Lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154249A JPS63318070A (en) 1987-06-19 1987-06-19 Lithium secondary cell

Publications (1)

Publication Number Publication Date
JPS63318070A true JPS63318070A (en) 1988-12-26

Family

ID=15580091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154249A Pending JPS63318070A (en) 1987-06-19 1987-06-19 Lithium secondary cell

Country Status (1)

Country Link
JP (1) JPS63318070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165001A (en) * 2013-02-25 2014-09-08 Honda Motor Co Ltd Negative electrode active material for secondary batteries and method for manufacturing the same
WO2021206121A1 (en) * 2020-04-09 2021-10-14 住友化学株式会社 Method for manufacturing lithium secondary battery and method for charging lithium secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103873A (en) * 1980-01-24 1981-08-19 Nobuyuki Koura A /fes2 secondary battery having an organic electrolyte
JPS6086760A (en) * 1983-10-19 1985-05-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPS6089068A (en) * 1983-10-20 1985-05-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPS62176048A (en) * 1985-10-04 1987-08-01 Bridgestone Corp Nonaqueous electrolyte secondary battery
JPS6396869A (en) * 1986-10-09 1988-04-27 Showa Alum Corp Aluminum alloy for negative electrode material of lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103873A (en) * 1980-01-24 1981-08-19 Nobuyuki Koura A /fes2 secondary battery having an organic electrolyte
JPS6086760A (en) * 1983-10-19 1985-05-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPS6089068A (en) * 1983-10-20 1985-05-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPS62176048A (en) * 1985-10-04 1987-08-01 Bridgestone Corp Nonaqueous electrolyte secondary battery
JPS6396869A (en) * 1986-10-09 1988-04-27 Showa Alum Corp Aluminum alloy for negative electrode material of lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165001A (en) * 2013-02-25 2014-09-08 Honda Motor Co Ltd Negative electrode active material for secondary batteries and method for manufacturing the same
US9373840B2 (en) 2013-02-25 2016-06-21 Honda Motor Co., Ltd. Negative electrode active material for secondary battery and method for producing the same
WO2021206121A1 (en) * 2020-04-09 2021-10-14 住友化学株式会社 Method for manufacturing lithium secondary battery and method for charging lithium secondary battery

Similar Documents

Publication Publication Date Title
EP0845825B1 (en) Lithium secondary battery
KR100993436B1 (en) Secondary battery with improved safety
US6855457B2 (en) Nonaqueous electrolyte secondary battery with a molten salt electrolyte
KR19990007966A (en) Rechargeable Lithium Battery with Improved Reversible Capacity
JPS6223433B2 (en)
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
JP3216311B2 (en) Lithium battery
JP3079382B2 (en) Non-aqueous secondary battery
US5712057A (en) Poly-sulfide and carbon electrode material and associated process
JP2558971B2 (en) Lithium secondary battery and its manufacturing method
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JPS60167280A (en) Electrochemical device capable of recharging
JPH01124969A (en) Lithium secondary battery
JPH0425676B2 (en)
JPS63318070A (en) Lithium secondary cell
JPS6259412B2 (en)
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JP2019207884A (en) Primary battery or secondary battery electrode in which local battery reaction is controlled, and primary battery or secondary battery using electrode
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JP3216450B2 (en) Electrolyte for lead-acid batteries
JPH01274359A (en) Nonaqueous electrolyte secondary battery
JPH02227968A (en) Secondary battery
JP3168605B2 (en) Non-aqueous electrolyte secondary battery
JP2024502683A (en) Metal-free high voltage cathode for lithium-ion or alkaline-ion secondary batteries
JPS62219466A (en) Secondary cell