JPS62213064A - Lithium-alloy negative electrode and its manufacture - Google Patents

Lithium-alloy negative electrode and its manufacture

Info

Publication number
JPS62213064A
JPS62213064A JP61054836A JP5483686A JPS62213064A JP S62213064 A JPS62213064 A JP S62213064A JP 61054836 A JP61054836 A JP 61054836A JP 5483686 A JP5483686 A JP 5483686A JP S62213064 A JPS62213064 A JP S62213064A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
alloy negative
electrode
lithium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61054836A
Other languages
Japanese (ja)
Inventor
Mamoru Mizumoto
水本 守
Hiroyuki Sugimoto
博幸 杉本
Noboru Ebato
江波戸 昇
Atsuko Toyama
遠山 厚子
Kazunori Fujita
一紀 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP61054836A priority Critical patent/JPS62213064A/en
Publication of JPS62213064A publication Critical patent/JPS62213064A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enable light weight, large specific surface and improvements in the formability and machinability by forming a lithium-alloy negative electrode with alloy powder including lithium and aluminum which is applied on an electrode substrate and is bonded to the substrate with organic compound. CONSTITUTION:A lithium-alloy negative electrode is formed with alloy powder including lithium and aluminum which is applied on an electrode substrate and is bonded on the substrate with an organic compound. This enables the lithium-alloy negative electrode to have a light weight and a large specific surface, with its formability and machinability improved. Thus lithium-alloy negative electrode with light weight and large specific surface and improved formability and machinability, and its manufacturing method can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム合金負極及びその製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lithium alloy negative electrode and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

リチウム金属を負極活物質とする二次電池は高エネルギ
ー密度が達成できる特徴があり、現在までにいくつかの
電池系が提案されている。例えば二硫化チタン、グラフ
ァイト等の層間化合物を正極活物質として用いるものが
ある。また最近ではポリアセチレン等の導電性高分子へ
のドーピング・アンド−ピングを利用するものについて
も開発が進められている。しかしこれらいずれの電池系
においても負極に用いるリチウム金属が樹枝状に析出し
て、充放電効率の低下あるいは短絡等の問題が生じてい
る。
Secondary batteries using lithium metal as a negative electrode active material have the characteristic of achieving high energy density, and several battery systems have been proposed to date. For example, some use interlayer compounds such as titanium disulfide and graphite as positive electrode active materials. Furthermore, in recent years, there has been progress in the development of devices that utilize doping and doping of conductive polymers such as polyacetylene. However, in any of these battery systems, the lithium metal used in the negative electrode precipitates in a dendritic form, causing problems such as a decrease in charge and discharge efficiency and short circuits.

この問題に対する対策としては従来よりいくつかの提案
がなされている。例えば電解質中にリチウムの樹枝状生
成物の生成を抑制する物質を添加する方法、あるいはリ
チウム金属を合金化して負極とする方法等がある。合金
の代表的なものとしてはアルミニウムと合金化したもの
、あるいは釦。
Several proposals have been made in the past as countermeasures to this problem. For example, there is a method of adding a substance that suppresses the formation of lithium dendritic products to the electrolyte, or a method of alloying lithium metal to form a negative electrode. Typical examples of alloys include those alloyed with aluminum or buttons.

スズ、ビスマス等のリチウムの吸蔵が可能な低融点金属
と合金化したものが知られている。アルミニウムとリチ
ウムとの合金については特公昭48−33811号公報
及び特公昭48−33812号公報に記載のように、5
から30重量パーセントのアルミニウムを添加したもの
がある。これでは合金を溶融して電極基材上に付着させ
ている。また、特開昭52−5423号公報では合金粉
末を焼結させて電極に形成する方法がとられている。
It is known to be alloyed with a low melting point metal such as tin or bismuth that can absorb lithium. Regarding the alloy of aluminum and lithium, as described in Japanese Patent Publication No. 48-33811 and Japanese Patent Publication No. 48-33812,
There is one with aluminum added from 30% by weight. In this, the alloy is melted and deposited onto the electrode substrate. Furthermore, Japanese Patent Laid-Open No. 52-5423 discloses a method of forming an electrode by sintering alloy powder.

一方、鉛、スズ、ビスマス等とリチウムとを合金化させ
るものについては特開昭60−131776号公報に記
載のように、」二連の合金の粉末を高分子結着剤と混練
して電極基材に塗布する方法がある。
On the other hand, as described in JP-A-60-131776, an alloy of lead, tin, bismuth, etc. and lithium is produced by kneading powders of two alloys with a polymer binder and forming an electrode. There is a method of applying it to the base material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの従来技術のうちリチウムとアルミニウムとの合
金を用いるリチウム合金負極及びその製造方法では、溶
融させた合金を基材に塗布するのは溶融物を固化させる
ため電極表面積を大きくできない問題があった。また、
合金粉末を焼結させるリチウム合金負極及びその製造方
法では、焼結後の強度が弱く脱落し易い点及び電池への
組込みにおける加工性に難点があった。これらに対して
鉛、スズ、ビスマス等の低融点金属と合金化させるリチ
ウム合金負極及びその製造方法では、粉末を結着剤と混
練して塗布するため、電極表面積および強度については
改善されたが、リチウム金属の吸蔵量に限度があり、か
なり大量の鉛、スズ。
Among these conventional technologies, lithium alloy negative electrodes using an alloy of lithium and aluminum and their manufacturing methods have the problem that applying a molten alloy to a base material solidifies the molten material, making it impossible to increase the electrode surface area. . Also,
The lithium alloy negative electrode and its manufacturing method in which alloy powder is sintered have problems in that the strength after sintering is weak and easy to fall off, and in workability when incorporating into a battery. In contrast, lithium alloy negative electrodes that are alloyed with low-melting point metals such as lead, tin, and bismuth, and their manufacturing methods, improve the electrode surface area and strength because the powder is kneaded with a binder and applied. , there is a limit to the amount of lithium metal that can be absorbed, and quite large amounts of lead and tin.

ビスマス等を負極中に含有するため負極重量が増加し、
重量当りのエネルギー密度が低下する問題があった。
Since bismuth etc. are contained in the negative electrode, the weight of the negative electrode increases,
There was a problem that the energy density per unit weight decreased.

本発明は以上の点に鑑みなされたものであり、軽量、か
つ高比表面積を有し、成形、加工性の向上を可能とした
リチウム合金負極及びその製造方法を提供することを目
的とするものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a lithium alloy negative electrode that is lightweight, has a high specific surface area, and can improve moldability and workability, and a method for manufacturing the same. It is.

c問題点を解決するための手段〕 上記目的はリチウム合金負極を、電極基材上に塗布し、
かつ有機化合物で基材上に結着したリチウムおよびアル
ミニウムを含有する合金の粉末で形成することにより達
成され、リチウム合金負極を、リチウムおよびアルミニ
ウムの粉末と有機化合物の粉末とを混合する工程と、こ
の混合した混合物に粘性媒体を加えて混練しペースト状
にする工程と、このペースト状にしたものを電極基材上
に塗布する工程と、この塗布した塗布電極を所定の雰囲
気で、かつ所定温度で熱処理する工程とで製造すること
により達成される。
c Means for solving the problem] The above purpose is to coat a lithium alloy negative electrode on an electrode base material,
and forming the lithium alloy negative electrode with a powder of an alloy containing lithium and aluminum bound on a substrate with an organic compound, mixing the powder of lithium and aluminum with the powder of the organic compound; A process of adding a viscous medium to this mixed mixture and kneading it into a paste, a process of applying this paste onto an electrode base material, and a process of applying the coated electrode in a predetermined atmosphere and at a predetermined temperature. This is achieved by manufacturing with a heat treatment step.

すなわち上記問題点を解決するため、リチウム−アルミ
ニウム合金によるリチウム合金負極の製造方法を各種検
討した。リチウムの樹枝状析出物の生成を抑制するため
には、アルミニウム含有量の多い合金を電極として用い
ることが効果がある。
That is, in order to solve the above problems, various methods of manufacturing a lithium alloy negative electrode using a lithium-aluminum alloy were investigated. In order to suppress the formation of dendritic precipitates of lithium, it is effective to use an alloy with a high aluminum content as an electrode.

ビー・エム・エル・ラオ、アール・ダブリュ・フランシ
ス、エイナ・エイ−クリストファーによるジャーナル・
オブ・エレクトロケミカル・ソサイアテイ、第124巻
、1490ページ、1977年(B、M、L、Rao、
 R,V、Franeia、 H,A、Christo
pher。
Journal by B.M. L. Rao, R.W. Francis, and Eina A.Christopher.
of Electrochemical Society, Volume 124, Page 1490, 1977 (B, M, L, Rao,
R, V, Franeia, H, A, Christo
pher.

J、Elactrochem、Soc、、 Vol、 
124 (1977) 、 pp。
J, Electrochem, Soc,, Vol.
124 (1977), pp.

1490)に記載されているように、原子比で20%以
上のアルミニウムを含む合金においては、リチウムの溶
解−析出の電位は純粋なリチウム金属に比べて0.3 
ないし0.4 ■高くなり、電解質中のリチウムイオン
はリチウム金属としてではなく。
1490), in alloys containing more than 20% aluminum in atomic ratio, the dissolution-precipitation potential of lithium is 0.3 lower than that of pure lithium metal.
or 0.4 ■It becomes high, and the lithium ions in the electrolyte are not used as lithium metal.

リチウムとアルミニウムとの合金として溶解−析出し、
樹枝状析出物の生成は起こり難くなる。
Melts and precipitates as an alloy of lithium and aluminum,
The formation of dendritic precipitates becomes less likely to occur.

しかしリチウム−アルミニウム合金においてアルミニウ
ムの含有量が多くなると合金はもろくなり、延性が失な
われる欠点がある。特に円筒状電池を製造する場合には
、薄板状に加工した電極をロール状に巻いて電池容器に
装着する方法が広く採用されているが、アルミニウムの
含有量が多くなってもろくなると、ロール状に巻けない
問題が生じる。
However, when the aluminum content increases in a lithium-aluminum alloy, the alloy becomes brittle and loses its ductility. In particular, when manufacturing cylindrical batteries, a method is widely adopted in which electrodes processed into a thin plate are wound into a roll and attached to the battery container, but if the aluminum content increases and becomes brittle, the rolled The problem arises that it cannot be wrapped.

この問題点に対する解決策としてリチウム−アルミニウ
ム合金を粉末として、これを好適な結着剤により薄板状
の電極基板に塗布する方法をとることにした。結着剤の
結着効果によりリチウム−アルミニウム合金粉末を電極
基材に結着させ、巻回等の操作により合金粉末が電極基
材より脱落するのを防止することができる。また、この
方法では合金を粉末として使用するため電極表面積を広
くとることができる効果もある。
As a solution to this problem, we decided to use a method of powdering a lithium-aluminum alloy and applying it to a thin electrode substrate using a suitable binder. The binding effect of the binder binds the lithium-aluminum alloy powder to the electrode base material, and it is possible to prevent the alloy powder from falling off from the electrode base material by operations such as winding. Furthermore, since this method uses the alloy in the form of powder, it has the effect of increasing the electrode surface area.

リチウム−アルミニウム合金粉末を塗布する際には結着
剤の選定及び混練−塗布−後処理に至る条件の決定が課
題である。塗布する基材については塗布のし易さ及び織
布後の強度を考えて、エキスバンドメタル等の網目状金
属を用いればよい。
When applying lithium-aluminum alloy powder, the issues are the selection of a binder and the determination of conditions for kneading, application, and post-treatment. Regarding the base material to be coated, a mesh metal such as expanded metal may be used in consideration of ease of coating and strength after woven fabric.

結着剤についてはリチウム金属が非常に反応性に富むた
め、その選定には注意が必要である。アルコール系の結
着剤はリチウムとアルコキシドを生成する恐れがある。
As for the binder, lithium metal is highly reactive, so care must be taken when selecting the binder. Alcohol-based binders may generate lithium and alkoxides.

また、ハロゲン化物系の結着剤もリチウムと反応し易い
と考えられる。最も望ましい結着剤としては、置換基を
持たないオレフィン類の熱可塑性ポリマー、あるいは炭
素数の多いパラフィン類があげられる。熱可塑性ポリマ
ーの例としてはポリエチレン、ポリプロピレン等がある
。これらのポリマーは熱処理により軟化して溶融状態に
なり、リチウム−アルミニウム合金粉末を電極基材に結
着させる働きがある。
It is also believed that halide-based binders are also likely to react with lithium. The most desirable binders include thermoplastic polymers of olefins without substituents or paraffins having a large number of carbon atoms. Examples of thermoplastic polymers include polyethylene, polypropylene, and the like. These polymers are softened into a molten state by heat treatment, and function to bind the lithium-aluminum alloy powder to the electrode base material.

〔作用〕[Effect]

上記熱可塑性のポリマーの粉末をリチウム−アルミニウ
ム合金の粉末と混合し、これに粘度の高い液体よりなる
媒体(粘性媒体)を適量加えて混練する。この混練した
ペーストを集電端子を取り付けた網目状金属で形成した
電極基材に塗布する。
The above-mentioned thermoplastic polymer powder is mixed with lithium-aluminum alloy powder, and an appropriate amount of a highly viscous liquid medium (viscous medium) is added thereto and kneaded. This kneaded paste is applied to an electrode base material formed of a mesh metal to which a current collector terminal is attached.

この電極前駆体すなわち塗布電極を熱処理し粘性媒体を
揮散させ、更にはポリマーを溶融して結着効果を発揮さ
せる。このため熱処理温度としては添加したポリマーの
軟化点よりも高い温度が必要である。また、リチウム及
びアルミニウムは空気中の酸素あるいは水分と反応し易
いため、熱処理の雰囲気としては不活性ガス中あるいは
真空中であることが必要である。また、加圧下において
熱処理を行えばリチウム−アルミニウム合金粉末と電極
基材との密着性を向上させることができ、集電性能が向
上する。
This electrode precursor, ie, the coated electrode, is heat-treated to volatilize the viscous medium and further melt the polymer to exhibit a binding effect. Therefore, the heat treatment temperature needs to be higher than the softening point of the added polymer. Furthermore, since lithium and aluminum easily react with oxygen or moisture in the air, the atmosphere for heat treatment must be in an inert gas or vacuum. Furthermore, heat treatment under pressure can improve the adhesion between the lithium-aluminum alloy powder and the electrode base material, improving current collection performance.

このようにして作製した電極は冷却後不活性ガス雰囲気
中に取り出され、適当な正極と組み合わせて電池を構成
することができる。
After cooling, the electrode thus produced can be taken out into an inert gas atmosphere and combined with a suitable positive electrode to form a battery.

〔実施例〕〔Example〕

以下、実施例について説明する。本実施例ではリチウム
合金負極を、電極基材上に塗布し、かつ有機化合物で基
材に結着したリチウムおよびアルミニウムを含有する合
金の粉末で形成した。そしてこのリチウム合金負極をリ
チウムおよびアルミニウムの粉末と有機化合物の粉末と
を混合する工程と、この混合した混合物に粘性媒体を加
えて混練しペートス状にする工程と、このペースト状に
したものを電極基材上に塗布する工程と、この塗布した
塗布電極を所定の雰囲気で、かつ所定温度で熱処理する
工程とで製造した。このようにすることによりリチウム
合金負極は有機化合物で電極基材に結着したリチウム−
アルミニウム合金の粉末で形成されるようになって、軽
量で表面積1強度が大きくなり、軽量、かつ高比表面積
を有し、成形、加工性の向上を可能としたリチウム合金
負極及びその製造方法を得ることができる。
Examples will be described below. In this example, a lithium alloy negative electrode was formed of an alloy powder containing lithium and aluminum that was coated on an electrode base material and bound to the base material with an organic compound. Then, this lithium alloy negative electrode is mixed with lithium and aluminum powder and organic compound powder, a viscous medium is added to this mixed mixture and kneaded to form a paste, and this paste is used as an electrode. The electrode was manufactured through a step of coating it on a base material and a step of heat-treating the coated electrode in a predetermined atmosphere at a predetermined temperature. By doing this, the lithium alloy negative electrode is made of lithium which is bound to the electrode base material using an organic compound.
A lithium alloy negative electrode that is made of aluminum alloy powder, is lightweight, has a large surface area, has a high strength, is lightweight, has a high specific surface area, and can be formed and processed easily, and a method for manufacturing the same. Obtainable.

以上の実施例についてその効果を比較例と比較検討した
結果を次に述べる。
The results of comparing the effects of the above embodiments with comparative examples will be described below.

リチウムとアルミニウムとを原子比で5015oの割合
で含有する合金100重合部を1. OOメツシュ以下
に粉砕し、これに10重量部のポリエチレン粉末を加え
てよく混合した。この混合物0.16  gに炭酸プロ
ピレンを0.1  mQ加えてよく練りペースト状とし
た。5US316製のエキスバンドメタルを25mm角
の大きさに切断し、第1図に示されているように電極基
材を形成した。
100 polymer parts of alloy containing lithium and aluminum in an atomic ratio of 5015o. The powder was ground to an OO mesh or smaller, and 10 parts by weight of polyethylene powder was added thereto and mixed well. 0.1 mQ of propylene carbonate was added to 0.16 g of this mixture and kneaded well to form a paste. Expanded metal made of 5US316 was cut into 25 mm square pieces to form electrode base materials as shown in FIG.

この電極基材1aは25mm角のエキスバンドメタル1
に集電端子2を溶接して取り付けたものである。、二の
電極基材1alに上述のペーストを塗布した。この塗布
電極を真空中において150℃で2時間熱処理した。熱
処理後電極を取り出し、これを負極に、ポリアニリンを
塗布した電極を正極にして第2図に示すようなセルに組
み込み実施例Aとした。セル3は同図に示しであるよう
に電池容器(オス型)3a、電池容器(メス型)3bお
よびバッキング3cで形成されている。この実施例Aに
よる電池に電解液としてlll1oQ/Qのフッ化ホウ
素リチウムL i B F4を含む炭酸プロビレンージ
メトキシエタン混合溶媒(容積比1対1)を1mQ加え
て充放電試験を行った。
This electrode base material 1a is a 25 mm square expanded metal 1
A current collector terminal 2 is welded and attached to the terminal. The above paste was applied to the second electrode base material 1al. This coated electrode was heat treated at 150° C. for 2 hours in vacuum. After the heat treatment, the electrode was taken out and incorporated into a cell as shown in FIG. 2, using this as a negative electrode and the electrode coated with polyaniline as a positive electrode, to prepare Example A. As shown in the figure, the cell 3 is formed of a battery container (male type) 3a, a battery container (female type) 3b, and a backing 3c. A charge/discharge test was carried out by adding 1 mQ of a mixed solvent of propylene carbonate and dimethoxyethane (volume ratio 1:1) containing lithium boron fluoride L i B F4 of lll1oQ/Q as an electrolyte to the battery according to Example A.

電流密度1 m A / clで30分間充電及び放電
を行ったが、この場合の充電終了電圧の変化が第3図に
示されている。同図は縦軸に充電終了電圧をとり、横軸
にサイクル数をとってサイクル数による充電終了電圧の
変化特性が示されているが、同図から明らかなようにこ
の実施例Aによる電池は50サイクルの充放電試験後に
おいても充電終了電圧は3.7vであり、電極(リチウ
ム合金負極)は劣化を起こし難いことが判った。
Charging and discharging were performed for 30 minutes at a current density of 1 mA/cl, and the change in the end-of-charge voltage in this case is shown in FIG. The figure shows the charging end voltage on the vertical axis and the number of cycles on the horizontal axis, showing the change characteristics of the charging end voltage depending on the number of cycles.As is clear from the figure, the battery according to Example A Even after 50 cycles of charge/discharge tests, the charging end voltage was 3.7 V, indicating that the electrode (lithium alloy negative electrode) was unlikely to deteriorate.

100メツシユ以下に粉砕したリチウム−アルミニウム
合金(原子比50150)粉末100重量部を10重量
部のポリプロピレン粉末と混合し、実施例Aと同様にし
て電極(リチウム合金負極)を作製して上述の第2図に
示すセル3に装着し実施例Bとした。この実施例Bによ
る電池の充放電試験結果は上述の第3図に示されている
ように。
100 parts by weight of lithium-aluminum alloy (atomic ratio 50150) powder crushed to 100 mesh or less was mixed with 10 parts by weight of polypropylene powder, and an electrode (lithium alloy negative electrode) was prepared in the same manner as in Example A. Example B was prepared by installing the cell 3 shown in FIG. 2. The charging and discharging test results of the battery according to Example B are shown in FIG. 3 above.

50サイクルの充放電試験後においても充電終了電圧は
3.8vであり、実施例Aと同様電極(すチウム合金負
極)は劣化を起こし難いことが判った。
Even after 50 cycles of the charge/discharge test, the charging end voltage was 3.8 V, and as in Example A, it was found that the electrode (stium alloy negative electrode) was unlikely to deteriorate.

1、 OOメツシュ以下に粉砕したりチウム−アルミニ
ウム合金(M子比50150)粉末100重量部を10
重量部のエチレン−プロピレンの粉末と混合して、実施
例Aと同様にして電極(リチウム合金負極)を作製して
上述の第2図に示すセル3に装着し実施例Cとした。こ
の実施例Cによる電池の充放電試験結果は上述の第3図
に示されているように、50サイクルの充放電試験後に
おいても充電終了電圧は3.9 vであり、実施例A。
1. 100 parts by weight of lithium-aluminum alloy (M ratio 50150) powder crushed to OO mesh or less
Part by weight of ethylene-propylene powder was mixed to prepare an electrode (lithium alloy negative electrode) in the same manner as in Example A, and the electrode (lithium alloy negative electrode) was attached to the cell 3 shown in FIG. 2 described above to prepare Example C. As shown in the above-mentioned FIG. 3, the charging/discharging test result of the battery according to Example C shows that the charging end voltage was 3.9 V even after 50 cycles of charging/discharging test, which is the same as that of Example A.

Bと同様に電極(リチウム合極負極)は劣化を起こし難
いことが判った。
Similar to B, it was found that the electrode (lithium composite negative electrode) did not easily deteriorate.

100メツシユ以下に粉砕したリチウム−アルミニウム
合金(原子比50150)粉末100重量部を10重量
部のポリエチレン粉末と混合した。
100 parts by weight of lithium-aluminum alloy (atomic ratio 50150) powder pulverized to 100 mesh or less was mixed with 10 parts by weight of polyethylene powder.

この混合物0.1.6gに炭酸プロピレンを0.1mQ
加えてよく練りペースト状とした。このペーストを上述
の第1図に示すような電極基材上に塗布し、さらにこれ
を真空雰囲気下で150℃に加熱、プレス機で加圧して
30分間保持した。冷却後は上述の第2図に示されてい
るセル3に正極ポリアニリンと共に組み込み実施例りと
し、この実施例りによる電池に電解液1mflを加えて
実施例Aと同様の条件で充放電試験を行った。充放電試
験結果は縦軸に充電終了電圧をとり、横軸にサイクル数
をとってサイクル数による充電終了電圧の変化特性が示
されている第4図から明らかなように、70サイクルの
充放電試験後においても充電終了電圧は3.6 vであ
った。このように70サイクル後においても3.6 v
と、電極(リチウム合金負極)が劣化を起こし難く、実
施例A、B。
Add 0.1 mQ of propylene carbonate to 0.1.6 g of this mixture.
In addition, it was kneaded well to form a paste. This paste was applied onto an electrode base material as shown in FIG. 1 above, and further heated to 150° C. in a vacuum atmosphere, pressurized with a press, and held for 30 minutes. After cooling, the cell 3 shown in FIG. 2 above was assembled together with the positive electrode polyaniline, and 1 mfl of electrolyte was added to the battery according to this example, and a charge/discharge test was conducted under the same conditions as in Example A. went. The charge/discharge test results show the charging end voltage on the vertical axis and the number of cycles on the horizontal axis, which shows the change characteristics of the charging end voltage depending on the number of cycles. Even after the test, the charging end voltage was 3.6 V. In this way, even after 70 cycles, 3.6 v
In addition, the electrode (lithium alloy negative electrode) does not easily deteriorate, and Examples A and B.

Cによる電池よりむしろ良好な傾向を示したのは、加熱
時の加圧によりリチウム−アルミニウム合金と電極基材
との接触がよくなったためである。
The reason why the battery showed a better tendency than the battery using C was that the pressure applied during heating improved the contact between the lithium-aluminum alloy and the electrode base material.

100メツシユ以下に粉砕したリチウム−アルミニウム
合金(原子比50150)粉末100重量部を10重量
部のポリテトラフルオロエチレン粉末と混合し、実施例
Aと同様にして電極(リチウム合金負極)を作製して上
述の第2図に示すセル3に装着して比較例とし、この比
較例による電池の充放電試験を行った。その結果は[―
述の第3図に示されているように、20サイクルの充放
電を繰り返した後で充電終了電圧が上昇し、電極の劣化
が起こっていることが判った。これは熱可塑性のポリマ
ーがポリテトラフルオロエチレンであって、オレフィン
類またはパラフィン類の熱可塑性ポリマーでなかったた
めである。
100 parts by weight of lithium-aluminum alloy (atomic ratio 50150) powder crushed to 100 mesh or less was mixed with 10 parts by weight of polytetrafluoroethylene powder, and an electrode (lithium alloy negative electrode) was prepared in the same manner as in Example A. The battery was installed in the cell 3 shown in FIG. 2 as a comparative example, and a charge/discharge test was conducted on the battery according to this comparative example. The result is [-
As shown in FIG. 3, the charging end voltage increased after 20 cycles of charging and discharging, indicating that the electrodes were deteriorating. This is because the thermoplastic polymer was polytetrafluoroethylene and not an olefin or paraffin thermoplastic polymer.

このように本実施例A、B、C,Dによる電池の特性が
よかったのは、リチウム合金負極の強度が高く、比表面
積が広くなり、各種形状の電池の作製ができるようにな
ったためであり、高い出力密度の電池を得ることができ
る。
The characteristics of the batteries according to Examples A, B, C, and D were good as described above because the strength of the lithium alloy negative electrode was high and the specific surface area was large, making it possible to manufacture batteries of various shapes. , a battery with high power density can be obtained.

〔発明の効果〕〔Effect of the invention〕

一ヒ述のように本発明はリチウム合金負極が軽量で高比
表面積を有し、成形、加工性が向上するようになって、
軽量、かつ高比表面積を有し、成形。
As mentioned above, the present invention has a lithium alloy negative electrode that is lightweight and has a high specific surface area, and has improved moldability and processability.
Lightweight and molded with a high specific surface area.

加工性の向上を可能としたリチウム合金負極及びその製
造方法を得ることができる。
A lithium alloy negative electrode with improved workability and a method for manufacturing the same can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のリチウム合金負極の製造方法の一実施
例による電極基材の正面図、第2図は同じく一実施例に
よるセルの構成を示す斜視図、第3図は本発明のリチウ
ム合金負極の製造方法の夫夫具なる実施例によるリチウ
ム合金負極の電池と従来例による電池との充電終了電圧
とサイクル数との関係を示す特性図、第4図は本発明の
リチウム合金負極の製造方法の更に他の実施例によるリ
チウム合金負極の電池の充電終了電圧とサイクル数との
関係を示す特性図である。 1・・・エキスバンドメタル、1a・・・電極基材、2
・・・集電端子、3・・・セル、3a・・・電池容器(
オス型)、6 )図 地20 躬3図 第L+図
FIG. 1 is a front view of an electrode base material according to an embodiment of the method for producing a lithium alloy negative electrode of the present invention, FIG. 2 is a perspective view showing the structure of a cell according to an embodiment, and FIG. FIG. 4 is a characteristic diagram showing the relationship between the end-of-charge voltage and the number of cycles for a battery using a lithium alloy negative electrode according to an embodiment of the method for manufacturing an alloy negative electrode and a battery according to a conventional example. FIG. 7 is a characteristic diagram showing the relationship between the end-of-charge voltage and the number of cycles of a battery using a lithium alloy negative electrode according to still another example of the manufacturing method. 1... Extracted metal, 1a... Electrode base material, 2
...Current terminal, 3...Cell, 3a...Battery container (
Male type), 6) Figure 20 Figure 3 Figure L+

Claims (1)

【特許請求の範囲】 1、非水電解質が使用される二次電池のリチウム合金負
極において、前記リチウム合金負極が、電極基材上に塗
布され、かつ有機化合物で前記基材に結着されたリチウ
ムおよびアルミニウムを含有する合金の粉末で形成され
たものであることを特徴とするリチウム合金負極。 2、前記有機化合物が、オレフィン類またはパラフィン
類の熱可塑性の高分子化合物である特許請求の範囲第1
項記載のリチウム合金負極。 3、非水電解質が使用される二次電池のリチウム合金負
極の製造方法において、前記リチウム合金負極が、リチ
ウムおよびアルミニウムの粉末と有機化合物の粉末とを
混合する工程と、この混合した混合物に粘性媒体を加え
て混練しペースト状にする工程と、このペースト状にし
たものを電極基材上に塗布する工程と、この塗布した塗
布電極を所定の雰囲気で、かつ所定温度で熱処理する工
程とで製造されることを特徴とするリチウム合金負極の
製造方法。 4、前記有機化合物が、オレフィン類またはパラフィン
類の熱可塑性の高分子化合物である特許請求の範囲第3
項記載のリチウム合金負極の製造方法。 5、前記所定温度が、前記熱可塑性の高分子化合物の軟
化点より高い温度である特許請求の範囲第3項または第
4項記載のリチウム合金負極の製造方法。 6、前記所定の雰囲気が、真空中あるいは不活性ガス中
である特許請求の範囲第3項記載のリチウム合金負極の
製造方法。 7、前記熱処理が、前記塗布電極を加圧した状態で行な
われるものである特許請求の範囲第3項記載のリチウム
合金負極の製造方法。 8、前記粘性媒体が、炭酸プロピレンである特許請求の
範囲第3項記載のリチウム合金負極の製造方法。
[Claims] 1. In a lithium alloy negative electrode for a secondary battery in which a non-aqueous electrolyte is used, the lithium alloy negative electrode is coated on an electrode base material and bound to the base material with an organic compound. A lithium alloy negative electrode characterized in that it is formed from an alloy powder containing lithium and aluminum. 2. Claim 1, wherein the organic compound is a thermoplastic polymer compound of olefins or paraffins.
Lithium alloy negative electrode as described in . 3. In a method for manufacturing a lithium alloy negative electrode for a secondary battery using a non-aqueous electrolyte, the lithium alloy negative electrode includes a step of mixing lithium and aluminum powder and an organic compound powder, and adding viscosity to the mixed mixture. A process of adding a medium and kneading to form a paste, a process of applying this paste onto an electrode base material, and a process of heat-treating the coated electrode in a predetermined atmosphere and at a predetermined temperature. A method for producing a lithium alloy negative electrode. 4. Claim 3, wherein the organic compound is a thermoplastic polymer compound of olefins or paraffins.
A method for producing a lithium alloy negative electrode as described in . 5. The method for producing a lithium alloy negative electrode according to claim 3 or 4, wherein the predetermined temperature is higher than the softening point of the thermoplastic polymer compound. 6. The method for producing a lithium alloy negative electrode according to claim 3, wherein the predetermined atmosphere is a vacuum or an inert gas. 7. The method for manufacturing a lithium alloy negative electrode according to claim 3, wherein the heat treatment is performed while the coated electrode is pressurized. 8. The method for producing a lithium alloy negative electrode according to claim 3, wherein the viscous medium is propylene carbonate.
JP61054836A 1986-03-14 1986-03-14 Lithium-alloy negative electrode and its manufacture Pending JPS62213064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61054836A JPS62213064A (en) 1986-03-14 1986-03-14 Lithium-alloy negative electrode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61054836A JPS62213064A (en) 1986-03-14 1986-03-14 Lithium-alloy negative electrode and its manufacture

Publications (1)

Publication Number Publication Date
JPS62213064A true JPS62213064A (en) 1987-09-18

Family

ID=12981715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054836A Pending JPS62213064A (en) 1986-03-14 1986-03-14 Lithium-alloy negative electrode and its manufacture

Country Status (1)

Country Link
JP (1) JPS62213064A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284361A (en) * 1989-04-25 1990-11-21 Matsushita Electric Ind Co Ltd Manufacture of lithium negative electrode and thermo-battery using the same
JP2013232423A (en) * 2006-03-23 2013-11-14 Sion Power Corp Method of charging lithium sulfur cell
JP2013545234A (en) * 2010-10-28 2013-12-19 ミルヨビル グレンランド エーエス Method for producing slurry for film-like battery production
US8735002B2 (en) 2011-09-07 2014-05-27 Sion Power Corporation Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound
US8748043B2 (en) 2004-01-06 2014-06-10 Sion Power Corporation Electrolytes for lithium sulfur cells
US8828610B2 (en) 2004-01-06 2014-09-09 Sion Power Corporation Electrolytes for lithium sulfur cells
US9577289B2 (en) 2012-12-17 2017-02-21 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US10297827B2 (en) 2004-01-06 2019-05-21 Sion Power Corporation Electrochemical cell, components thereof, and methods of making and using same
US11705555B2 (en) 2010-08-24 2023-07-18 Sion Power Corporation Electrolyte materials for use in electrochemical cells

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284361A (en) * 1989-04-25 1990-11-21 Matsushita Electric Ind Co Ltd Manufacture of lithium negative electrode and thermo-battery using the same
US10297827B2 (en) 2004-01-06 2019-05-21 Sion Power Corporation Electrochemical cell, components thereof, and methods of making and using same
US8748043B2 (en) 2004-01-06 2014-06-10 Sion Power Corporation Electrolytes for lithium sulfur cells
US8828610B2 (en) 2004-01-06 2014-09-09 Sion Power Corporation Electrolytes for lithium sulfur cells
US10985403B2 (en) 2004-01-06 2021-04-20 Sion Power Corporation Electrolytes for lithium sulfur cells
US9716291B2 (en) 2004-01-06 2017-07-25 Sion Power Corporation Electrolytes for lithium sulfur cells
US9859588B2 (en) 2004-01-06 2018-01-02 Sion Power Corporation Electrolytes for lithium sulfur cells
JP2013232423A (en) * 2006-03-23 2013-11-14 Sion Power Corp Method of charging lithium sulfur cell
US11705555B2 (en) 2010-08-24 2023-07-18 Sion Power Corporation Electrolyte materials for use in electrochemical cells
JP2013545234A (en) * 2010-10-28 2013-12-19 ミルヨビル グレンランド エーエス Method for producing slurry for film-like battery production
US9847550B2 (en) 2011-09-07 2017-12-19 Sion Power Corporation Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound and battery including the cell
US10854921B2 (en) 2011-09-07 2020-12-01 Sion Power Corporation Electrochemical cell including electrolyte having insoluble nitrogen-containing material and battery including the cell
US8735002B2 (en) 2011-09-07 2014-05-27 Sion Power Corporation Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound
US10050308B2 (en) 2012-12-17 2018-08-14 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US10468721B2 (en) 2012-12-17 2019-11-05 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US9577289B2 (en) 2012-12-17 2017-02-21 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US11502334B2 (en) 2012-12-17 2022-11-15 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same

Similar Documents

Publication Publication Date Title
CN101179126B (en) Electrode material, electrode structure and secondary battery having the electrode structure
KR100458098B1 (en) Electrode Material for Negative Pole of Lithium Secondary Cell, Electrode Structure Using Said Electrode Material, Lithium Secondary Cell Using Said Electrode Structure, and Method for Manufacturing Said Electrode Structure and Said Lithium Secondary Cell
US6794087B2 (en) Lithium battery having evenly coated negative electrode and method of manufacture thereof
US4668596A (en) Negative electrodes for non-aqueous secondary batteries composed on conjugated polymer and alkali metal alloying or inserting material
DE102018121026A1 (en) METHOD FOR THE APPLICATION OF SELF-FORMING ARTIFICIAL FIXED ELECTROLYTE INTERFACIAL LAYER (SEI-LAYER) FOR STABILIZING THE CYCLE STABILITY OF ELECTRODES IN LITHIUM BATTERIES
EP1335438A1 (en) Negative electrode for lithium secondary cell and method for producing the same
JP2008532221A (en) Secondary battery with improved lithium ion mobility and battery capacity
US5011748A (en) Rechargeable battery cathode from P2- phase sodium cobalt dioxide
JP7128290B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
US11876214B2 (en) Electrode mixture manufacturing method and electrode mixture
JP4140222B2 (en) Negative electrode, non-aqueous electrolyte secondary battery, and negative electrode manufacturing method
CN111095626B (en) Negative active material for lithium secondary battery and method for preparing same
EP0199175B1 (en) Negative electrodes for non-aqueous secondary batteries composed of conjugated polymer and alkali metal alloying or inserting material
US20020119371A1 (en) Method of fabricating electrode foils and galvanic elements fabricated from the method
WO2004006362A1 (en) Nonaqueous electrolyte secondary cell
CN111668484A (en) Negative electrode active material and electricity storage device
JPS62213064A (en) Lithium-alloy negative electrode and its manufacture
JP4534263B2 (en) Nonaqueous electrolyte secondary battery
EP1052714B1 (en) Non-aqueous electrolyte secondary cell and its charging method
JPS63264865A (en) Manufacture of negative electrode for secondary battery
KR20010037099A (en) Lithium secondary battery and fabrication method thereof
JP2002056843A (en) Negative electrode material for lithium secondary battery and method of manufacturing the same
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP4534264B2 (en) Nonaqueous electrolyte secondary battery
JP3985263B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, METHOD FOR PRODUCING SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY