JP2002056843A - Negative electrode material for lithium secondary battery and method of manufacturing the same - Google Patents

Negative electrode material for lithium secondary battery and method of manufacturing the same

Info

Publication number
JP2002056843A
JP2002056843A JP2000241164A JP2000241164A JP2002056843A JP 2002056843 A JP2002056843 A JP 2002056843A JP 2000241164 A JP2000241164 A JP 2000241164A JP 2000241164 A JP2000241164 A JP 2000241164A JP 2002056843 A JP2002056843 A JP 2002056843A
Authority
JP
Japan
Prior art keywords
powder
negative electrode
phase
sic
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000241164A
Other languages
Japanese (ja)
Inventor
Koji Yamamoto
浩司 山本
Koichi Terao
公一 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000241164A priority Critical patent/JP2002056843A/en
Publication of JP2002056843A publication Critical patent/JP2002056843A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material for lithium secondary battery having a high capacity, a long cycle service life and the high discharging characteristic. SOLUTION: A negative electrode material impregnated with the doping element contained Si into pores of a porous SiC sintered compact is manufactured by dipping the porous SiC sintered compact into the molten Si, in which the doping element (B, P, As or Sb) is added, or dipping the non-sintered compact composed of the SiC powder, C powder, the mixture powder of the Si powder and the C powder, and the mixture powder of the SiC powder and the C powder into the molten Si containing the doping element. This negative electrode material is formed of particles including the Si phase and the SiC phase, and the Si phase contains the doping element and a part of the Si phase is exposed in a particle surface, and other parts of the Si phase except for the part exposed in the particle surface are in contact with the SiC phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
関し、特にその負極材料およびこの負極材料の製造方法
に関する。本発明において、リチウム二次電池とはリチ
ウムイオン二次電池を含む各種リチウム二次電池の総称
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a negative electrode material thereof and a method for producing the negative electrode material. In the present invention, a lithium secondary battery is a general term for various lithium secondary batteries including a lithium ion secondary battery.

【0002】[0002]

【従来の技術】携帯用通信機器や小型電子機器の普及と
ともに、リチウム二次電池の需要は急激に増加してい
る。
2. Description of the Related Art With the spread of portable communication devices and small electronic devices, the demand for lithium secondary batteries is rapidly increasing.

【0003】現行のリチウム二次電池では負極材料とし
て炭素材料が使用され、その充電・放電容量は約320 mA
h/g 前後である。炭素質の負極材料の場合、LiC6として
Liを吸蔵した場合の理論的充電・放電容量が372 mAh/g
である。この理論容量は、金属Liからなる負極材料の理
論容量の1/10以下であるため、炭素質の負極材料を使
用する限り、リチウム二次電池の飛躍的な容量増加は見
込めない。
In the current lithium secondary battery, a carbon material is used as a negative electrode material, and its charge / discharge capacity is about 320 mA.
It is around h / g. In the case of carbonaceous anode material, LiC 6
The theoretical charge / discharge capacity when occluding Li is 372 mAh / g
It is. Since this theoretical capacity is 1/10 or less of the theoretical capacity of the negative electrode material composed of metallic Li, a dramatic increase in capacity of the lithium secondary battery cannot be expected as long as a carbonaceous negative electrode material is used.

【0004】そこで、理論容量が炭素質負極材料より遥
かに大きなSi等を負極材料として使用することが提案さ
れた。例えば、特開平10−83817 号公報には、Siを主成
分とする高容量の負極材料が提案され、これにさらにp
型またはn型不純物としてBまたはPをドープして導電
性を改善すると、さらに高容量となることが開示されて
いる。
Therefore, it has been proposed to use Si or the like having a theoretical capacity much larger than that of the carbonaceous negative electrode material as the negative electrode material. For example, Japanese Patent Application Laid-Open No. 10-83817 proposes a high-capacity negative electrode material containing Si as a main component.
It is disclosed that when the conductivity is improved by doping B or P as a type or n-type impurity, the capacity is further increased.

【0005】SiはCより多量のLiを吸蔵できるため、Si
を負極材料に用いるとリチウム二次電池が高容量化する
ことはよく知られている。しかし、実際にSiを負極材料
に用いてリチウム二次電池を作製すると、充電・放電サ
イクルの繰り返しにつれて容量が著しく低下し、サイク
ル寿命が短い電池にしかならないという問題がある。上
記公報でも、放電容量のデータは提示されているもの
の、サイクル寿命については言及がなく、この問題点が
解決されていない。このように、Siを負極材料とするリ
チウム二次電池は、実用上必要なサイクル寿命が得られ
ないため、実用化できないでいる。
Since Si can store more Li than C, Si
It is well known that the use of as a negative electrode material increases the capacity of a lithium secondary battery. However, when a lithium secondary battery is actually manufactured using Si as a negative electrode material, there is a problem that the capacity is remarkably reduced as charge / discharge cycles are repeated, resulting in a battery having only a short cycle life. Although the above publication also discloses data on discharge capacity, it does not mention cycle life, and does not solve this problem. As described above, a lithium secondary battery using Si as a negative electrode material cannot provide a cycle life necessary for practical use, and thus cannot be put to practical use.

【0006】Siをリチウム二次電池の負極材料に用いた
場合のサイクル寿命が低い理由は次のように考えられ
る。Siは、Cより多量のLiを吸蔵することから、充電・
放電時の負極材料の膨張・収縮がCより大きくなる。そ
のため、充電・放電を繰り返すごとに起こる体積変化に
負極材料が追従できなくなり、負極材料に割れが入って
微粉化する。微粉化した負極材料は、孤立してLiの吸蔵
・放出に寄与しなくなるので、充電・放電の繰り返しに
より負極材料の微粉化が進むと、充電・放電容量が低下
する。
The reason why the cycle life when Si is used as a negative electrode material of a lithium secondary battery is short is considered as follows. Since Si stores more Li than C,
The expansion and contraction of the negative electrode material during discharge becomes larger than C. For this reason, the negative electrode material cannot follow the volume change that occurs every time charge and discharge are repeated, and the negative electrode material is cracked and pulverized. Since the pulverized negative electrode material is isolated and does not contribute to occlusion and release of Li, as the pulverization of the negative electrode material progresses due to repetition of charge and discharge, the charge and discharge capacity decreases.

【0007】Siをリチウム二次電池の負極材料に用いた
場合の別の問題点として、大電流での放電特性である高
率放電特性が低いことが挙げられる。例えば、0.2 C で
放電した場合の容量に対して、その10倍の電気量である
2 C で放電した場合の容量が著しく低いと、リチウム二
次電池の用途が制限され、例えば、電気自動車用電源と
いった大電流を要する用途には使用できない。
Another problem when Si is used as a negative electrode material of a lithium secondary battery is that high-rate discharge characteristics, which are discharge characteristics at a large current, are low. For example, 10 times the amount of electricity when discharged at 0.2 C
If the capacity at the time of discharging at 2 C is extremely low, the use of the lithium secondary battery is limited, and the lithium secondary battery cannot be used for an application requiring a large current such as a power supply for an electric vehicle.

【0008】[0008]

【発明が解決しようとする課題】本発明は、容量が大き
く、サイクル寿命のみならず高率放電特性にも優れたリ
チウム二次電池用負極材料とその製造方法、ならびに前
記負極材料を負極に備えたリチウム二次電池を提案する
ことを課題とする。より具体的には、活物質としてSiを
用いて、上記のような負極材料とその製造を可能にする
ことである。
SUMMARY OF THE INVENTION The present invention provides a negative electrode material for a lithium secondary battery having a large capacity and excellent not only cycle life but also high-rate discharge characteristics, a method for producing the same, and a negative electrode comprising the negative electrode material. It is an object to propose a rechargeable lithium battery. More specifically, it is to enable the above-described negative electrode material and its production by using Si as an active material.

【0009】[0009]

【課題を解決するための手段】本発明によれば、Si相と
SiC相とを含む粒子からなるリチウム二次電池用負極材
料であって、 Si相が長周期型周期律表の3B族または5B族に属す
る1種以上のドープ元素を含み、 Si相の一部が粒子表面に露出し、かつ Si相の粒子表面に露出している部分以外はSiC相と接
している、 ことを特徴とするリチウム二次電池用負極材料、によ
り、上記課題を解決することができる。
According to the present invention, there is provided a semiconductor device comprising:
A negative electrode material for a lithium secondary battery comprising particles including a SiC phase, wherein the Si phase includes at least one doping element belonging to Group 3B or 5B of the long-period periodic table, and a part of the Si phase. The above problem is solved by a negative electrode material for a lithium secondary battery, wherein is exposed to the particle surface and is in contact with the SiC phase except for the part of the Si phase that is exposed to the particle surface. it can.

【0010】好ましくは、Si相が、前記ドープ元素を合
計1018〜1022原子/cm3 の範囲内の量で含んでいる。本
発明はまた、このリチウム二次電池用負極材料から作製
された負極を備えたことを特徴とするリチウム二次電池
にも関する。
[0010] Preferably, the Si phase contains the above-mentioned doping elements in a total amount of 10 18 to 10 22 atoms / cm 3 . The present invention also relates to a lithium secondary battery including a negative electrode manufactured from the negative electrode material for a lithium secondary battery.

【0011】本発明のリチウム二次電池用負極材料で
は、Si相の周囲が堅固なSiC相で包囲されているため、
充電・放電の繰り返しごとに発生するSi相の体積変化が
SiC相による拘束で抑制されることから、負極材料が割
れにくくなり、サイクル寿命が改善される。
In the negative electrode material for a lithium secondary battery of the present invention, the periphery of the Si phase is surrounded by a solid SiC phase.
The volume change of the Si phase that occurs with each repetition of charging and discharging
Since it is suppressed by the restraint by the SiC phase, the anode material is less likely to crack, and the cycle life is improved.

【0012】また、Si相が長周期型周期律表の3B族ま
たは5B族に属する1種以上のドープ元素を含有する
(「ドープした」とも言う) ことで、Si相はp型または
n型となり、導電性が高くなる。それにより、負極材料
の高率放電特性が改善されると共に、理由は不明である
が、サイクル寿命まで改善される。
Further, the Si phase contains at least one doping element belonging to Group 3B or 5B of the long-periodic periodic table.
(Also referred to as "doped"), the Si phase becomes p-type or n-type, and the conductivity is increased. As a result, the high-rate discharge characteristics of the negative electrode material are improved, and the cycle life is improved for an unknown reason.

【0013】本発明の上記リチウム二次電池用負極材料
の製造方法としては、次の2つの方法が可能である。方
法1はSiCを多孔質焼結体にしてから溶融Siを含浸させ
る方法であり、方法2は、溶融Siの含浸がSiC焼結体の
形成も兼ねる方法である。
As the method for producing the above-mentioned negative electrode material for a lithium secondary battery of the present invention, the following two methods are possible. Method 1 is a method in which SiC is made into a porous sintered body and then impregnated with molten Si, and Method 2 is a method in which impregnation with molten Si also serves as formation of a SiC sintered body.

【0014】方法1:多孔質SiC焼結体を、長周期型周
期律表の3B族または5B族に属する1種以上のドープ
元素を含むSiの溶融物に浸漬して、この溶融物を該焼結
体に含浸させる工程と、含浸させた焼結体を粉砕する工
程、とを含むことを特徴とする、リチウム二次電池用負
極材料の製造方法。
Method 1: A porous SiC sintered body is immersed in a melt of Si containing at least one doping element belonging to Group 3B or 5B of the Long Periodic Periodic Table. A method for producing a negative electrode material for a lithium secondary battery, comprising: a step of impregnating a sintered body; and a step of pulverizing the impregnated sintered body.

【0015】方法2:SiC粉末、C粉末、Si粉末とC粉
末との混合粉末、SiC粉末とC粉末との混合粉末、また
はSiC粉末とC粉末とSi粉末との混合粉末からなる原料
粉末を加圧成形して得た未焼結成形体を、長周期型周期
律表の3B族または5B族に属する1種以上のドープ元
素を含むSiの溶融物に浸漬して、多孔質SiC焼結体を形
成すると同時に多孔質SiC焼結体に前記溶融物を含浸さ
せる工程と、前記溶融物を含浸させた多孔質SiC焼結体
を粉砕する工程、とを含むことを特徴とする、リチウム
二次電池用負極材料の製造方法。
Method 2: Raw material powder consisting of SiC powder, C powder, mixed powder of Si powder and C powder, mixed powder of SiC powder and C powder, or mixed powder of SiC powder, C powder and Si powder The green compact obtained by pressure molding is immersed in a melt of Si containing at least one doping element belonging to Group 3B or 5B of the Long Periodic Periodic Table to form a porous SiC sintered body. Forming a porous SiC sintered body at the same time as impregnating the molten material, and pulverizing the porous SiC sintered body impregnated with the molten material. A method for producing a negative electrode material for a battery.

【0016】[0016]

【発明の実施の形態】本発明のリチウム二次電池用負極
材料は、長周期型周期律表の3B族または5B族に属す
る1種以上の元素をドープしたSi相と、SiC相とを含む
粒子から構成される粉末材料である。
BEST MODE FOR CARRYING OUT THE INVENTION The negative electrode material for a lithium secondary battery according to the present invention comprises a Si phase doped with at least one element belonging to Group 3B or 5B of the periodic table and a SiC phase. It is a powder material composed of particles.

【0017】SiC相は前記ドープ元素を含んでいても、
含んでいなくてもよい。SiC相中をLiが通過することは
殆どないので、SiC相がドープ元素を含んでいる必要は
ないが、含んでいても本発明の効果を阻害するものでは
ない。SiCには、α型 (六方晶系) とβ型 (等軸晶系)
の2種類の結晶形態があるが、本発明ではそのいずれで
あってもよい。
The SiC phase contains the above-mentioned doping element,
It may not be included. Since Li hardly passes through the SiC phase, it is not necessary that the SiC phase contains a doping element, but even if it does, the effect of the present invention is not impaired. SiC has α-type (hexagonal) and β-type (equiaxed)
Although there are two types of crystal forms, any of them may be used in the present invention.

【0018】Si相は、Liと金属間化合物 (例、Li4,4Si)
の形成を通して可逆的に反応できることから、Cと同様
にLiを可逆的に吸蔵・放出し、その場合の理論容量は、
Cの理論容量の10倍以上もの大きさとなる。Siをリチウ
ム二次電池の負極材料とした場合、Cより単位体積当た
りのLiの吸蔵量が大きくなるため、充電・放電時の体積
の膨張・収縮が大きく、負極材料が微粉化が急激に進行
し、充電・放電サイクルが進むにつれて容量が著しく低
下する。即ち、高容量であっても、サイクル寿命が非常
に短いため、実用的な負極材料とはならない。
The Si phase is composed of Li and an intermetallic compound (eg, Li 4,4 Si).
Since it can react reversibly through the formation of Li, it can occlude and release Li reversibly like C, and the theoretical capacity in that case is:
It is 10 times or more the theoretical capacity of C. When Si is used as the negative electrode material of a lithium secondary battery, the amount of Li absorbed per unit volume is larger than that of C, so the volume expansion and contraction during charging and discharging is large, and the negative electrode material is rapidly pulverized. However, the capacity decreases significantly as the charge / discharge cycle progresses. That is, even if the capacity is high, the cycle life is very short, so that it is not a practical negative electrode material.

【0019】本発明では、Si相にSiC相を共存させた負
極材料とする。SiCはLiと反応性がなく、LiがSiC相を
通過することは殆ど起こり得ないので、SiC相は充電・
放電時に体積変化を実質的に生じない。そのため、SiC
相はLiの吸蔵・放出に伴うSi相の体積変化を効果的に拘
束することができる。即ち、Si相にSiC相を共存させた
負極材料とすると、Liを吸蔵しないSiCが加わることで
放電容量は低下するが、なお現行の炭素質負極材料に比
べて非常に高い放電容量を達成することができる上、実
用に十分なレベルまでSi質負極材料のサイクル寿命を改
善することができる。
In the present invention, a negative electrode material in which a SiC phase coexists with a Si phase is used. Since SiC is not reactive with Li, and Li can hardly pass through the SiC phase, the SiC phase is charged and
Substantially no volume change occurs during discharge. Therefore, SiC
The phase can effectively restrain the volume change of the Si phase accompanying the occlusion and release of Li. In other words, when a negative electrode material in which a SiC phase coexists with a Si phase is added, SiC that does not occlude Li reduces the discharge capacity, but still achieves a very high discharge capacity compared to the current carbonaceous negative electrode material. In addition, the cycle life of the Si-based negative electrode material can be improved to a level sufficient for practical use.

【0020】本発明では、Si相は、その一部が粒子表面
に露出し、粒子表面に露出している部分以外はSiC相と
接している。Si相の一部が粒子表面に露出していると、
充電時にLiが粒子に侵入する場合に、SiC相を経由せず
にLiがSi相に直接侵入でき、Si相内のみを通過してSi相
の内部まで移動することができる。放電時にLiが放出さ
れる場合も同様に、Si相内部のLiはSi相内のみを通過し
て表面へ移動し、SiC相を経由せずに外部に出ることが
できる。その結果、すべてのSi相を充放電に利用できる
と同時に、SiC相により抱束することができる。
In the present invention, the Si phase is partially exposed on the particle surface, and is in contact with the SiC phase except for the part exposed on the particle surface. If part of the Si phase is exposed on the particle surface,
When Li enters the particles during charging, Li can directly enter the Si phase without passing through the SiC phase, and can move to the inside of the Si phase only through the inside of the Si phase. Similarly, when Li is released at the time of discharge, Li in the Si phase moves to the surface only through the Si phase and can go out without passing through the SiC phase. As a result, all the Si phases can be used for charging and discharging, and at the same time, can be bound by the SiC phase.

【0021】粒子内のSi相の数は、1個でも、2個以上
でもよい。それぞれのSi相は含浸されたものであるの
で、必ずその一部が粒子表面に露出している。Si相の表
面に露出していない部分は、SiC相と接している。それ
により、SiC相によるSi相の体積変化の拘束効果が最大
限に発揮できる。
The number of Si phases in the particles may be one or two or more. Since each Si phase is impregnated, a part thereof is always exposed on the particle surface. The portion not exposed on the surface of the Si phase is in contact with the SiC phase. Thereby, the effect of restraining the volume change of the Si phase by the SiC phase can be maximized.

【0022】実際には、本発明の負極材料の作製に用い
る原料 (Si、C、SiC等の粉末) や、後述する原料粉末
の成形に用いる材料 (分散剤、可塑剤、結合剤等) に
は、種々の不純物が不可避的に微量含まれている。これ
らの不純物は焼結時や含浸時に珪化物や炭化物等を形成
する。例えば、WSi2 やB4C等の珪化物や炭化物等が形
成されて析出することがある。厳密に言えば、Si相はSi
C相以外のこれら不純物に起因する第3相に接すること
になる。しかし、この第3相は微量であり、本発明者の
経験では全体に占める割合は体積比で3%以下で、本発
明の効果を損なうものではなかった。本発明の負極材料
では、これら微量の第3相の析出は不純物として無視す
ることができる。そのため、Si相は、表面に露出してい
る以外の部分ではSiC相のみと接することになる。
Actually, the raw material (powder of Si, C, SiC, etc.) used for producing the negative electrode material of the present invention and the material (dispersant, plasticizer, binder, etc.) used for forming the raw material powder described later are used. Contains inevitably trace amounts of various impurities. These impurities form silicides and carbides during sintering and impregnation. For example, silicides and carbides such as WSi 2 and B 4 C may be formed and precipitated. Strictly speaking, the Si phase is Si
It comes into contact with the third phase caused by these impurities other than the C phase. However, this third phase is very small, and according to the experience of the present inventor, the ratio of the third phase to the whole is not more than 3% by volume, and the effect of the present invention is not impaired. In the negative electrode material of the present invention, the precipitation of such a small amount of the third phase can be ignored as an impurity. Therefore, the Si phase is in contact with only the SiC phase except for the part exposed on the surface.

【0023】Si相が前述したドープ元素を1種以上含ん
でいると、Siの導電性が増大する。Siに3B族または5
B族の元素をドープすると、これらのドープ元素がいわ
ゆるp型不純物 (3B族元素) またはn型不純物 (5B
族元素) として作用し、導電性が増大することは、半導
体の理論としてよく知られている。
When the Si phase contains one or more of the above-mentioned doping elements, the conductivity of Si increases. 3B or 5 for Si
When a group B element is doped, these doping elements become so-called p-type impurities (group 3B elements) or n-type impurities (5B
It is well known in semiconductor theory that it acts as a group element) and increases conductivity.

【0024】この現象をSi系負極材料に適用した場合、
ドープ元素の添加によるSiの導電性の増大によって、Si
中をLiがより容易に通過し易くなって、高率放電特性が
改善される。この高率放電特性の改善は、ドープによる
導電性の改善からある程度は予測可能な効果である。し
かし、意外にも、上記ドープ元素の添加により、充電・
放電サイクルの繰り返しによる容量低下が少なくなり、
サイクル特性が著しく改善されることが判明した。ドー
プあるいは導電性とサイクル特性とは直接の関係がない
ので、Si相をドープすることによるによるサイクル特性
の改善は、全く予想外の効果である。
When this phenomenon is applied to a Si-based negative electrode material,
Due to the increase in conductivity of Si due to the addition of doping elements,
Li easily passes through the inside, and the high rate discharge characteristics are improved. The improvement in the high-rate discharge characteristics is an effect that can be predicted to some extent from the improvement in conductivity by doping. However, surprisingly, the addition of
Reduced capacity reduction due to repeated discharge cycles,
It was found that the cycle characteristics were significantly improved. Since there is no direct relationship between the doping or conductivity and the cycle characteristics, the improvement of the cycle characteristics by doping the Si phase is a completely unexpected effect.

【0025】Si相がドープ元素を僅かでも含んでいれ
ば、それだけの効果があり、その含有量は特に限定され
ないが、Si相はドープ元素を合計で1018〜1022原子/cm
3 の範囲の量で含んでいることが好ましく、特に1020
1022原子/cm3 の範囲であると、高率放電特性とサイク
ル寿命がいずれも改善効果がさらに顕著となり、より好
ましい。
If the Si phase contains a small amount of the doping element, the effect is not so limited, and the content is not particularly limited, but the Si phase contains the doping element in a total of 10 18 to 10 22 atoms / cm 2.
Preferably, it is contained in an amount in the range of 3 , particularly 10 20 to
When the content is in the range of 10 22 atoms / cm 3 , both the high-rate discharge characteristics and the cycle life have more remarkable improvement effects, which is more preferable.

【0026】ドープ原子が1018原子/cm3 より少ない
と、本発明の効果が小さくなることがあり、1022原子/
cm3 より多くなると、ドープ元素の偏析生じ、容量低下
や導電性の悪化等を生じることがある。
[0026] doping atoms is less than 10 18 atoms / cm 3, there is the effect of the present invention becomes small, 10 22 atoms /
If it exceeds cm 3 , segregation of the doping element may occur, resulting in a reduction in capacity, deterioration in conductivity, and the like.

【0027】Si相に3B族または5B族に属する1種以
上の元素をドープする方法は、例えばSi融液にドープ元
素単体もしくはその化合物を添加する方法がある。ドー
プ元素としては、3B族のB、5B族のP、As、Sbのう
ちの1種以上が好ましい。
As a method of doping the Si phase with one or more elements belonging to the 3B group or 5B group, for example, there is a method of adding a doping element alone or a compound thereof to a Si melt. As the doping element, one or more of B, P of the 3B group, P, As, and Sb of the 5B group are preferable.

【0028】本発明に係る、一部が粒子表面に露出した
Si相とSiC相からなり、Si相の表面に露出していない部
分がSiC相と接している粒子から構成される負極材料
は、多孔質SiC焼結体をSiの溶融物 (融液) に浸漬し
て、SiC焼結体の気孔にSiを含浸させる方法を用いると
容易に製造することができる。含浸は後述する条件で行
うことが好ましい。
According to the present invention, a part was exposed on the particle surface
The negative electrode material composed of particles consisting of Si phase and SiC phase, and the part not exposed to the surface of the Si phase is in contact with the SiC phase converts porous SiC sintered body into a Si melt (melt). It can be easily manufactured by using a method of immersing and impregnating the pores of the SiC sintered body with Si. The impregnation is preferably performed under the conditions described below.

【0029】含浸させるSiの溶融物には前述したドープ
元素を適当な量 (蒸発を見越して、所定のドープ元素の
添加量が得られるように) で添加しておく。含浸が済ん
だら、含浸物を冷却してSiを固化させた後、粉砕して粒
子にする。粉砕してもSi相の一部が粒子表面に露出し、
露出していない部分はSiC相で抱束されるという特徴は
残る。従って、含浸されたSi相は、必ず一部が粒子表面
に露出する。また、含浸により製造すれば、Si相は、表
面に露出している部分を除いてSiC相と接することにな
る。
The above-mentioned doping element is added to the Si melt to be impregnated in an appropriate amount (so as to obtain a predetermined doping element addition amount in anticipation of evaporation). After the impregnation, the impregnated material is cooled to solidify Si, and then pulverized into particles. Even when pulverized, part of the Si phase is exposed on the particle surface,
The feature that the unexposed portion is bound by the SiC phase remains. Therefore, a part of the impregnated Si phase is always exposed on the particle surface. Further, when the Si phase is manufactured by impregnation, the Si phase comes into contact with the SiC phase except for the part exposed on the surface.

【0030】多孔質SiC焼結体の製造方法は特に制限さ
れないが、代表的には、原料粉末としてSiC粉末を使用
し、これを加圧成形し、得られた成形体を焼成して焼結
させる方法により製造される。SiC粉末を使用する代わ
りに、C粉末を使用し、焼成時に熱分解性珪素化合物
(例、シラン類) を導入してCと反応させ、焼成と同時
にSiCを形成する方法でも、多孔質SiC焼結体を製造す
ることができる。
The method for producing the porous SiC sintered body is not particularly limited, but typically, a SiC powder is used as a raw material powder, this is press-molded, and the obtained compact is fired and sintered. It is manufactured by the method of making. Instead of using SiC powder, use C powder, and pyrolytic silicon compound during firing
A porous SiC sintered body can also be produced by introducing (eg, silanes) and reacting with C to form SiC simultaneously with firing.

【0031】原料粉末の成形は、周知のように、分散
剤、可塑剤、結合剤などを適宜配合して行うのが普通で
ある。原料粉末は、成形前に適当な粉末造粒機を用いて
造粒してもよく、その方が一般に気孔径を小さく揃える
ことができ、大きな粒径のSi相を生じない。大きな粒径
のSi相が生じると、粉砕によりSi相単独の粒子ができる
ことがあり好ましくない。SiC焼結体の焼成温度は通常
は 500〜2200℃である。多孔質SiC焼結体の気孔率は、
原料粉末の粒度分布と形状、加圧成形の圧力、および焼
成温度などにより変動する。
As is well known, the molding of the raw material powder is usually carried out by appropriately mixing a dispersant, a plasticizer, a binder and the like. The raw material powder may be granulated using a suitable powder granulator before compaction, which generally makes it possible to make the pore diameters small and does not generate a Si phase having a large particle size. If a Si phase having a large particle size is generated, particles of the Si phase alone may be formed by pulverization, which is not preferable. The firing temperature of the SiC sintered body is usually 500 to 2200 ° C. The porosity of the porous SiC sintered body is
It fluctuates depending on the particle size distribution and shape of the raw material powder, the pressure for pressure molding, the firing temperature, and the like.

【0032】溶融Siを含浸させる多孔質焼結体の気孔率
により、Siの含浸量、従って、負極材料中のSi相の割合
が決まり、それに応じて負極材料の容量も変化する。本
発明のリチウム二次電池用負極材料におけるSi相の体積
割合 (多孔質SiC焼結体の気孔率に等しい) は10〜70 v
ol%の範囲内であることが好ましい。
The porosity of the porous sintered body impregnated with the molten Si determines the amount of Si impregnated, and hence the proportion of the Si phase in the negative electrode material, and the capacity of the negative electrode material changes accordingly. The volume ratio of the Si phase (equal to the porosity of the porous SiC sintered body) in the negative electrode material for a lithium secondary battery of the present invention is 10 to 70 v
ol%.

【0033】多孔質SiC焼結体を使用する代わりに、原
料粉末を加圧成形して得られる未焼結の成形体を溶融Si
に浸漬し、溶融Siによる熱によって成形体を焼結し、多
孔質焼結体を作製するのと同時にSiを含浸させる方法も
可能である。含浸は焼結と同時または焼結後に起こる。
この方法では、成形体の焼結のための焼成工程が不要と
なる。
Instead of using a porous SiC sintered body, an unsintered green body obtained by press-forming raw material powder is
It is also possible to immerse the molded product in a liquid and sinter the molded product by the heat of molten Si to produce a porous sintered body and impregnate Si at the same time. Impregnation can occur simultaneously with or after sintering.
In this method, a firing step for sintering the molded body is not required.

【0034】原料粉末は、SiC粉末単独でもよいが、焼
結中に反応してSiCとなる材料の粉末も使用できる。即
ち、溶融Siと反応してSiCになるC粉末単独、あるいは
Si粉末とC粉末との混合粉末、SiC粉末とC粉末との混
合粉末、さらにはSiC粉末とSi粉末とC粉末との混合粉
末が可能である。
As the raw material powder, SiC powder alone may be used, but powder of a material which reacts during sintering to become SiC can also be used. That is, C powder alone which reacts with molten Si to become SiC, or
A mixed powder of Si powder and C powder, a mixed powder of SiC powder and C powder, and a mixed powder of SiC powder, Si powder and C powder are possible.

【0035】SiC粉末を用いる方法が最も簡便である。
一方、SiC粉末は高価であるので、コスト低減のために
はSi粉末とC粉末との混合粉末が効果的である。この混
合粉末を用いた場合、C粉末は溶融Siと化合してSiCと
なる。こうして焼結中の反応でSiCを形成すると、気孔
径が比較的小さくなり、含浸したSi相の径の細くなるこ
とから、SiC相によるSi相の拘束がよく効き、SiC粉末
を使用した場合に比べてサイクル寿命が長くなる。理由
は不明であるが、この効果はSiC粉末とC粉末との混合
粉末の場合に特に顕著であり、C粉末を単独で使用した
場合や、C粉末とSi粉末との混合粉末を使用した場合
は、SiC粉末を使用した場合とそれほど違わないサイク
ル寿命になる。
The method using SiC powder is the simplest.
On the other hand, since SiC powder is expensive, a mixed powder of Si powder and C powder is effective for cost reduction. When this mixed powder is used, the C powder is combined with the molten Si to form SiC. When SiC is formed by the reaction during sintering in this way, the pore size becomes relatively small, and the diameter of the impregnated Si phase becomes small. Therefore, the constraint of the Si phase by the SiC phase works well, and when SiC powder is used. The cycle life is longer than that. Although the reason is unknown, this effect is particularly remarkable in the case of the mixed powder of SiC powder and C powder, and when the C powder is used alone or when the mixed powder of C powder and Si powder is used. Has a cycle life not so different from that in the case of using SiC powder.

【0036】溶融Siの含浸温度は、Siの融点である1410
℃より50〜300 ℃高い温度範囲が適当であり、含浸時間
は通常は1〜30時間である。含浸雰囲気は、真空中また
はAr、Heガス等の不活性ガス雰囲気、水素含有ガス雰囲
気等の非酸化性雰囲気が良い。中でも、含浸の進行が速
い真空が最も好ましい。含浸により多孔質SiC焼結体の
気孔にSi (本発明では、ドープ元素を含有するSi) が侵
入して、充満する。
The impregnation temperature of molten Si is 1410 which is the melting point of Si.
A temperature range from 50 to 300 ° C. above is suitable and the impregnation time is usually from 1 to 30 hours. The impregnation atmosphere is preferably a vacuum or a non-oxidizing atmosphere such as an inert gas atmosphere such as Ar or He gas or a hydrogen-containing gas atmosphere. Above all, a vacuum in which the progress of impregnation is fast is most preferable. Si (in the present invention, Si containing a doping element) penetrates and fills the pores of the porous SiC sintered body due to the impregnation.

【0037】含浸によりSi相を形成すると、粒子内部で
孤立したSi相は存在しないので、すべてのSi相をLi吸蔵
に寄与させることができ、負極材料が高容量化する。含
浸処理により得られたSiC−Siの含浸焼結体を粉砕して
負極材料を得る。粉砕は公知の方法で実施することがで
きる。例えば、乳鉢、ボールミル、振動ミル、衛星ボー
ルミル、チューブミル、ロッドミル、ジェットミル、ハ
ンマーミル等が例示される。必要に応じて分級を行い、
所望の粒度構成にする。分級機もふるい振動機、音波ふ
るい機、サイクロン、遠心分級機、慣性分級機、電磁ふ
るい機等の何れかを使用することができる。
When the Si phase is formed by impregnation, since there is no isolated Si phase inside the particles, all the Si phases can contribute to Li occlusion, and the capacity of the negative electrode material increases. The impregnated sintered body of SiC—Si obtained by the impregnation treatment is pulverized to obtain a negative electrode material. The pulverization can be performed by a known method. For example, a mortar, a ball mill, a vibration mill, a satellite ball mill, a tube mill, a rod mill, a jet mill, a hammer mill and the like are exemplified. Classify as necessary,
Make the desired particle size configuration. As the classifier, any of a sieve vibrator, a sonic sieve, a cyclone, a centrifugal classifier, an inertial classifier, an electromagnetic sieve, and the like can be used.

【0038】本発明の負極材料を用いると、高容量でサ
イクル寿命と高率放電特性に優れたリチウム二次電池を
作製することができる。電池の製造方法は限定しない
が、以下に例示する。リチウム二次電池の形態はコイ
ン、ボタン、シート、シリンダー、偏平、多角等何れで
あってもよい。
When the negative electrode material of the present invention is used, a lithium secondary battery having a high capacity, excellent cycle life and high rate discharge characteristics can be manufactured. The method for producing the battery is not limited, but is exemplified below. The form of the lithium secondary battery may be any of coins, buttons, sheets, cylinders, flat, polygonal, and the like.

【0039】(負極)本発明の負極材料に、通常用いられ
ている導電剤、結着剤、フイラー、分散剤、イオン導電
剤、圧力増強剤等を適宜添加し、水等の溶媒を加えて混
合しスラリーないしペースト化する。スラリーないしペ
ーストを電極支持基板に塗布し、圧延ロール等を用いて
圧密化し、乾燥して負極とする。
(Negative Electrode) To the negative electrode material of the present invention, a commonly used conductive agent, a binder, a filler, a dispersant, an ionic conductive agent, a pressure enhancing agent and the like are appropriately added, and a solvent such as water is added. Mix to form a slurry or paste. The slurry or paste is applied to an electrode support substrate, consolidated using a rolling roll or the like, and dried to obtain a negative electrode.

【0040】(正極)正極には、通常用いられているLiを
含有する遷移金属の複合酸化物や複合硫化物等の1種以
上を活物質として用いる。その他、V酸化物、共役系ポ
リマー等の有機導電性材料、シェブレル相化合物等も正
極活物質として使用できる。
(Positive Electrode) For the positive electrode, one or more kinds of commonly used composite oxides and sulfides of transition metals containing Li are used as an active material. In addition, V oxides, organic conductive materials such as conjugated polymers, Chevrel phase compounds, and the like can also be used as the positive electrode active material.

【0041】(セパレーター)通常用いられているポリプ
ロピレンおよび/またはポリエチレン等のポリオレフィ
ンからなる多孔性ポリマーフィルムやガラスフィルター
不織布等の多孔製材を適宜使用する。
(Separator) A commonly used porous material such as a porous polymer film made of a polyolefin such as polypropylene and / or polyethylene or a glass filter nonwoven fabric is appropriately used.

【0042】(電解液)通常用いられている、有機溶媒に
Li塩を溶解させた非水電解液系、ポリマー電解質、無機
固体電解質およびポリマー系と無機固体電解質の複合系
等何れも使用できる。
(Electrolyte) A commonly used organic solvent
Any of a nonaqueous electrolyte solution in which a Li salt is dissolved, a polymer electrolyte, an inorganic solid electrolyte, and a composite system of a polymer and an inorganic solid electrolyte can be used.

【0043】[0043]

【実施例】(実施例1)本実施例は、多孔質SiC焼結体に
溶融Siを含浸させる方法による本発明に係る負極材料の
作製を例示する。
EXAMPLES (Example 1) This example illustrates the production of a negative electrode material according to the present invention by a method of impregnating a porous SiC sintered body with molten Si.

【0044】平均粒径0.7 μmの市販のα型SiC粉末
に、水と分散剤 (カルボン酸アンモニウム塩) 、結合剤
(アクリル系樹脂) 、潤滑剤 (ステアリン酸) 、可塑剤
(ポリエチレングリコール) を混合し、粘度が500 ps程
度のスラリーを調製した。このスラリーを回転円盤式噴
霧造粒機に投入し、粒径150 μm以下の造粒粉を作製し
た。得られた造粒粉を加圧力30 MPaで加圧成形した後、
さらにCIP を用いて190MPa の静水圧をかけ、直径100 m
m、厚さ5mmの円板状の未焼結の成形体を作製した。
Water, a dispersant (ammonium carboxylate) and a binder were added to a commercially available α-type SiC powder having an average particle size of 0.7 μm.
(Acrylic resin), lubricant (stearic acid), plasticizer
(Polyethylene glycol) to prepare a slurry having a viscosity of about 500 ps. This slurry was put into a rotary disk type spray granulator to produce granulated powder having a particle size of 150 μm or less. After pressing the obtained granulated powder under pressure of 30 MPa,
Further, a hydrostatic pressure of 190 MPa is applied using CIP, and the diameter is 100 m.
A disc-shaped green compact having a thickness of 5 mm and a thickness of 5 mm was produced.

【0045】このSiC粉末の成形体を、真空中、700 ℃
で3時間焼成することにより、多孔質SiC焼結体を作製
した。このような方法で作製した場合、多孔質SiC焼結
体の気孔率 (JIS R 2205により求めた見掛け気孔率、以
下同じ) は通常50体積%以下であり、本実施例の場合は
48体積%であった。
The molded body of this SiC powder was placed in a vacuum at 700 ° C.
For 3 hours to produce a porous SiC sintered body. When produced by such a method, the porosity of the porous SiC sintered body (apparent porosity determined by JIS R 2205, the same applies hereinafter) is usually 50% by volume or less, and in the case of this embodiment,
48% by volume.

【0046】この多孔質SiC焼結体を、真空中でドープ
元素を含有するSi融液中に浸漬し、ドープしたSiを含浸
させた。ドープ元素として、Bを種々の量で含有させ、
あるいはBに代えてP、As、またはSbを使用した。含浸
に用いたSi融液は、溶融Siにドープ元素の単体をその蒸
発量を考慮した量で添加した後、一旦冷却して凝固さ
せ、再び融解したものである。含浸時のSi融液の温度は
1500℃、含浸時間は3時間であった。多孔質SiC焼結体
の気孔に実質的に完全にSiが含浸されたため、Siの含浸
量は48体積%となる。含浸後、真空中で放冷した後、表
面に付着したSiをサンドブラストで除去した。
This porous SiC sintered body was immersed in a Si melt containing a doping element in a vacuum to impregnate the doped Si. B is contained in various amounts as a doping element,
Alternatively, P, As, or Sb was used in place of B. The Si melt used for the impregnation is obtained by adding a simple element of the doping element to the molten Si in an amount in consideration of the amount of evaporation, and then once cooled and solidified, and then melted again. The temperature of the Si melt during impregnation is
1500 ° C., the impregnation time was 3 hours. Since the pores of the porous SiC sintered body were substantially completely impregnated with Si, the impregnation amount of Si was 48% by volume. After the impregnation, the mixture was allowed to cool in a vacuum, and then the Si attached to the surface was removed by sandblasting.

【0047】その後、含浸物をAr雰囲気でボールミルに
て粉砕し、ドープしたSi相とSiC相とからなる本発明の
負極材料を得た。負極材料のドープ量をICP 発光分析装
置を用いて測定した。この負極材料を用いて、電極性能
を次に述べる方法で評価した結果を、ドープ元素の種類
およびドープ量と一緒に表1に示す。
Thereafter, the impregnated material was pulverized with a ball mill in an Ar atmosphere to obtain a negative electrode material of the present invention comprising a doped Si phase and a SiC phase. The doping amount of the negative electrode material was measured using an ICP emission spectrometer. Using this negative electrode material, the results of evaluating the electrode performance by the following method are shown in Table 1 together with the types and amounts of the doping elements.

【0048】比較のために、ドープ元素を含有しない溶
融Siを多孔質SiC焼結体に含浸させた負極材料を上と同
様に作製した。また、ドープしたSi融液をそのまま固化
させ、粉砕して、Si相のみからなる負極材料も作製し
た。これらの負極材料の電極性能も同様に評価し、表1
に結果を示す。
For comparison, a negative electrode material in which molten Si containing no doping element was impregnated into a porous SiC sintered body was prepared in the same manner as above. In addition, the doped Si melt was solidified as it was and pulverized to produce a negative electrode material consisting only of the Si phase. The electrode performance of these negative electrode materials was similarly evaluated.
Shows the results.

【0049】(電極性能の評価)試験セル 負極材料の粉末を分級して、平均粒径が10μmになるよ
うに粒度調整した。この粉末88.3質量部に、導電剤のア
セチレンブラック8.8 質量部と結着剤のポリフッ化ビニ
リデン2.9 質量部とを加え、溶媒のN−メチルピロリド
ン中で混合してスラリーを得た。このスラリーを厚さ20
μmの銅箔にドクターブレード法で塗布し、仮乾燥後、
ロール圧延して圧密化させ、真空中120 ℃で16時間乾燥
し、直径16 mm (面積2cm2)の円板に打ち抜き、電極
(作用極) とした。
(Evaluation of Electrode Performance) The powder of the negative electrode material of the test cell was classified and the particle size was adjusted so that the average particle size became 10 μm. To 88.3 parts by mass of this powder, 8.8 parts by mass of acetylene black as a conductive agent and 2.9 parts by mass of polyvinylidene fluoride as a binder were added, and mixed in N-methylpyrrolidone as a solvent to obtain a slurry. Apply this slurry to a thickness of 20
μm copper foil by doctor blade method, and after preliminary drying,
Rolled to consolidate, dried in vacuum at 120 ° C for 16 hours, punched into a disk of 16 mm diameter (area 2 cm 2 )
(Working electrode).

【0050】対極としてLi金属箔を同様に直径16 mm に
打ち抜いた円板を、セパレーターとしてポリプロピレン
多孔質フィルムを使用した。電解液には、エチレンカー
ボネートとジメトキシエタンとの体積比1:1の混合液
に、LiClO4を1M濃度で溶解させた溶液を使用した。電
解液をセパレーターに含浸させ、このセパレーターを作
用極と対極との間に挟んでステンレス鋼製のケースに収
納し、ケースをかしめにより密閉して封止して、電極評
価用試験セルとした。
As a counter electrode, a disk obtained by punching a Li metal foil to a diameter of 16 mm was used, and a porous polypropylene film was used as a separator. As the electrolytic solution, a solution obtained by dissolving LiClO 4 at a concentration of 1 M in a mixed solution of ethylene carbonate and dimethoxyethane at a volume ratio of 1: 1 was used. The separator was impregnated with the electrolytic solution, the separator was sandwiched between the working electrode and the counter electrode, housed in a stainless steel case, and the case was hermetically sealed and sealed to form a test cell for electrode evaluation.

【0051】電池試験 充電:2mAの電流で、作用極に対する対極の電位が0V
になるまで充電、 放電:2mAの電流で、作用極に対する対極の電位が−1.
0Vになるまで放電。 この試験用セルでは、対極のLi金属の方が卑 (つまり、
負極) であり、充電・放電が上記とは逆になるが、この
試験は実施例の生成物を負極材料として評価するための
ものであるので、Liを放出する方を「放電」と定義し
た。
Battery test charge: At a current of 2 mA, the potential of the counter electrode with respect to the working electrode is 0 V
Charge and discharge until the current becomes 2 mA, and the potential of the counter electrode with respect to the working electrode is -1.
Discharge until 0V. In this test cell, the Li metal at the counter electrode is lower (that is,
(Negative electrode), charging and discharging are opposite to the above, but since this test is for evaluating the product of the example as a negative electrode material, the one that releases Li was defined as `` discharge '' .

【0052】この条件で1回充電して放電することを1
サイクルとし、1サイクル目と500サイクル目の放電容
量を測定した。また、サイクル寿命を評価するため、1
サイクル目の放電容量に対する500 サイクル目の放電容
量の割合 (%) である容量維持率 (=[500サイクル放電容量
/1サイクル放電容量]X100)を算出した。
It is considered that charging and discharging once under these conditions is one of the followings.
The discharge capacity was measured at the first cycle and at the 500th cycle. Also, to evaluate the cycle life, 1
A capacity retention ratio (= [500 cycle discharge capacity / 1 cycle discharge capacity] × 100), which is a ratio (%) of the discharge capacity at the 500th cycle to the discharge capacity at the cycle, was calculated.

【0053】高率放電特性を評価するために、放電電流
を上記の10倍の20 mA に増大させて放電を行った場合の
1サイクル目の放電容量を測定し、放電電流が2mAの場
合の放電容量に対する比を算出した。この放電容量比が
1に近いほど、高率放電特性が優れている。
In order to evaluate the high-rate discharge characteristics, the discharge capacity in the first cycle when the discharge was performed by increasing the discharge current to 20 mA, which is 10 times the above, was measured. The ratio to the discharge capacity was calculated. The closer the discharge capacity ratio is to 1, the better the high-rate discharge characteristics are.

【0054】[0054]

【表1】 表1からわかるように、本発明の負極材料は、初期放電
容量が800 mAh/g 以上と、現行の炭素系負極材料の初期
放電容量 (一般に320 mAh/g 前後) と比べて非常に高
く、しかも500 サイクル後の容量維持率が70%以上と、
実用に十分なサイクル寿命を備え、さらに高率放電特性
も良好である。
[Table 1] As can be seen from Table 1, the negative electrode material of the present invention has an initial discharge capacity of 800 mAh / g or more, which is much higher than the initial discharge capacity of current carbon-based negative electrode materials (generally around 320 mAh / g). Moreover, the capacity retention rate after 500 cycles is 70% or more,
It has a cycle life sufficient for practical use and also has good high rate discharge characteristics.

【0055】Siがドープ元素を含有していない比較例(N
o.1)と比べるとわかるように、Si相がドープ元素を含有
すると、高率放電特性 (放電容量比) が改善されるだけ
でなく、サイクル寿命 (容量維持率) も著しく改善され
る。この効果は、特にドープ量が1020原子/cm3 以上の
場合にさらに顕著となり、500 サイクル後の容量維持率
が90%、放電電流20 mA /2mAの容量比が0.9 以上と、
サイクル寿命と高率放電特性が共に非常に良好となる。
一方、SiC相を含まず、ドープしたSi相のみからなる負
極材料(No.10) は、初期放電容量は本発明の負極材料よ
り高くなるものの、500 サイクル目の放電容量は0であ
り、サイクル寿命が非常に悪く、実用電池には使用でき
ない。
Comparative Example in which Si does not contain a doping element (N
As can be seen from comparison with o.1), when the Si phase contains a doping element, not only the high-rate discharge characteristics (discharge capacity ratio) are improved, but also the cycle life (capacity retention ratio) is significantly improved. This effect is more remarkable especially when the doping amount is 10 20 atoms / cm 3 or more, and the capacity ratio after 500 cycles is 90%, and the capacity ratio of the discharge current 20 mA / 2 mA is 0.9 or more.
Both cycle life and high rate discharge characteristics are very good.
On the other hand, in the negative electrode material (No. 10) composed of only the doped Si phase without the SiC phase, although the initial discharge capacity is higher than the negative electrode material of the present invention, the discharge capacity at the 500th cycle is 0, It has a very short life and cannot be used for practical batteries.

【0056】以上より、SiC相の共存によってSi相の体
積変化を拘束することがサイクル寿命の改善に著しく有
効であり、Si相にドープ元素を含有させることで、高率
放電特性が改善されるのみならず、予想外にもサイクル
寿命まで著しく改善されることがわかる。
As described above, constraining the volume change of the Si phase due to the coexistence of the SiC phase is extremely effective for improving the cycle life, and the high-rate discharge characteristics are improved by including the doping element in the Si phase. Not only that, the cycle life is unexpectedly significantly improved.

【0057】(実施例2)本実施例は、溶融Siへの浸漬に
よって成形体の焼結とSiの含浸を同時に行う本発明の負
極材料の製造方法を例示する。本実施例で使用した原料
粉末 (いずれも市販品) は、次の通りである。
(Example 2) This example illustrates a method for producing a negative electrode material of the present invention in which sintering of a compact and impregnation of Si are simultaneously performed by immersion in molten Si. The raw material powders (all commercially available) used in this example are as follows.

【0058】 SiC粉末 (β型SiC) 平均粒径0.7 μm、 Si粉末 平均粒径3μm、 C粉末 (カーボンブラック) 平均粒径0.1 μm。SiC powder (β-type SiC) average particle size 0.7 μm, Si powder average particle size 3 μm, C powder (carbon black) average particle size 0.1 μm.

【0059】上記原料粉末の1種または2種を使用し
て、実施例1に記載したのと同じ成形方法により未焼結
の円板状成形体を作製した。この未焼結の成形体を使用
して、実施例1に記載したのと同様の条件でドープ元素
を含有するSi融液中に浸漬して、成形体の焼結と、C粉
末を使用した場合はSiとの反応によりSiC形成と、さら
に焼結体の気孔へのSiの含浸を同時に達成した。Si融液
としては、Siにドープ元素Bを1×1020原子/cm3 含む
(含浸後に) ように添加したものを用いた。
Using one or two of the above raw material powders, an unsintered disk-shaped compact was produced by the same molding method as described in Example 1. Using this unsintered compact, it was immersed in a Si melt containing a doping element under the same conditions as described in Example 1, and the compact was sintered and C powder was used. In this case, the formation of SiC and the impregnation of the pores of the sintered body with Si were simultaneously achieved by the reaction with Si. As a Si melt, doping element B is contained in Si at 1 × 10 20 atoms / cm 3.
What had been added (after impregnation) was used.

【0060】負極材料のSi含有量は、粉砕前の含浸体の
密度を測定し、SiCとSiの密度を勘案して求めた。この
負極材料の電極性能を実施例1と同様に評価した結果
を、原料粉末の構成と一緒に次の表2に示す。
The Si content of the negative electrode material was determined by measuring the density of the impregnated body before pulverization and considering the densities of SiC and Si. The results of evaluating the electrode performance of this negative electrode material in the same manner as in Example 1 are shown in Table 2 below together with the configuration of the raw material powder.

【0061】[0061]

【表2】 SiCの未焼結成形体をドープしたSi融液中に浸漬して焼
結とSiの含浸を同時に実施しても、実施例1に匹敵する
電極性能を示す負極材料が得られた。原料粉末がSiC10
0 %ではなく、C粉末を含有し、Siの含浸と同時をCを
SiCに転化させた場合(No.2 〜3)には、原料粉末がSiC
100 %(No.1)に比べて、Si含有量が低い負極材料にな
る。そのため、放電容量は実施例1に比べて低くなった
が、それでもなお現行の炭素系負極材料よりは高い放電
容量が得られる。特に、SiC粉末にC粉末を混合して成
形体を作製した場合、500 サイクル後の容量維持率が95
%以上と、サイクル寿命に非常に優れた負極材料となっ
た。
[Table 2] Even when sintering and impregnation of Si were performed simultaneously by immersing the green compact of SiC in a doped Si melt, a negative electrode material having electrode performance comparable to that of Example 1 was obtained. Raw material powder is SiC10
Contain C powder instead of 0%,
When converted to SiC (No. 2-3), the raw material powder is SiC
A negative electrode material having a lower Si content than 100% (No. 1). Therefore, the discharge capacity was lower than that of Example 1, but still higher discharge capacity than the current carbon-based negative electrode material was obtained. In particular, when a compact is produced by mixing C powder with SiC powder, the capacity retention rate after 500 cycles is 95%.
% Or more, a negative electrode material having extremely excellent cycle life was obtained.

【0062】(実施例3)本実施例は、実施例1で作製し
た負極材料から作製した負極を組み込んだリチウム二次
電池を例示する。
Example 3 This example illustrates a lithium secondary battery incorporating a negative electrode manufactured from the negative electrode material manufactured in Example 1.

【0063】負極としては、実施例1で作製した、表1
のNo.3, 4, 6の3種類の負極材料および比較用のNo.10
の負極材料 (SiC相を含有せず、ドープしたSi相のみ)
を用いて、電極評価試験のために作製した直径16 mm の
電極を用いた。いずれの負極も塗布厚みは同じであっ
た。
As a negative electrode, Table 1 prepared in Example 1 was used.
No.3, No.3, No.3 and No.10 for comparison
Negative electrode material (does not contain SiC phase, only doped Si phase)
The electrode having a diameter of 16 mm produced for the electrode evaluation test was used. Each negative electrode had the same coating thickness.

【0064】別に、炭素材料 (黒鉛粉末) を用いて、実
施例1の電極評価試験と同様に直径16mmの電極を作製し
(但し、導電剤は混合せず) 、負極とした。この黒鉛電
極を実施例1と同様の電極評価をしたところ、放電容量
は320 mAh/g であった。
Separately, using a carbon material (graphite powder), an electrode having a diameter of 16 mm was prepared in the same manner as in the electrode evaluation test in Example 1.
(However, the conductive agent was not mixed), and a negative electrode was used. When this graphite electrode was evaluated in the same manner as in Example 1, the discharge capacity was 320 mAh / g.

【0065】正極を作製するため、LiCoO2 2質量部と導
電剤のアセチレンブラック6質量部と結着剤のポリフッ
化ビニリデン2質量部を、溶剤であるN−メチルピロリ
ドン中で混合した。得られたスラリーを厚さ20μmのAl
箔上にドクターブレード法により塗布し、仮乾燥後圧延
し、真空中120 ℃で16時間乾燥して、直径16 mm に打ち
抜き、正極とした。
To prepare a positive electrode, 2 parts by mass of LiCoO 2 , 6 parts by mass of acetylene black as a conductive agent, and 2 parts by mass of polyvinylidene fluoride as a binder were mixed in N-methylpyrrolidone as a solvent. The obtained slurry is coated with a 20 μm thick Al
It was applied on a foil by a doctor blade method, temporarily dried, rolled, dried in a vacuum at 120 ° C. for 16 hours, and punched into a diameter of 16 mm to obtain a positive electrode.

【0066】ステンレス製のコイン電池用ケースの中
に、負極と正極、およびその間にセパレーターとしてポ
リプロピレン多孔質フィルムを配置し、エチレンカーボ
ネートとジメトキシエタン混合液 (体積比1:1)にLiClO4
を1M濃度で溶解した電解液を含浸させた。最後にケー
スをかしめにより密閉・封止し、コイン電池を作製し
た。この電池を 3.0〜4.2 Vの電圧範囲で、2mAおよび
20 mA の電流にて、繰り返し充電・放電試験した。得ら
れた結果を表3に示す。
In a coin battery case made of stainless steel, a negative electrode and a positive electrode, and a polypropylene porous film as a separator between them were arranged. LiClO 4 was added to a mixed solution of ethylene carbonate and dimethoxyethane (volume ratio 1: 1).
Was impregnated with an electrolyte solution having a concentration of 1M. Finally, the case was hermetically sealed by caulking to produce a coin battery. The battery is operated at a voltage of 3.0 to 4.2 V in the range of 2 mA and
The charge / discharge test was repeated at a current of 20 mA. Table 3 shows the obtained results.

【0067】[0067]

【表3】 表3から、実際にリチウム二次電池を作製した電池試験
においても、表1の電極性能試験と同様の結果が得られ
ることがわかる。即ち、本発明に係る負極材料を用いた
リチウム二次電池は、Si単体からなる負極材料を用いた
電池より初期放電容量はやや低くなるものの、500 サイ
クル後の容量維持率が高く、高率放電特性にも優れてい
る。特にドープ量が1020原子/cm3 以上であると、容量
維持率が90%と非常に高く、高率放電特性も一段とよく
なり、黒鉛なみの値を示す。初期容量が黒鉛よりはるか
に高いので、500 サイクル後の容量や高率放電時の容量
は黒鉛電極よりはるかに高い。これに対し、Si単体から
なる負極材料では、500 サイクル後の放電容量が0とな
るので、実用性のあるリチウム二次電池とはならない。
[Table 3] From Table 3, it can be seen that in a battery test in which a lithium secondary battery was actually produced, the same results as those in the electrode performance test in Table 1 were obtained. That is, the lithium secondary battery using the negative electrode material according to the present invention has a slightly lower initial discharge capacity than the battery using the negative electrode material composed of Si alone, but has a higher capacity retention rate after 500 cycles and a higher rate discharge. Excellent characteristics. In particular, when the doping amount is 10 20 atoms / cm 3 or more, the capacity retention ratio is extremely high at 90%, the high rate discharge characteristics are further improved, and the value is comparable to that of graphite. Since the initial capacity is much higher than graphite, the capacity after 500 cycles and the capacity at high rate discharge are much higher than graphite electrodes. On the other hand, in the case of a negative electrode material composed of Si alone, the discharge capacity after 500 cycles becomes 0, and thus a lithium secondary battery having no practical use is not obtained.

【0068】[0068]

【発明の効果】本発明により、現行の炭素系負極材料よ
り高容量で、サイクル寿命に優れ、かつ高率放電特性に
も優れたリチウム二次電池用の負極材料が提供される。
従って、本発明はリチウム二次電池の性能向上に寄与
し、リチウム二次電池を用いる各種用途において一層の
改善を図ることができる。
According to the present invention, there is provided a negative electrode material for a lithium secondary battery having a higher capacity, an excellent cycle life, and an excellent high-rate discharge characteristic than existing carbon-based negative electrode materials.
Therefore, the present invention contributes to the improvement of the performance of the lithium secondary battery, and can further improve the various uses using the lithium secondary battery.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 MA14 MB02 MB08 MC01 MC04 5H029 AJ02 AJ03 AJ05 AK02 AK03 AK05 AK16 AL01 AL11 AL19 AM03 AM04 AM05 AM07 CJ01 CJ06 CJ08 CJ13 CJ15 CJ23 DJ12 DJ13 DJ16 HJ02 5H050 AA02 AA07 AA08 BA17 CA02 CA07 CA11 CA20 CB01 CB11 CB30 FA12 FA14 FA17 GA05 GA08 GA10 GA13 GA16 GA23 HA02  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4G046 MA14 MB02 MB08 MC01 MC04 5H029 AJ02 AJ03 AJ05 AK02 AK03 AK05 AK16 AL01 AL11 AL19 AM03 AM04 AM05 AM07 CJ01 CJ06 CJ08 CJ13 CJ15 CJ23 DJ12 DJ13 DJ16 HJ02 A07A07 A08 CA11 CA20 CB01 CB11 CB30 FA12 FA14 FA17 GA05 GA08 GA10 GA13 GA16 GA23 HA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Si相とSiC相とを含む粒子からなるリチ
ウム二次電池用負極材料であって、 Si相が長周期型周期律表の3B族または5B族に属す
る1種以上のドープ元素を含み、 Si相の一部が粒子表面に露出し、かつ Si相の粒子表面に露出している部分以外はSiC相と接
している、 ことを特徴とするリチウム二次電池用負極材料。
1. A negative electrode material for a lithium secondary battery comprising particles containing a Si phase and a SiC phase, wherein the Si phase is at least one doping element belonging to Group 3B or 5B of the long period periodic table. A negative electrode material for a lithium secondary battery, wherein a part of the Si phase is exposed on the surface of the particles and the part other than the part of the Si phase that is exposed on the surface of the particles is in contact with the SiC phase.
【請求項2】 Si相が、前記ドープ元素を合計1018〜10
22原子/cm3 の範囲内の量で含む、請求項1記載のリチ
ウム二次電池用負極材料。
2. The Si phase comprises a total of 10 18 to 10
The negative electrode material for a lithium secondary battery according to claim 1, which is contained in an amount in the range of 22 atoms / cm 3 .
【請求項3】 多孔質SiC焼結体を、長周期型周期律表
の3B族または5B族に属する1種以上のドープ元素を
含むSiの溶融物に浸漬して、この溶融物を該焼結体に含
浸させる工程と、含浸させた焼結体を粉砕する工程、と
を含むことを特徴とする、リチウム二次電池用負極材料
の製造方法。
3. A porous SiC sintered body is immersed in a melt of Si containing at least one doping element belonging to Group 3B or 5B of the Long Periodic Periodic Table, and the melt is sintered. A method for producing a negative electrode material for a lithium secondary battery, comprising: a step of impregnating a sintered body; and a step of pulverizing the impregnated sintered body.
【請求項4】 SiC粉末、C粉末、Si粉末とC粉末との
混合粉末、SiC粉末とC粉末との混合粉末、またはSiC
粉末とC粉末とSi粉末との混合粉末からなる原料粉末を
加圧成形して得た未焼結成形体を、長周期型周期律表の
3B族または5B族に属する1種以上のドープ元素を含
むSiの溶融物に浸漬して、多孔質SiC焼結体を形成する
と同時に多孔質SiC焼結体に前記溶融物を含浸させる工
程と、前記溶融物を含浸させた多孔質SiC焼結体を粉砕
する工程、とを含むことを特徴とする、リチウム二次電
池用負極材料の製造方法。
4. SiC powder, C powder, mixed powder of Si powder and C powder, mixed powder of SiC powder and C powder, or SiC powder
A green compact obtained by pressing a raw material powder composed of a mixed powder of a powder, a C powder and a Si powder is subjected to one or more doping elements belonging to Group 3B or 5B of the long-period type periodic table. A step of forming a porous SiC sintered body by impregnating the molten material with the molten Si, and simultaneously impregnating the porous SiC sintered body with the molten material; And pulverizing the negative electrode material for a lithium secondary battery.
【請求項5】 請求項1または2に記載の負極材料から
作製された負極を備えたことを特徴とするリチウム二次
電池。
5. A lithium secondary battery comprising a negative electrode made from the negative electrode material according to claim 1.
JP2000241164A 2000-08-09 2000-08-09 Negative electrode material for lithium secondary battery and method of manufacturing the same Withdrawn JP2002056843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000241164A JP2002056843A (en) 2000-08-09 2000-08-09 Negative electrode material for lithium secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000241164A JP2002056843A (en) 2000-08-09 2000-08-09 Negative electrode material for lithium secondary battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002056843A true JP2002056843A (en) 2002-02-22

Family

ID=18732394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000241164A Withdrawn JP2002056843A (en) 2000-08-09 2000-08-09 Negative electrode material for lithium secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002056843A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135779A (en) * 2003-10-31 2005-05-26 Rikkyo Gakuin Lithium secondary battery and its manufacturing method
JP2007505444A (en) * 2003-06-25 2007-03-08 イドロ−ケベック Method for producing electrode from porous material, electrode obtained by the method and corresponding electrochemical system
US9608262B2 (en) 2004-07-01 2017-03-28 Shin-Etsu Chemical Co., Ltd. Silicon composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
JP2018502420A (en) * 2014-11-18 2018-01-25 ウニヴェルジテート・パーダーボルン Method for producing electrode material for battery electrode
CN111316479A (en) * 2017-11-06 2020-06-19 株式会社Lg化学 Negative electrode active material, negative electrode comprising same, secondary battery comprising negative electrode, and method for preparing negative electrode active material
JP2022508339A (en) * 2018-08-14 2022-01-19 エスジェー・アドバンスド・マテリアルズ・カンパニー・リミテッド A lithium secondary battery equipped with a negative electrode active material, a method for producing the same, and a negative electrode containing the negative electrode.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505444A (en) * 2003-06-25 2007-03-08 イドロ−ケベック Method for producing electrode from porous material, electrode obtained by the method and corresponding electrochemical system
JP2005135779A (en) * 2003-10-31 2005-05-26 Rikkyo Gakuin Lithium secondary battery and its manufacturing method
US9608262B2 (en) 2004-07-01 2017-03-28 Shin-Etsu Chemical Co., Ltd. Silicon composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
JP2018502420A (en) * 2014-11-18 2018-01-25 ウニヴェルジテート・パーダーボルン Method for producing electrode material for battery electrode
US11165056B2 (en) 2014-11-18 2021-11-02 Universität Paderborn Method of producing an electrode material for a battery electrode
CN111316479A (en) * 2017-11-06 2020-06-19 株式会社Lg化学 Negative electrode active material, negative electrode comprising same, secondary battery comprising negative electrode, and method for preparing negative electrode active material
CN111316479B (en) * 2017-11-06 2022-05-03 株式会社Lg新能源 Negative electrode active material, negative electrode comprising same, secondary battery comprising negative electrode, and method for preparing negative electrode active material
US11495797B2 (en) 2017-11-06 2022-11-08 Lg Energy Solution, Ltd. Negative electrode active material, negative electrode including the same, secondary battery including the negative electrode, and preparation method of the negative electrode active material
JP2022508339A (en) * 2018-08-14 2022-01-19 エスジェー・アドバンスド・マテリアルズ・カンパニー・リミテッド A lithium secondary battery equipped with a negative electrode active material, a method for producing the same, and a negative electrode containing the negative electrode.

Similar Documents

Publication Publication Date Title
US9548165B2 (en) Predoping method for lithium, lithium-predoped electrode, and electricity storage device
KR100458098B1 (en) Electrode Material for Negative Pole of Lithium Secondary Cell, Electrode Structure Using Said Electrode Material, Lithium Secondary Cell Using Said Electrode Structure, and Method for Manufacturing Said Electrode Structure and Said Lithium Secondary Cell
KR100759556B1 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
KR100661402B1 (en) Electrode material for rechargeable lithium battery, electrode structural body comprising said electrode material, rechargeable lithium battery having said electrode structural body, process for the production of said electrode structural body, and process for the production of said rechargeable lithium battery
US7479351B2 (en) Electrode material for a lithium secondary battery, lithium secondary battery, and preparation method for the electrode material for a lithium secondary battery
JP4126715B2 (en) Method for producing negative electrode material and method for producing secondary battery
KR101375328B1 (en) Si/C composite, anode materials and lithium battery using the same
JP2948205B1 (en) Method for producing negative electrode for secondary battery
JP2004214054A (en) Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
KR20000029812A (en) Graphite particles and lithium secondary battery using them as cathode material
KR20060004597A (en) Negative active material and method for production thereof, non-aqueous electrolyte secondary cell using the same
CN115377419A (en) Skeleton-forming agent and negative electrode using same
JP2004362895A (en) Negative electrode material, and battery using it
JP2003303585A (en) Battery
JP4140222B2 (en) Negative electrode, non-aqueous electrolyte secondary battery, and negative electrode manufacturing method
JP2001250542A (en) Powder material suitable to negative electrode for lithium secondary battery
CN114792795A (en) Negative electrode for fluoride ion secondary battery and fluoride ion secondary battery provided with same
JP2002056843A (en) Negative electrode material for lithium secondary battery and method of manufacturing the same
JP2000090922A (en) Lithium secondary battery, its negative electrode material, and manufacture of the material
JP3981866B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JPS62213064A (en) Lithium-alloy negative electrode and its manufacture
JP2004111150A (en) Cathode material and battery using it
US9893354B2 (en) Hyper-dendritic nanoporous zinc foam anodes, methods of producing the same, and methods for their use
JP3985263B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, METHOD FOR PRODUCING SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP3582336B2 (en) Manufacturing method of graphite powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106