JPH02227968A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH02227968A
JPH02227968A JP1047379A JP4737989A JPH02227968A JP H02227968 A JPH02227968 A JP H02227968A JP 1047379 A JP1047379 A JP 1047379A JP 4737989 A JP4737989 A JP 4737989A JP H02227968 A JPH02227968 A JP H02227968A
Authority
JP
Japan
Prior art keywords
electrode
carbon black
negative electrode
vapor
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1047379A
Other languages
Japanese (ja)
Inventor
Masataka Takeuchi
正隆 武内
Yoshihiko Murakoshi
村越 佳彦
Masanobu Nishida
西田 正信
Riichi Shishikura
利一 獅々倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP1047379A priority Critical patent/JPH02227968A/en
Publication of JPH02227968A publication Critical patent/JPH02227968A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To heighten the mechanical strength of a positive electrode and a negative electrode by using cobalt oxide added with carbon black and vapor- deposited graphite in the positive electrode and a sodium alloy added with carbon black and vapor-deposited graphite in the negative electrode. CONSTITUTION:Cobalt oxide added with carbon black and graphite obtained by a vapor deposition method is used in a positive electrode, and a sodium alloy added with carbon black and graphite obtained by a vapor deposition method in a negative electrode. Vapor-deposited graphite and carbon black act as a conductor and an electrolyte retainer and a cushion to deformation of the electrode attendant on charge-discharge cycles. They also increase the specific surface area of the electrode and make the electrode porous. The mechanical strength of both electrodes is heightened, and capacity and energy density are also increased. The reversibility of the battery is increased, self discharge rate is lowered, and cost is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エネルギー密度が高く、自己放電率が小さく
、サイクル寿命が長い、性能の良好な二次電池に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a secondary battery with high energy density, low self-discharge rate, long cycle life, and good performance.

〔従来の技術〕[Conventional technology]

遷移金属酸化物または硫化物を正極に、アルカリ金属ま
たはその合金等を負極に用いた非水系二次電池はよく知
られており、例えばヨーロッパ特許第0070107号
Atのような遷移金属硫化物を正極とした非水系二次電
池や、特開昭59−163756、特開昭59−163
758のように、負極材料に可融合金を用いた二次電池
や、米国特許第3607413号のようにリチウムと金
属アルミニウムを溶融して製造した合金負極を用いたも
の、また、特開昭58−73968のようにアルカリ金
属単体を負極に用いたものが報告されている。一方、ア
ルカリ金属等をドーピングした導電性高分子を負極に用
いた二次電池の発明が特開昭56−136469に示さ
れ、また特開昭61−245474ではアルカリ金属と
導電性高分子との混合体を負極に用いた二次電池等が提
案されている。
Non-aqueous secondary batteries using transition metal oxides or sulfides as positive electrodes and alkali metals or their alloys as negative electrodes are well known. Non-aqueous secondary batteries such as
758, secondary batteries using a fusible alloy as the negative electrode material, batteries using an alloy negative electrode manufactured by melting lithium and metallic aluminum as in U.S. Patent No. 3,607,413, and JP-A-58 -73968, which uses a simple alkali metal as a negative electrode, has been reported. On the other hand, the invention of a secondary battery using a conductive polymer doped with an alkali metal etc. as a negative electrode was disclosed in JP-A-56-136469, and in JP-A-61-245474, an alkali metal and conductive polymer were used as a negative electrode. Secondary batteries and the like using the mixture as a negative electrode have been proposed.

また、本発明者等も、特開昭59−112585で導電
性材料と導電性高分子との混合物を電極に用いた二次電
池を提案し、また、特開昭60−72692では、ポリ
チオフェンとアルミニウム及びリチウムよりなる三成分
混合系物質を負極に用いる二次電池を発明し、公開され
ている。
The present inventors also proposed a secondary battery using a mixture of a conductive material and a conductive polymer as an electrode in JP-A-59-112585, and in JP-A-60-72692, they proposed a secondary battery using a mixture of a conductive material and a conductive polymer as an electrode. He has invented and published a secondary battery that uses a ternary mixed material consisting of aluminum and lithium for the negative electrode.

しかし、上記の方法で、アルカリ金属単体を負極に用い
た二次電池は、高電流密度で充放電すると、デンドライ
トができ、正負極が短絡し、その後の充放電が不可能に
なる。またアルカリ金属合金を負極に用いた場合でも、
デンドライトの生成はある程度抑制されても充放電を重
ねると合金電極が微細化し、崩壊してしまう。そのため
、−回の充放電電気量を抑えないと、長いサイクル寿命
は発現できない。また、アルカリ金属等をドーピングし
た導電性高分子を負極に用いる場合、充放電の可逆性は
良いものの、電極重量当り及び電極体積当りの電気容量
密度が低く、十分なエネルギー密度を有する二次電池に
はなりえない。そのため、最近、アルカリ金属合金と導
電性高分子との混合物を負極活物質に用いて高容量でか
つ長いサイクル寿命を有する二次電池の開発も行われて
いる(特開昭61−245474号公報)。しかし、上
記負極の構成要素の一つに用いる導電性高分子、例えば
ポリアセチレンやポリバラフェニレンは、製造コストが
高く、安価な二次電池が得られない。
However, when a secondary battery using an alkali metal alone as a negative electrode is charged and discharged at a high current density using the above method, dendrites are formed and the positive and negative electrodes are short-circuited, making subsequent charging and discharging impossible. Furthermore, even when an alkali metal alloy is used for the negative electrode,
Even if the formation of dendrites is suppressed to some extent, repeated charging and discharging will cause the alloy electrode to become finer and collapse. Therefore, unless the amount of electricity charged and discharged is suppressed, a long cycle life cannot be achieved. In addition, when a conductive polymer doped with alkali metal etc. is used for the negative electrode, although the reversibility of charging and discharging is good, the capacitance density per electrode weight and per electrode volume is low, and a secondary battery with sufficient energy density It cannot be. Therefore, recently, secondary batteries with high capacity and long cycle life have been developed using mixtures of alkali metal alloys and conductive polymers as negative electrode active materials (Japanese Unexamined Patent Publication No. 61-245474). ). However, the conductive polymers used as one of the constituent elements of the negative electrode, such as polyacetylene and polybaraphenylene, are expensive to manufacture, making it difficult to obtain an inexpensive secondary battery.

また高容量密度型電池においては、アルカリ金属自身の
負極としての可逆性もリチウム金属系では充分ではない
Furthermore, in high capacity density batteries, the reversibility of the alkali metal itself as a negative electrode is not sufficient in lithium metal-based batteries.

上記問題の解決策として、先に本発明者等は、ナトリウ
ム合金、カーボンブラックおよび/または黒鉛を含む負
極を用いることを提案した(特願昭62−291804
号)。
As a solution to the above problem, the present inventors previously proposed the use of a negative electrode containing a sodium alloy, carbon black, and/or graphite (Japanese Patent Application No. 62-291804
issue).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし上記二次電池の極は機械的強度が低く電極が崩壊
し易い欠点があった。
However, the electrodes of the above-mentioned secondary batteries have a drawback that they have low mechanical strength and are easily disintegrated.

本発明者等は、さらに上記の欠点を解消すべ(鋭意研究
を行った結果、正負極に加える黒鉛として気相法で製造
した黒鉛を使用すると、電気伝導度を低下させることな
く正極、負極の機械的強度が向上することを発見した。
The inventors of the present invention have found that it is possible to further eliminate the above-mentioned drawbacks (as a result of intensive research, it has been found that if graphite produced by a vapor phase method is used as the graphite added to the positive and negative electrodes, the positive and negative electrodes can be combined without reducing the electrical conductivity). It was discovered that mechanical strength was improved.

本発明は、上記の発見に基づいてなされたもので、安価
で、正負両極の機械的強度が高く、しかも電池性能の優
れた二次電池を提供することを目的とする。
The present invention was made based on the above discovery, and an object of the present invention is to provide a secondary battery that is inexpensive, has high mechanical strength of both positive and negative electrodes, and has excellent battery performance.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明の二次電池において
は、正極にカーボンブラックおよび気相法黒鉛を添加し
たコバルト酸化物を用い、負極にカーボンブラックおよ
び気相法黒鉛を添加したナトリウム合金を用いる。
In order to achieve the above object, in the secondary battery of the present invention, a cobalt oxide to which carbon black and vapor-phase graphite are added is used for the positive electrode, and a sodium alloy to which carbon black and vapor-phase graphite are added is used for the negative electrode. use

上記カーボンブラックの添加量は、正極が05〜3wt
%、負極が3〜l0vL%、気相法黒鉛の添加量は、正
極が0.1〜2vt%、負極が1〜5wt%が好適であ
る。
The amount of carbon black added is 05 to 3wt for the positive electrode.
%, 3 to 10 vL% for the negative electrode, and 0.1 to 2 vt% for the positive electrode, and 1 to 5 wt% for the negative electrode.

本発明の二次電池における正極の構成要素のうち主とし
て電荷を出し入れする活物質として作用するのはコバル
ト酸化物である。
Among the components of the positive electrode in the secondary battery of the present invention, cobalt oxide primarily acts as an active material that transfers and extracts charges.

上記コバルト酸化物の製造方法は、特に制限ないが、二
次電池の性能を効果的に発揮させるには、正極活物質の
電極電位が負極に対して、有効な電位差(電圧)を保持
できる範囲で作動し、かつ用いる電解液との副反応が大
きくない組成のコバルト酸化物を用いる必要がある。
There are no particular restrictions on the method for producing the cobalt oxide, but in order to effectively demonstrate the performance of the secondary battery, the electrode potential of the positive electrode active material must be within a range where an effective potential difference (voltage) can be maintained with respect to the negative electrode. It is necessary to use a cobalt oxide that operates at high temperatures and has a composition that does not cause large side reactions with the electrolyte used.

そのため、コバルト酸化物に予めNaが化合した正極を
用いるのがよく、特にNaとコバルト酸化物の組成比と
して、電池の充電時の状態でNaとCoのモル比が1:
5乃至4;5の範囲が好ましい。
Therefore, it is best to use a positive electrode in which Na is combined with cobalt oxide in advance.In particular, the composition ratio of Na and cobalt oxide is such that the molar ratio of Na and Co is 1:1 when the battery is charged.
A range of 5 to 4;5 is preferred.

また、負極の構成要素としてナトリウム合金の主成分は
ナトリウムと鉛、またはナトリウムと錫とからなること
が重要である。その理由は、上記金属はナトリウムと電
気化学的にも合金化しやすい金属であり、さらにナトリ
ウムを可逆的に出し入れできるからである。
Furthermore, it is important that the main components of the sodium alloy as a component of the negative electrode are sodium and lead, or sodium and tin. The reason for this is that the above-mentioned metal is a metal that is easily alloyed with sodium electrochemically, and furthermore, sodium can be reversibly taken in and taken out.

本発明の二次電池に用いる負極の構成要素のうち、主と
して電荷を出し入れする活物質として働(のはナトリウ
ム合金であり、充電で電解液側からアルカリ金属イオン
が還元されナトリウム合金中に移動し、また放電でナト
リウム合金中の一部のナトリウムが酸化され電解液中に
移動するものと考えられる。
Among the constituent elements of the negative electrode used in the secondary battery of the present invention, the sodium alloy mainly acts as an active material that transfers and extracts electric charges.During charging, alkali metal ions are reduced from the electrolyte side and migrate into the sodium alloy. It is also believed that some of the sodium in the sodium alloy is oxidized and transferred into the electrolyte during the discharge.

ナトリウム合金の主成分はナトリウ/−4と鉛または錫
との合金であるが、実際に、合金を作りやす(、電気化
学的にも可逆的にアルカリ金属イオンを大量に出し入れ
できるものは、ナトリウムと鉛の合金である。
The main component of sodium alloy is an alloy of sodium/-4 and lead or tin, but in reality, alloys are easy to make (and the ones that can electrochemically and reversibly take in and out large amounts of alkali metal ions are sodium) It is an alloy of lead and lead.

上記合金の組成としては、電池の充電時の状態で、ナト
リウムと鉛のモル比は、10二1乃至l:2の範囲内が
好ましい。その理由は、電池の充電状態から、放電状態
に至るまで、ナトリウムと相手金属が合金状態を維持で
きるか、または、電位的に開回路電位がナトリウム単独
電位より高い電位を示し、ナトリウムのデンドライト発
生を抑制できる範囲内であると同時に、各サイクルの充
放電電気量が、できる限り大きくとれ、規定の放電状態
前に、ナトリウムが負極中で枯渇状態にならない範囲内
であることによる。
As for the composition of the above-mentioned alloy, the molar ratio of sodium to lead is preferably within the range of 1021 to 1:2 when the battery is being charged. The reason for this is that sodium and the other metal can maintain an alloyed state from the charging state to the discharging state of the battery, or the open circuit potential is higher than the potential of sodium alone, and sodium dendrites occur. This is because the amount of electricity charged and discharged in each cycle can be kept as large as possible, and at the same time, it is within a range where sodium is not depleted in the negative electrode before the specified discharge state.

本発明の二次電池の正極、負極に用いられる気相法黒鉛
及びカーボンブラックは導電助剤及び電解液の含浸剤と
しての作用がある他にカーボンブラック自身の特徴であ
る大きい比表面積と空孔性によって、電極全体の電極反
応を速やかに促進す為補助的役割が大きい。さらに気相
法黒鉛は充放電により電極が膨張、収縮し、変形しよう
とする力を弾力剤として吸収し、変形及び崩壊を防止す
る作用もあり、カーボンブラックのみを用いた場合には
、電極形状を維持し、崩壊を防ぐため、多量の結着剤を
必要としていたものを、少量の結着剤で補えるという利
点を合わせ持つ。
The vapor phase graphite and carbon black used in the positive and negative electrodes of the secondary battery of the present invention not only act as a conductive aid and an impregnating agent for the electrolytic solution, but also have large specific surface areas and pores, which are the characteristics of carbon black itself. Depending on its nature, it plays a major auxiliary role because it quickly promotes the electrode reaction of the entire electrode. Furthermore, vapor-phase graphite absorbs the force that tends to cause the electrode to expand and contract during charging and discharging, and acts as an elastic agent to prevent deformation and collapse. It has the advantage that a small amount of binder can compensate for the need for a large amount of binder to maintain the properties and prevent collapse.

本発明の正極、負極には、電極強度維持のため、適量の
結着剤が加えられるが、結着剤は二次電池で用いる電解
液と殆んど反応しないことが重要で、かつ少量の使用で
電極自身の結着性を二次電池としての使用に充分耐えら
れる程度に維持できるものでな(てはならない。本発明
の主旨に合う結着剤としては、ポリエチレン、ポリプロ
ピレン、EPM(エチレンプロピレンコポリマー)、E
PDM(エチレンプロピレンゴム)、PTFEにt!I
Jテトラフルオロエチレン)等があるが、この中でも正
極用結着剤としては比較的少量でかつ結着効果の大きい
EPDMおよびPTFEが良い。しかしPTFEは負極
の主なる活物質であるナトリウム合金と反応するため、
負極用結着剤としてはEPDMが好ましい。ここで言う
EPDMとは合成ゴムの一種で、エチレンとプロピレン
の共重合体であり、第三成分として、二重結合を持つ不
飽和化合物を導入したものである。
An appropriate amount of binder is added to the positive and negative electrodes of the present invention in order to maintain electrode strength, but it is important that the binder hardly reacts with the electrolyte used in the secondary battery, and that a small amount of binder When used, the binding properties of the electrode itself must be maintained to a sufficient extent to withstand use as a secondary battery. Examples of binding agents that meet the purpose of the present invention include polyethylene, polypropylene, and EPM (ethylene propylene copolymer), E
PDM (ethylene propylene rubber), PTFE! I
Among them, EPDM and PTFE, which are used in a relatively small amount and have a large binding effect, are preferable as binders for the positive electrode. However, since PTFE reacts with the sodium alloy, which is the main active material of the negative electrode,
EPDM is preferable as the binder for the negative electrode. EPDM here is a type of synthetic rubber, and is a copolymer of ethylene and propylene, into which an unsaturated compound having a double bond is introduced as a third component.

次に本発明の正極、負極の各構成要素の配合比について
説明する。
Next, the compounding ratio of each component of the positive electrode and negative electrode of the present invention will be explained.

先に説明したように、本発明に用いられる気相法黒鉛及
びカーボンブラックは、導電助剤及び電解液の含浸剤と
しての作用、充放電に伴なう電極変形のクツション剤と
しての作用、及び電極の高比表面積化、多孔質化を行う
ため、気相法黒鉛及びカーボンブラックを正極、負極中
に分散させる必要があるが、気相法黒鉛及びカーボンブ
ラックが多すぎると、気相法黒鉛及びカーボンブラック
自身は電極活物質としての働きが小さいため、却って電
気容量密度を低下させてしまう。
As explained above, the vapor-phase graphite and carbon black used in the present invention function as a conductive agent and an impregnating agent for electrolyte solution, as a cushioning agent for electrode deformation during charging and discharging, and as a cushioning agent for electrode deformation during charging and discharging. In order to increase the specific surface area and make the electrode porous, it is necessary to disperse vapor-phase graphite and carbon black into the positive and negative electrodes, but if there are too many vapor-phase graphite and carbon black, vapor-phase graphite And since carbon black itself has a small function as an electrode active material, it actually reduces the electric capacity density.

そのため、正極に対する効果的な気相法黒鉛添加量は、
結着剤及び集電体を除いた正極重量中0゜1〜2vt%
の範囲内で、また正極に対する効果的なカーボンブラッ
ク添加量は、0.5〜3wt%の範囲である。
Therefore, the effective amount of vapor-phase graphite added to the positive electrode is
0°1-2vt% of the weight of the positive electrode excluding the binder and current collector
Within this range, the effective amount of carbon black added to the positive electrode is in the range of 0.5 to 3 wt%.

また、負極に対する効果的な気相法黒鉛添加量は、結着
剤及び集電体を除いた負極重量の1〜5wt%の範囲内
で、負極に対する効果的なカーボンブラック添加量は、
3〜10wt%の範囲内である。
In addition, the effective amount of vaporized graphite added to the negative electrode is within the range of 1 to 5 wt% of the weight of the negative electrode excluding the binder and current collector, and the effective amount of carbon black added to the negative electrode is:
It is within the range of 3 to 10 wt%.

当然のことながら混合物を結着状態に保持するには結着
剤も必要であるが、その添加量は同じ電極性能で比較し
た場合、カーボンブラック単独を電極中に混合した場合
より少なくてすむ。
Naturally, a binder is also required to keep the mixture in a bound state, but the amount added is smaller than when carbon black alone is mixed into the electrode when compared with the same electrode performance.

結着剤自身は、電極の形状を維持することを除けば、電
極反応に対して障害になるものであり、できる限り少な
い方が良い。
The binder itself is an obstacle to the electrode reaction, except for maintaining the shape of the electrode, so it is better to have as little amount as possible.

本発明において、理想的な結着剤量としては、正極の遷
移金属酸化物及び/または硫化物、気相法黒鉛、カーボ
ンブラック、または負極のアルカリ金属合金、気相法黒
鉛、カーボンブラックの合計を100wt%とすると、
5wt%以下がよい。結着剤が多ければ電極変形崩壊等
はそれだけ防止できるものの、上記理由により電気容量
密度は低下する。
In the present invention, the ideal binder amount is the sum of the transition metal oxide and/or sulfide, vapor-phase graphite, and carbon black in the positive electrode, or the alkali metal alloy, vapor-phase graphite, and carbon black in the negative electrode. If it is 100wt%,
The content is preferably 5 wt% or less. If there is a large amount of binder, deformation and collapse of the electrode can be prevented, but the capacitance density will decrease due to the above-mentioned reasons.

また、結着剤が少なければ電気容量密度は上昇するもの
の、サイクル性が低下する。
Furthermore, if the amount of binder is small, the capacitance density increases, but the cycleability decreases.

そのため最適な結着剤量は、電池の目的用途や形状によ
り異なるので一概には決定できない。
Therefore, the optimum amount of binder cannot be determined unconditionally because it varies depending on the intended use and shape of the battery.

次に本発明の正極、負極に用いられる気相法黒鉛、カー
ボンブラックの種類、グレード等について説明する。
Next, the types, grades, etc. of vapor phase graphite and carbon black used in the positive electrode and negative electrode of the present invention will be explained.

本発明に使用される気相法黒鉛とは、気相法で作製され
た、いわゆる熱分解黒鉛のことで、その製法については
、例えば、特願昭61−233758号等の方法が推奨
されるが、特にこれに限定されるものではない。気相法
黒鉛は、通常、1000〜1500’Cに加熱した熱分
炉中に、所定量の遷移金属化合物を溶解した有機化合物
溶液を噴霧すると、溶液中の有機化合物が熱分解されて
黒鉛が得られる。上記有機化合物として、ベンゼンが用
いられることが多い。
The vapor-phase graphite used in the present invention is so-called pyrolytic graphite produced by a vapor-phase method, and the method disclosed in Japanese Patent Application No. 61-233758 is recommended, for example. However, it is not particularly limited to this. Vapor-phase graphite is usually produced by spraying an organic compound solution containing a predetermined amount of a transition metal compound into a thermal furnace heated to 1000 to 1500'C.The organic compound in the solution is thermally decomposed and graphite is produced. can get. Benzene is often used as the organic compound.

また、本発明に使用されるカーボンブラ、2りは、その
種類及びグレードについては特に制限はない。
Furthermore, there are no particular limitations on the type and grade of the carbon bra used in the present invention.

例えばファーネスブラックであっても、チャンネルブラ
ックであっても、サーマルブラック(アセチレンブラッ
クを含む)であってもランプブラックであってもよい。
For example, it may be furnace black, channel black, thermal black (including acetylene black), or lamp black.

但し、電気伝導度が高(、比表面積が大きく、吸液量が
大きい程カーボンブラ、。
However, the higher the electrical conductivity (the larger the specific surface area and the larger the amount of liquid absorbed), the higher the carbon bra.

りとして優れている。そのためアセチレンブラックが好
ましい。
Excellent. Therefore, acetylene black is preferred.

ま、たどのカーボンブラックを用いても、カーボンブラ
ック自身は、電池に弊害を与えるものも含め、様々な物
質を吸着しやすいので、使用する前には、吸着物質、特
に弊害の大きい水分や酸素等をできる限り除去しなけれ
ばならない。
Also, no matter what kind of carbon black you use, carbon black itself tends to adsorb various substances, including those that cause harm to batteries. etc. must be removed as much as possible.

次に、電解液について説明する。Next, the electrolyte will be explained.

本発明の二次電池に用いる正極及び負極はナトリウムイ
オンの出し入れが電極反応を支配している。また、負極
に使用されるナトリウム金属自身は水分、酸素との反応
性が高いため、当然のことながら、電解液中に多量の水
分、酸素等を含んでいてはならない。
In the positive electrode and negative electrode used in the secondary battery of the present invention, the introduction and withdrawal of sodium ions dominates the electrode reaction. Furthermore, since the sodium metal used in the negative electrode itself has high reactivity with moisture and oxygen, it goes without saying that the electrolyte must not contain large amounts of moisture, oxygen, etc.

その他電池反応を著しく阻害するものは電解液としては
用いることができない。
Other materials that significantly inhibit battery reactions cannot be used as the electrolyte.

したがって、本発明の二次電池にはナトリウム塩を溶解
した非水電解液を用いる必要がある。特に溶媒の種類に
ついては限定されないが、その中でも効果的な非水溶媒
としては、エーテル系化合物であり、例えばテトラヒド
ロフラン、2−メチルテトラヒドロフラン、2.5−ジ
メチルテトラヒドロフラン、4−メチル−1,3−ジオ
キソラン、1.3−ジオキソラン、ジオキサン、2−メ
トキシ−1,3−ジオキソラン、アニソール、m−トリ
フルオロメチルアニソール、1.2−ジメトキシエタン
、l、1−ジメトキシエタン、タイグライム、12−ク
ラウン−4等を挙げることができる。
Therefore, it is necessary to use a non-aqueous electrolyte in which sodium salt is dissolved in the secondary battery of the present invention. The type of solvent is not particularly limited, but effective non-aqueous solvents include ether compounds, such as tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 4-methyl-1,3- Dioxolane, 1,3-dioxolane, dioxane, 2-methoxy-1,3-dioxolane, anisole, m-trifluoromethylanisole, 1,2-dimethoxyethane, l,1-dimethoxyethane, tiglyme, 12-crown-4 etc. can be mentioned.

エーテル系化合物が非水溶媒として好ましい理由は、ナ
トリウム、及びナトリウム合金との反応性が小さく、ま
たナトリウム塩を溶解する能力に優れ、比較的電位安定
窓が広いからである。
Ether compounds are preferable as non-aqueous solvents because they have low reactivity with sodium and sodium alloys, have excellent ability to dissolve sodium salts, and have a relatively wide potential stability window.

また一方では、電解液の電気伝導度を向上させる目的等
でエーテル系化合物同志または、他の非水溶媒との混合
系を用いてもよい。
On the other hand, for the purpose of improving the electrical conductivity of the electrolytic solution, a mixed system of ether compounds or other non-aqueous solvents may be used.

電解液中の電解質については、ナトリウム塩であり、か
つ溶媒に対しよく溶解し、電池としての使用がかなう程
度以上の電気電導度を有する電解質になりうるちので例
えばN a B F a、N a CQO4、N a 
P F a、NaAsF、、Na5OsCF、、NaB
Et、、NaBBu、。
The electrolyte in the electrolytic solution is a sodium salt, dissolves well in a solvent, and has an electrical conductivity higher than that suitable for use as a battery, so for example, N a B F a, N a CQO4, Na
P F a, NaAsF, , Na5OsCF, , NaB
Et,,NaBBu,.

NaBPh、、NaBEt、Bu。NaBPh, , NaBEt, Bu.

NaBEt、Bu等を挙げることができる。NaBEt, Bu, etc. can be mentioned.

上記の中で特に電解質として優れているものはNaPF
、、NaAsF6、NaCQO,、N a B F 4
であり、毒性、安全性、等も考慮すると、NaPF、と
NaBF、が好ましい。
Among the above, the one that is particularly excellent as an electrolyte is NaPF.
,,NaAsF6,NaCQO,,N a B F 4
Considering toxicity, safety, etc., NaPF and NaBF are preferable.

〔実施例〕〔Example〕

以下この発明をコイン型二次電池に応用した実施例につ
いて説明する。
An example in which this invention is applied to a coin-type secondary battery will be described below.

実施例1 (正極の製造) Journal of 5olid Chesistr
y 6 +  532−537 (1973)に従い、
Na、O,とC0104から加熱製造したN a o 
、aqCo Otと気相法黒鉛(昭和電工株式会社製)
、アセチレンブラック(電気化学工業株式会社製、商品
名デンカブラック)。
Example 1 (Manufacture of positive electrode) Journal of 5olid Chesistr
According to y 6 + 532-537 (1973),
Nao produced by heating from Na, O, and C0104
, aqCo Ot and vapor phase graphite (manufactured by Showa Denko K.K.)
, Acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name Denka Black).

ポリラトラフルオロエチレン(ダイキン工業株式会社製
、商品名ポリフロン)を重量比95:0.67: 1.
33:3に配合し、高速ミキサーで充分に混合した。
Polylatrafluoroethylene (manufactured by Daikin Industries, Ltd., trade name: Polyflon) at a weight ratio of 95:0.67:1.
The mixture was blended at a ratio of 33:3 and thoroughly mixed using a high-speed mixer.

この混合物にキシレンを少量滴下し、もち状になるまで
乳鉢中でよく練った。このもち状混合物を錠剤成型機で
直径15mm、厚み400μ鱈こなるよう成型してペレ
ット状正極を得た。
A small amount of xylene was added dropwise to this mixture, and the mixture was thoroughly kneaded in a mortar until it became glutinous. This glutinous mixture was molded using a tablet molding machine into a pellet having a diameter of 15 mm and a thickness of 400 μm to obtain a pellet-like positive electrode.

(負極の製造) パラフィン油に浸した高純度のナトリウム棒を取り出し
、汚れた表面を削り落した後、このナトリウム塩と粒状
鉛とを原子比が2.7:lとなるように混ぜ、電気炉を
用い、500℃で3時間溶融し、その後350°Cに下
げ、20時間焼鈍した。
(Manufacture of negative electrode) A high-purity sodium rod immersed in paraffin oil is taken out, the dirty surface is scraped off, and the sodium salt and granular lead are mixed at an atomic ratio of 2.7:l, and an electric Using a furnace, it was melted at 500°C for 3 hours, and then the temperature was lowered to 350°C and annealed for 20 hours.

合金温度を室温に戻した後、乳鉢で粉砕した。これに気
相法黒鉛(昭和電工株式会社製)及びアセチレンブラッ
ク(電気化学工業株式会社製、商品名デンカブラック)
とを所定量入れ、よく混合した。
After the alloy temperature was returned to room temperature, it was ground in a mortar. In addition to this, vapor phase graphite (manufactured by Showa Denko Co., Ltd.) and acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name Denka Black)
A predetermined amount of was added and mixed well.

次いでシクロヘキサンに溶解した所定量のEPDM(日
本合成ゴム株式会社製:商品名JSR−EP57P)を
上記混合物と混ぜ、練りこみ、ナトリウム合金、黒鉛粉
末、カーボンブラック、EPDMの重量比が90:2:
6:2の混合物を得た。
Next, a predetermined amount of EPDM (manufactured by Japan Synthetic Rubber Co., Ltd., trade name JSR-EP57P) dissolved in cyclohexane was mixed with the above mixture and kneaded, so that the weight ratio of sodium alloy, graphite powder, carbon black, and EPDM was 90:2:
A 6:2 mixture was obtained.

この混合物を錠剤成型機で直径15mm、厚み300μ
lになるよう成型してベレット状負極を得た。
This mixture was molded into tablets with a diameter of 15 mm and a thickness of 300 μm.
A pellet-shaped negative electrode was obtained.

なお、上記操作は、いずれもアルゴンガス雰囲気下で行
った。
Note that all of the above operations were performed under an argon gas atmosphere.

(電池実験) 上記正極、負極を用い、電解液には、1mol/Q濃度
のNaPF、の1.2−ジメトキシエタン溶液を用い、
第1図に示すコイン型電池を組んだ。
(Battery experiment) Using the above positive electrode and negative electrode, a 1.2-dimethoxyethane solution of NaPF with a concentration of 1 mol/Q was used as the electrolyte,
The coin-type battery shown in Figure 1 was assembled.

図中1は正極、2はニッケル製金網、3はポリプロピレ
ン製不織布、4はポリプロピレン製マイクロポーラスフ
ィルム、5は絶縁バッキング、6は負極である。
In the figure, 1 is a positive electrode, 2 is a nickel wire mesh, 3 is a polypropylene nonwoven fabric, 4 is a polypropylene microporous film, 5 is an insulating backing, and 6 is a negative electrode.

このコイン型電池を用いて電池試験を行った。A battery test was conducted using this coin type battery.

まず放電方向から一定電流値3mAで電池電圧が1゜7
vになるまで放電し、次いで30分間のレスト時間をお
いたのち、5mAの電流で電池電圧が3゜l■になるま
で充電し、レスト時間をおいたのち、再び放電を行なう
、充放電の繰り返し試験を行った。
First, from the discharge direction, the battery voltage is 1°7 at a constant current value of 3mA.
Discharge until the battery voltage reaches V, then rest for 30 minutes, then charge with a current of 5 mA until the battery voltage reaches 3゜l■, wait for a rest time, then discharge again. The test was repeated.

その結果、充放電の繰り返し回数と放電容量との関係は
第2図に示す■のようになり、非常に高容量で可逆性の
良い電池であることがわかった。
As a result, the relationship between the number of repeated charging/discharging cycles and the discharge capacity was as shown in (■) shown in FIG. 2, and it was found that the battery had a very high capacity and good reversibility.

この電池の50サイクル目、及び100サイクル目の3
0日間での自己放電率はそれぞれ3.3%、4.8%で
あった。
3 of the 50th cycle and 100th cycle of this battery
The self-discharge rates at day 0 were 3.3% and 4.8%, respectively.

実施例2 (負極の製造) 高純度のナトリウム塩と粒状鉛とを原子比が2゜5:1
となるように混ぜ、500°Cで4時間溶融後、350
°Cで15時間焼鈍し、室温まで冷却した。この合金を
乳鉢でよく粉砕した後、気相法黒鉛粉末°(昭和電工株
式会社製)とカーボンブラック(キャボット社製:商品
名ブラックバール2000)とを所定量混ぜ、次いでキ
シレンに溶解したEPDM(日本合成ゴム株式会社製:
商品名JSR−EP57P)を上記混合物と混ぜ、練り
こみ、ナトリウム合金、黒鉛粉末、カーボンブラック、
EPDMの重量比が90:4:4:2の混合物とした。
Example 2 (Production of negative electrode) High purity sodium salt and granular lead were mixed in an atomic ratio of 2°5:1.
After melting at 500°C for 4 hours, 350°C
It was annealed at °C for 15 hours and cooled to room temperature. After thoroughly crushing this alloy in a mortar, a predetermined amount of vapor phase graphite powder (manufactured by Showa Denko K.K.) and carbon black (manufactured by Cabot Corporation, trade name: Black Bar 2000) were mixed, and then EPDM dissolved in xylene ( Made by Japan Synthetic Rubber Co., Ltd.:
Product name JSR-EP57P) is mixed with the above mixture, kneaded, sodium alloy, graphite powder, carbon black,
A mixture was prepared with an EPDM weight ratio of 90:4:4:2.

この混合物から過剰のキシレンを減圧して除去した後、
補強材として75メツシユのニッケル金網を混合物の上
に重ねて全厚みが320μlになるようローラープレス
法によってシート状に成形した。
After removing excess xylene from this mixture under reduced pressure,
A 75-mesh nickel wire mesh was layered on top of the mixture as a reinforcing material, and the mixture was formed into a sheet by a roller press method so that the total thickness was 320 μl.

上記方法で作製した負極を直径が約15IllII+に
なるよう切り抜き、二次電池用負極とした。
The negative electrode produced by the above method was cut out to have a diameter of about 15IllII+ to obtain a negative electrode for a secondary battery.

(電池実験) 上記負“極と実施例1で得られた正極と1mol/C濃
度のN a P F aの1.2−ジメトキシエタン電
解液を用い、第1図のコイン型電池を組み性能を調べた
(Battery experiment) Using the above negative electrode, the positive electrode obtained in Example 1, and a 1,2-dimethoxyethane electrolyte of NaPFa with a concentration of 1 mol/C, the coin type battery shown in Figure 1 was assembled and its performance was evaluated. I looked into it.

試験方法は、実施例1と同様な方法で行った。The test method was the same as in Example 1.

その結果充放電の繰り返し回数と放電容量との関係は第
2図に示す■のようになり、実施例1の電池と同様、非
常に高容量で可逆性の良好な電池であった。
As a result, the relationship between the number of repetitions of charging and discharging and the discharge capacity was as shown in (■) shown in FIG. 2, and like the battery of Example 1, the battery had a very high capacity and good reversibility.

また、50サイクル目及び100サイクル目の30日間
での自己放電率はそれぞれ4.0%、53%であった。
Furthermore, the self-discharge rates during 30 days at the 50th cycle and the 100th cycle were 4.0% and 53%, respectively.

実施例3 実施例1の電池実験に用いた電解液の代わりに、1so
l/12濃度のNaPF、を体積比でl:lの1゜2−
ジメトキシエタンとジエチレングリコール・ジメチルエ
ーテルとの溶液に溶かしたものを用いた以外は実施例1
と全く同様の方法で実験を行った。
Example 3 Instead of the electrolyte used in the battery experiment of Example 1, 1so
1/12 concentration of NaPF at a volume ratio of 1:l of 1°2-
Example 1 except that a solution of dimethoxyethane and diethylene glycol dimethyl ether was used.
The experiment was conducted in exactly the same manner.

その結果、充放電の繰り返し回数と放電容量との関係は
第2図に示す■のようになった。
As a result, the relationship between the number of repetitions of charging and discharging and the discharge capacity was as shown in Figure 2 (■).

なお、この電池の50サイクル目及び100サイクル目
の30日間での自己放電率はそれぞれ3゜5%、4.0
%であった。
The self-discharge rate of this battery over 30 days at the 50th cycle and the 100th cycle was 3.5% and 4.0%, respectively.
%Met.

実施例4.5,6、比較例1,2.3 実施例1の正極、負極の配合比を第1表の様に変化させ
て、実施例1と同様の厚みの正極、負極を製造し、実施
例1と同様の方法で電池実験を行−〕た。
Examples 4.5, 6, Comparative Examples 1, 2.3 Positive electrodes and negative electrodes with the same thickness as in Example 1 were manufactured by changing the mixing ratio of the positive electrode and negative electrode in Example 1 as shown in Table 1. A battery experiment was conducted in the same manner as in Example 1.

その場合の最大放電電気量及び放電電気量がlOmAh
を割る迄のサイクル数を第1表に示した。
In that case, the maximum amount of discharged electricity and the amount of discharged electricity are lOmAh
Table 1 shows the number of cycles required to divide .

また比較例1の場合の充放電の繰り返し回数と放電容量
との変化を第2図の■に示した。
Further, the change in the number of repeated charging and discharging and the discharge capacity in the case of Comparative Example 1 is shown in (■) in FIG.

なお、第1表中サイクル寿命は、放電電気量が最大放電
電気量の60%となった時点におけるサイクル数である
Note that the cycle life in Table 1 is the number of cycles when the amount of discharged electricity reaches 60% of the maximum amount of discharged electricity.

〔効果〕〔effect〕

以上述べたように、本発明の二次電池は、高容量で高エ
ネルギー密度を有し、かつ可逆性が良(自己放電率が低
く、低コスト化も可能で、ポータプル機器用主電源、バ
ックアップ電源をはじめ、家庭用電気製品用電源、また
電気自動車用駆動電源1、またロードレベリング用とし
て、また、身分証明用カード電源等に使用可能な、大型
、或いは小型の優れた二次電池として使用出来る。
As described above, the secondary battery of the present invention has high capacity and high energy density, has good reversibility (low self-discharge rate, and can be used at low cost), and can be used as a main power source for portable equipment, a backup battery, etc. Used as a large or small secondary battery that can be used as a power source, a power source for household electrical appliances, a drive power source for electric vehicles, a load leveling device, a power source for identification cards, etc. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコイン型二次電池セル概略断面図、第2図は充
放電の繰り返し回数と放電電気量の関係を示す図である
。 l・・・正極、2・・・ニッケル製金網、3・・・ポリ
プロピレン製不織布、4・・・ポリプロピレン製マイク
ロポーラスフィルム、5・・・絶縁バッキング、6・・
・負極。
FIG. 1 is a schematic cross-sectional view of a coin-type secondary battery cell, and FIG. 2 is a diagram showing the relationship between the number of repetitions of charging and discharging and the amount of discharged electricity. 1...Positive electrode, 2...Nickel wire mesh, 3...Polypropylene nonwoven fabric, 4...Polypropylene microporous film, 5...Insulating backing, 6...
・Negative electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)正極にカーボンブラック及び気相法黒鉛を添加し
たコバルト酸化物を用い、負極にカーボンブラック及び
気相法黒鉛を添加したナトリウム合金を用いることを特
徴とする二次電池。
(1) A secondary battery characterized in that the positive electrode uses cobalt oxide to which carbon black and vapor-grown graphite are added, and the negative electrode uses a sodium alloy to which carbon black and vapor-grown graphite are added.
(2)カーボンブラックの添加量は、正極が0.5〜3
wt%、負極が3〜10wt%であり、気相法黒鉛の添
加量は正極が0.1〜2wt%、負極が1〜5wt%で
ある請求項(1)記載の二次電池。
(2) The amount of carbon black added is 0.5 to 3 for the positive electrode.
The secondary battery according to claim 1, wherein the amount of vapor grown graphite added is 0.1 to 2 wt% in the positive electrode and 1 to 5 wt% in the negative electrode.
JP1047379A 1989-02-28 1989-02-28 Secondary battery Pending JPH02227968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1047379A JPH02227968A (en) 1989-02-28 1989-02-28 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1047379A JPH02227968A (en) 1989-02-28 1989-02-28 Secondary battery

Publications (1)

Publication Number Publication Date
JPH02227968A true JPH02227968A (en) 1990-09-11

Family

ID=12773462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1047379A Pending JPH02227968A (en) 1989-02-28 1989-02-28 Secondary battery

Country Status (1)

Country Link
JP (1) JPH02227968A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0741426A1 (en) * 1990-02-13 1996-11-06 Yuasa Corporation Manufacturing method for electrode and manufacturing method for electrode-electrolyte composite
JP2007035588A (en) * 2005-07-29 2007-02-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2011060444A (en) * 2009-09-07 2011-03-24 Seiko Instruments Inc Electrolyte for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2014032969A (en) * 2013-10-18 2014-02-20 Seiko Instruments Inc Electrolytic solution for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0741426A1 (en) * 1990-02-13 1996-11-06 Yuasa Corporation Manufacturing method for electrode and manufacturing method for electrode-electrolyte composite
JP2007035588A (en) * 2005-07-29 2007-02-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2011060444A (en) * 2009-09-07 2011-03-24 Seiko Instruments Inc Electrolyte for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2014032969A (en) * 2013-10-18 2014-02-20 Seiko Instruments Inc Electrolytic solution for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Similar Documents

Publication Publication Date Title
Owen Rechargeable lithium batteries
US4668596A (en) Negative electrodes for non-aqueous secondary batteries composed on conjugated polymer and alkali metal alloying or inserting material
KR100458098B1 (en) Electrode Material for Negative Pole of Lithium Secondary Cell, Electrode Structure Using Said Electrode Material, Lithium Secondary Cell Using Said Electrode Structure, and Method for Manufacturing Said Electrode Structure and Said Lithium Secondary Cell
Shacklette et al. High energy density batteries derived from conductive polymers
EP2581969B1 (en) Cathode active material for lithium secondary battery and lithium secondary battery provided with same
JP2008532221A (en) Secondary battery with improved lithium ion mobility and battery capacity
JPH0626138B2 (en) Secondary battery
US5011748A (en) Rechargeable battery cathode from P2- phase sodium cobalt dioxide
WO2000028608A1 (en) Lithium secondary cell
CN111095626B (en) Negative active material for lithium secondary battery and method for preparing same
JPS61295238A (en) Non-aquatic secondary electric cell
EP0199175B1 (en) Negative electrodes for non-aqueous secondary batteries composed of conjugated polymer and alkali metal alloying or inserting material
JP3734169B2 (en) Battery negative electrode material and battery using the same
JPS62213064A (en) Lithium-alloy negative electrode and its manufacture
JPH02227968A (en) Secondary battery
JPS63314766A (en) Organic electrolyte cell having activated carbon metal oxide composite as positive electrode
JPH01197964A (en) Secondary battery
WO1999017388A1 (en) Nickel-hydrogen storage battery
JP2002117850A (en) Negative electrode active material for nonaqueous electrolytic solution secondary battery
WO1989004066A1 (en) Rechargeable battery cathode from p2-phase sodium cobalt dioxide
JPH04190557A (en) Lithium secondary battery
JPH06168714A (en) Electrode and secondary battery using thereof
KR100445709B1 (en) Material with high performance and large capacity for secondary battery
JPH02309557A (en) Secondary battery
JPS61179063A (en) Lithium secondary battery