JPS6086760A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS6086760A
JPS6086760A JP58195631A JP19563183A JPS6086760A JP S6086760 A JPS6086760 A JP S6086760A JP 58195631 A JP58195631 A JP 58195631A JP 19563183 A JP19563183 A JP 19563183A JP S6086760 A JPS6086760 A JP S6086760A
Authority
JP
Japan
Prior art keywords
alloy
aluminum
magnesium
lithium
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58195631A
Other languages
Japanese (ja)
Inventor
Yoshinori Toyoguchi
豊口 吉徳
Shiro Nankai
史朗 南海
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58195631A priority Critical patent/JPS6086760A/en
Publication of JPS6086760A publication Critical patent/JPS6086760A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a negative electrode which has a great charge-and-discharge capacity per its unit weight and exhibits a stable performance since the active material does not pulverize even when charge and discharge are repeated by using as a negative material either an aluminum-magnesium alloy or an alloy prepared by adding silicon, zinc, tin or silver to an aluminum-magnesium alloy. CONSTITUTION:An aluminum-magnesium alloy is used as a negative material, so that the negative material does not pulverize and has a stable form due to the existence of magnesium and so that the quantity of electricity for charge and discharge increases due to the existence of aluminium. When at least one element selected from the group consisting of silicon, tin, zinc and silver is added to an aluminum-magnesium alloy and the thus obtained alloy is used as a negative material, the quantity of electricity for charge and discharge further increases. Here, when the content of magnesium in the aluminum-magnesium alloy is lower than 15wt%, the active material significantly pulverizes and separates from the plate as charge-and-discharge cycle proceeds. When the content of magnesium in the alloy exceeds 65wt%, the quantity of electricity for charge and discharge reduced due to a decreased amount of aluminum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池VC関するもので、4?
に充電時にアルカリ金属を吸蔵し、放電時しくアルカリ
金属イオンを放出する機能を有する迎極拐料の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a non-aqueous electrolyte secondary battery VC.
The present invention relates to an improvement in an electrode absorber having the function of occluding alkali metals during charging and releasing alkali metal ions during discharge.

従来例の構成とその問題点 現在1で、リチウム、すトリウムなとのアルカリ今風を
負極とする非水電j+イ質二次′1b7曲として(d二
、たとえば、二硫化チタン(Ti52)をf(−tじめ
各科の層間化合物などを正極活物質として用い、電Wl
 q’l、としては、炭酸プロピレンなとの有機溶媒に
過」j1N素酸リチウムなどを溶解したイJ4殿電解質
を用いる電池の開発が活発に進められてきた。この二次
電池の特徴は、負極にリチウムを用いることにより、電
油電圧が高くなり、高エネルギー密度の二次電池となる
ことである。
The structure of the conventional example and its problems At present 1, as a non-aqueous electrolyte j + high quality secondary '1b7 with an alkali modern style such as lithium and strium as the negative electrode (d2, for example, titanium disulfide (Ti52) is f) (Using intercalation compounds of various families as positive electrode active materials,
As for q'l, the development of batteries using a J4 electrolyte prepared by dissolving 1N lithium oxide in an organic solvent such as propylene carbonate has been actively pursued. A feature of this secondary battery is that by using lithium for the negative electrode, the electrolyte voltage increases, resulting in a secondary battery with high energy density.

しかし・この種の二次電池は、現在、寸だ実用化されて
いない。その主な理由は、充放電回数のノを命か旬り、
寸だ充放電に際しての充放電効率か低い/Cめである。
However, this type of secondary battery is currently not in practical use. The main reason is that the number of charging and discharging times is life-threatening.
The charging and discharging efficiency during charging and discharging is extremely low.

この原因は、リチウム負極の劣化に1:るところか非常
に太きい。すなわち、現在のリチウム負イウハニッケル
などのスクリーン状集電体に板状の金属リチウムを圧着
したものが主に月1いられているが、放電時に金属リチ
ウムは、竜角It qa中にリチウムイオンとして溶解
する0しかし、これを充電して、放電前のような板状の
リチウムに析出させることは難しく、デンドライト状(
樹枝状)のリチウムか発生してこれが根元より折れて脱
落したり、あるいは小球状(苔状)に析出したリチウム
が集電体より鋭落するなどの現象が起こる。このため充
放電が不能の電池となってし捷う。斗た発生したデンド
ライト状の金属リチウムか、正極、負極間を隔離してい
るセパレータを貫通して正極に接し短絡を起こし、電池
の機能を失わぜるようなことも度々化じる。
The cause of this is extremely likely to be due to the deterioration of the lithium negative electrode. In other words, current lithium-negative IUHA-nickel or other screen-shaped current collectors are generally used once a month with plate-shaped metal lithium crimped to them, but during discharge, the metal lithium is converted into lithium ions in Ryukaku It qa. However, it is difficult to charge this and precipitate it into a plate-like lithium like before discharging, and it becomes dendrite-like (
Phenomena occur, such as dendritic (dendritic) lithium occurring and breaking off from the base and falling off, or small spherical (moss-like) lithium deposits falling sharply from the current collector. This results in a battery that cannot be charged or discharged. The dendrite-like metallic lithium that is generated often penetrates the separator that separates the positive and negative electrodes and comes into contact with the positive electrode, causing a short circuit and causing the battery to lose its function.

このような負極の欠点を改良するための方法は従来から
各種試みられている。一般的には、負極集電体のイ]料
を替えて析出するリチウムとの密着性を良くしたり、あ
るい(寸竜角「は引] ((テントライト発生防止の添
加剤を加えたりする方法か報告されている。しかし、こ
れらの方法に必ずしも効果的ではない。すなわち、集電
体材料に関しては、集電体材料に直接析出するリチウム
に有効であるが、更に充電(析出)を続けると析出リチ
ウム上へリチウムが析出することになり、集電体月別の
効果は消失する。また添加剤に関しても、充放電サイク
ルの初期では有効であるが、サイクルが進むと電池内で
の酸化還元反応なとに」:り分解し、その効果がなくな
るものが殆んどである。
Various methods have been tried in the past to improve these drawbacks of negative electrodes. In general, the material of the negative electrode current collector is changed to improve adhesion to the precipitated lithium, or additives are added to prevent the formation of tentrite. However, these methods are not necessarily effective.In other words, with regard to current collector materials, they are effective for lithium deposited directly on the current collector material, but it is effective for lithium that is deposited directly on the current collector material, but it is effective for lithium that is deposited directly on the current collector material. If this continues, lithium will precipitate onto the precipitated lithium, and the effect of the monthly current collector will disappear.As for additives, they are effective at the beginning of the charge/discharge cycle, but as the cycle progresses, oxidation inside the battery will disappear. Reduction reaction: Most of the substances decompose and lose their effectiveness.

さらに負極として、リチウムとの合金を用いることが提
案されている。この例としては、リチウム−アルミニウ
ム合金がよく知られている。この場合は、一応均一の合
金が形成されるが、充放電をくり返すとその均一性を消
失し、特にリチウム量を多くすると電極が微粒化し崩壊
するなどの欠点があった0才た、銀とアルカリ金属との
固射体を用いることも提案されている(4.1開昭56
−7386)。この場合は、アルミニウムとの合金のよ
うな崩壊はないとされているが、十分に速く合金化する
リチウムの量は少なく、金属状のリチウムが合金化しな
いit析出する場合があり、これを防ぐために多孔体の
使用などを推奨している。
Furthermore, it has been proposed to use an alloy with lithium as a negative electrode. A well-known example of this is lithium-aluminum alloy. In this case, a homogeneous alloy is formed, but when charging and discharging are repeated, this uniformity disappears, and especially when the amount of lithium is increased, the electrode becomes atomized and collapses. It has also been proposed to use a solid projectile of alkali metal and alkali metal (4.1
-7386). In this case, it is said that there is no disintegration like in alloying with aluminum, but the amount of lithium that alloys quickly enough is small, and metallic lithium may precipitate without alloying. The use of porous materials is recommended to prevent this.

し/(がって、大電流の充電効果は悪く、またリチウム
量の多い合金は、充放電による微細化が徐々に加速され
、サイクル寿命が急激に減少する。
(Thus, the charging effect of large currents is poor, and in alloys with a large amount of lithium, micronization due to charging and discharging is gradually accelerated, resulting in a sharp decrease in cycle life.

この他にはリチウム−水銀合金を用いる考案(特開昭5
7−98978)、リチウム−鉛合金を用いる考案(q
、′に開昭57−141869)がある。しかし、リチ
ウム−水銀合金の場合は、放電により、負極は液状粒子
の水銀となシミ概形状全保持しなくなる。丑だ、リチウ
ム−鉛合金の場合は、電極の充放電による微細粉化は銀
固溶体以上である。
In addition, the idea of using a lithium-mercury alloy (Japanese Unexamined Patent Publication No. 5
7-98978), a device using lithium-lead alloy (q
,' is published in 1987-141869). However, in the case of a lithium-mercury alloy, due to discharge, the negative electrode no longer retains the overall shape of the liquid particle mercury stain. In the case of a lithium-lead alloy, the fineness of the powder due to charging and discharging the electrode is greater than that of a silver solid solution.

最近、スズ、カドミウムなどからなる可融合金を負極制
料とすることが提案された。この可融合金を用いること
により、負極の微細粉化は起こらず、安定した充放電を
行うことができる。しがしこの可融合金系では、スズ、
カドミウム、ビスマス、鉛など原子辰の大きい全屈、を
1月いるため(・ζ、単位重量描た9の充放電fi′は
小さい。
Recently, it has been proposed to use a fusible metal such as tin or cadmium as a negative electrode material. By using this fusible alloy, the negative electrode does not become finely pulverized, and stable charging and discharging can be performed. Among the fusible metals, tin,
Because the total bending of atoms such as cadmium, bismuth, and lead is large, the charge/discharge fi' of 9, which is a unit weight, is small.

発明の目的 本発明は、単位重弗蟲たりの充放電界f11が大きく、
かつ充放電をくり返しても電極の微細粉化か起こらず安
定した性能を示す負極を提供することを目的とする。
Purpose of the Invention The present invention has a large charging/discharging field f11 per unit weight,
It is also an object of the present invention to provide a negative electrode that exhibits stable performance without causing pulverization of the electrode even after repeated charging and discharging.

発明の構成 本発明の二次電池は、アルミニウムーマグネシウム合金
またはアルミニウムーマグネシウム合金にケイ素、スズ
、亜鉛及び銀よりなる群から選んだ少なくとも一つを添
加した合金を負極材料に用いることを特徴とし、充電に
より負(・12月に用いた合金中にリチウムアルミニウ
ム金属間化合物の形でリチウムを吸蔵させ、放電により
電解竹中にリチウムイオンとして放出させるものである
Components of the Invention The secondary battery of the present invention is characterized in that an aluminum-magnesium alloy or an aluminum-magnesium alloy to which at least one selected from the group consisting of silicon, tin, zinc, and silver is added is used as a negative electrode material. By charging, lithium is occluded in the form of a lithium-aluminum intermetallic compound in the alloy used in December, and by discharging, it is released as lithium ions into the electrolytic bamboo.

前記のように本発明の二次電池においては、負極材料合
金に充電によりアルカリ金属、例えd[リチウムを吸蔵
させ、放電により電解竹中にリチウムを放出させるもの
であるので、充電により負極AA料金合金リチウムの合
金がてきることとなる。
As mentioned above, in the secondary battery of the present invention, the negative electrode material alloy is charged to absorb an alkali metal, such as d[lithium, and discharged to release lithium into the electrolytic bamboo. An alloy of lithium will be produced.

ここて、負極材料とは、リチウムと合金を作る以rii
+の合金である。
Here, the negative electrode material refers to the material that is alloyed with lithium.
It is an alloy of +.

例えば、70重量係のアルミニウムと30重量係のマグ
ネシウムよりなる合金(Al (70) −Mg(30
)〕を用い/こときの充放電反応は次式のようになる。
For example, an alloy (Al (70) - Mg (30
)] The charging/discharging reaction of /Koki is as shown in the following equation.

CAl (70) −Mg (30) ’)+XL1+
 xe式中〔A1(了o) −Mg (30) 〕Li
Xは充電により生成したアツベニウム−マグネシウム−
リチウム合金を示す。
CAl (70) -Mg (30)')+XL1+
In the xe formula [A1 (completed o) -Mg (30)] Li
X is atubenium-magnesium- produced by charging
Indicates a lithium alloy.

また、充放電の範囲としては、(1)式のように完全に
負極中よりリチウムがなくなるまで放電する必要はなく
、(2)式のように負極中に吸蔵されたリチウム量を変
えるようにして、充放電ができることは当然である0 (Al (70) Mg (30) 〕Lix +YL
L + Ye発明者らは、アルミニウムーマグネシウム
合金を負極材料として、リチウムイオンを含む電IQイ
′1′j中で充放電を行っても、電極の微細粉化は起こ
らず、寸た負極材料の単位重量当たりの充放電(I:も
大きいことを見い出した。
In addition, as for the range of charging and discharging, it is not necessary to discharge until lithium is completely removed from the negative electrode as in equation (1), but it is necessary to change the amount of lithium occluded in the negative electrode as in equation (2). Therefore, it is natural that it can be charged and discharged0 (Al (70) Mg (30) ) Lix +YL
L+Ye The inventors have discovered that even when an aluminum-magnesium alloy is used as a negative electrode material and charged and discharged in an electric current containing lithium ions, the electrode does not become finely pulverized, and the negative electrode material becomes small. It was also found that the charge/discharge per unit weight (I:) is also large.

アルミニウム単体を負極材料とした場合t/(ijl、
充放電のくり返しにより微細粉化し、電極形状は保てな
くなる。一方、マグネシウム単体を負極拐料とし′に場
合には、充放電をくり返1.−Cも市、極の形状は安定
であるが、充放電の1じ気量に小さい。
When aluminum alone is used as the negative electrode material, t/(ijl,
Due to repeated charging and discharging, it becomes fine powder and the electrode shape cannot be maintained. On the other hand, when magnesium alone is used as the negative electrode removal material, charging and discharging are repeated in 1. -C also has a stable pole shape, but it is small to the extent of one charge/discharge charge.

すなわち、アルミニウムーマグネシウム合金とすること
により、充放電をくり返しても、マグネ/ラムが存在す
ることにより微粉化が起こらず形状が安定し、アルミニ
ウムの存在により充放電電気量が大きくなったと考えら
れる。つ甘り充7M電を行う生活物質がアルミニウムで
、マグネシウムにj、結着剤の働きをしていると考えら
れる。
In other words, by using an aluminum-magnesium alloy, even after repeated charging and discharging, the presence of Magne/Ram prevents pulverization and stabilizes the shape, and the presence of aluminum increases the amount of electricity charged and discharged. . The living substance that performs the 7M charge is aluminum, which is thought to act as a binder along with magnesium.

さらに、アルミニウムーマグネシウム合金に、ケイ素、
スズ、亜鉛及び銀よりなる群から選んだ少なくとも一種
を添加した合金においては、充放itl′lL「:気量
けさらに大きくなる。これらの金属を添加することによ
り、合金中に多くの相ができ、相の界面に浴って吸蔵さ
れたリチウムの拡散が容易になるためと考えられる。
Furthermore, silicon,
In alloys to which at least one selected from the group consisting of tin, zinc, and silver is added, the amount of gas released becomes even larger. By adding these metals, many phases are added to the alloy. This is thought to be due to the fact that the lithium absorbed at the phase interface becomes more easily diffused.

実旋例の説明 第1[ン1に示し/こセルを構成して、各種金属や合金
の非水電解質二次電池の負極としての特性を調へ/ら0
図中、1は横側した金属または合金よりなる試験極、2
はTiS2 よりなる正極、3は照合電楡としてのリチ
ウム板である。各々の電極のリードにはニッケル紳を用
いた。試験極1は大きさ1X 1 Cm、厚さ1mmの
金属あるいは合金に、リードとしてニッケルリボンをと
りつけた。
Explanation of practical example No. 1: Configuring this cell and examining its characteristics as a negative electrode for non-aqueous electrolyte secondary batteries made of various metals and alloys.
In the figure, 1 is a test electrode made of metal or alloy placed on the side, 2
3 is a positive electrode made of TiS2, and 3 is a lithium plate as a reference electrode. Nickel metal was used for each electrode lead. Test electrode 1 was a metal or alloy with a size of 1×1 cm and a thickness of 1 mm, and a nickel ribbon was attached as a lead.

’1l)tpt質4には、1 モル/ l (7) L
iC10,i溶カシた炭酸プロピレンを用いた。試験極
1の液槽5と照合極3の液槽6とは連通管7で接続され
ている。
'1l) TPT substance 4 contains 1 mol/l (7) L
iC10, i-molded propylene carbonate was used. The liquid tank 5 of the test electrode 1 and the liquid tank 6 of the reference electrode 3 are connected through a communication pipe 7.

金属や合金の非水電解質二次電池の負極としての特性を
測定するために、試験極1の電位が、リチウム照合電極
3に対してOmVになる壕で5mAの定電流でカソード
方向に充電した。この条件でば、試験極上にリチウムは
析出せず、合金中に入る。試験極の電位かOmVに達し
た後、照合電極3に対して1.oVになる寸で、5mA
の定電流でアノード方向に放電し、その後充電、放電を
同じ条件で繰り返した。
In order to measure the characteristics of a non-aqueous electrolyte secondary battery made of metal or alloy as a negative electrode, the test electrode 1 was charged in the cathode direction with a constant current of 5 mA in a trench such that the potential of the test electrode 1 was OmV with respect to the lithium reference electrode 3. . Under these conditions, lithium does not precipitate on the test electrode but enters the alloy. After the potential of the test electrode reaches OmV, 1. 5mA at oV
The battery was discharged toward the anode at a constant current of , and then charging and discharging were repeated under the same conditions.

表には、試験極1に用いた合金寸たは金属の第1サイク
ルと第10サイクルにおける負極材料の単位重量当たり
の充電電気量、放電電気量、および効率として放電電気
量を充電電気量で除したもの、サイクル特性として第1
0ザイクルの放電電気量を第1ザイクルの放電電気−で
除したものを示す。負極材料の単位重量当たりの充電、
電気量、放電電気量、効率、サイクル特性の数値が犬で
ある程よい負極と言える。
The table shows the amount of electricity charged per unit weight of the negative electrode material in the 1st cycle and the 10th cycle of the alloy size or metal used for test electrode 1, the amount of electricity discharged, and the efficiency of the amount of electricity discharged as the amount of charged electricity. The first cycle characteristic is
The amount of discharged electricity in the 0th cycle divided by the discharged electricity in the 1st cycle is shown. Charge per unit weight of negative electrode material,
It can be said that the negative electrode has good values for the amount of electricity, amount of discharged electricity, efficiency, and cycle characteristics.

表の結果より、非水電解質二次電池用負極*): Ki
+とじて、従来用いられて来たアルミニウム、マグネシ
ウム、可融合金と比べ、本発明のアルミニウムーマグネ
シウム合金、この合金にさらにケイ素。
From the results in the table, negative electrode for non-aqueous electrolyte secondary battery *): Ki
In addition, compared to conventionally used aluminum, magnesium, and fusible alloys, the aluminum-magnesium alloy of the present invention further contains silicon.

亜鉛、スズ)銀を添加した合金を負極材料に用いること
により、より単位重量当たりの充放’tJj:電気量が
犬きく、サイクル何件の良好な二次電池を得ることがで
きる。
By using an alloy to which silver (zinc, tin) is added as the negative electrode material, it is possible to obtain a secondary battery with a higher charge/discharge capacity per unit weight and a higher number of cycles.

次に、負極材料に用いる合金の組成を検討した結果を説
明する。第2図は、アルミニウムーマグネシウム合金中
のマグネシウムの含量を変えた時の、負極材料の単位重
量当たりの第10ザイクルでの放都、電気量をプロット
したものである。なお、試験法は前記のfllと同じで
ある。図より合金の組成は、アルミニウム/マグネシウ
ムの重量比が86 / i 5から35 / 6 sの
時に良好な負極特性を示すことがわかる。
Next, the results of studying the composition of the alloy used for the negative electrode material will be explained. FIG. 2 is a plot of the discharged energy and the amount of electricity in the 10th cycle per unit weight of the negative electrode material when the magnesium content in the aluminum-magnesium alloy is changed. In addition, the test method is the same as the above fll. From the figure, it can be seen that the alloy composition exhibits good negative electrode characteristics when the aluminum/magnesium weight ratio is from 86/i5 to 35/6s.

アルミニウムーマグネシウム合金中のマグネシウムが1
5重量係未満の時には、充放電サイクルの進行とともに
極板の微細粉化脱落が顕著になった。また、65重量係
を超えるとアルミニウムの情か減ることKなり充放電電
気量は低下した。
Magnesium in aluminum-magnesium alloy is 1
When the weight ratio was less than 5, the electrode plate became finely powdered and fell off as the charge/discharge cycle progressed. Further, when the weight exceeds 65, the amount of aluminum decreases and the amount of electricity charged and discharged decreases.

首だ、電解質として、実施例に示したような有機電解質
だけでなく、Li3N (窒化リチウム)やLiI (
ヨウ化リチウム)などの固体電解質を用いた場合にも、
本発明のアルミニウムーマグネシウム合金は従来の負極
材料に比べ良好な特性を示しゾこ0 発明の効果 1、:l上のように、本発明によれば単位重量当たりの
充放電電気量が大きく、サイクル特性の優れた非水電解
質二次電池を得ることができる。
As an electrolyte, you can use not only organic electrolytes as shown in the examples, but also Li3N (lithium nitride) and LiI (
Even when using a solid electrolyte such as lithium iodide,
The aluminum-magnesium alloy of the present invention exhibits better characteristics than conventional negative electrode materials.Advantageous Effects of the Invention 1: As shown above, according to the present invention, the amount of electricity charged and discharged per unit weight is large, A nonaqueous electrolyte secondary battery with excellent cycle characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は負極特性の検討に用いたセルの構成図、第2図
は合金の組成と放電電気量の関係を示す図である。
FIG. 1 is a diagram showing the configuration of a cell used for examining negative electrode characteristics, and FIG. 2 is a diagram showing the relationship between the composition of the alloy and the amount of discharged electricity.

Claims (3)

【特許請求の範囲】[Claims] (1)アルカリ金属イオンを含む非水電解質と、再充電
可能な正極と、充電時にアルカリ金属を吸蔵し放電時に
電解質中ヘアルカリ金属イオンを放出する負極材料とを
備え、前記負極材料が、アルミニウムとマグネシウムの
合金からなることを特徴とする非水電解質二次電池。
(1) A nonaqueous electrolyte containing alkali metal ions, a rechargeable positive electrode, and a negative electrode material that occludes alkali metals during charging and releases alkaline metal ions in the electrolyte during discharge, wherein the negative electrode material is aluminum and A non-aqueous electrolyte secondary battery characterized by being made of a magnesium alloy.
(2)前記合金のアルミニウム/マグネシウムの重力1
比が85/15〜35 / e sの範囲にある特許請
求の範囲第1項記載の非水電解質二次電池。
(2) Gravity 1 of aluminum/magnesium of the above alloy
The non-aqueous electrolyte secondary battery according to claim 1, wherein the ratio is in the range of 85/15 to 35/es.
(3)アルカリ金属イオンを含む非水電解質と、再充電
可能な正極と、充電時にアルカリ金属を吸蔵し放電時に
電解質中ヘアルカリ金属イオンを放出する負極材料とを
備え、前記負極材料が、スズ、ケイ素、亜鉛及び銀より
なる群から選んだ少なくとも一種とアルミニウム及びマ
グネシウムよりなる合金からなることを特徴とする非水
電解質二次電池。
(3) A non-aqueous electrolyte containing alkali metal ions, a rechargeable positive electrode, and a negative electrode material that occludes alkali metals during charging and releases alkali metal ions in the electrolyte during discharge, wherein the negative electrode material is tin, A non-aqueous electrolyte secondary battery comprising an alloy of at least one selected from the group consisting of silicon, zinc and silver and aluminum and magnesium.
JP58195631A 1983-10-19 1983-10-19 Nonaqueous electrolyte secondary battery Pending JPS6086760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58195631A JPS6086760A (en) 1983-10-19 1983-10-19 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58195631A JPS6086760A (en) 1983-10-19 1983-10-19 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS6086760A true JPS6086760A (en) 1985-05-16

Family

ID=16344374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58195631A Pending JPS6086760A (en) 1983-10-19 1983-10-19 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS6086760A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751086A (en) * 1985-07-26 1988-06-14 Alcan International Limited Aluminum anode alloy
JPS63318070A (en) * 1987-06-19 1988-12-26 Nippon Denso Co Ltd Lithium secondary cell
US20100279175A1 (en) * 2009-04-30 2010-11-04 Young Edgar D Secondary batteries with treated bentonite cathodes having enhanced conductivity
US20100279174A1 (en) * 2009-04-30 2010-11-04 Young Edgar D Secondary batteries with treated bentonite cathodes
CN102312138A (en) * 2010-07-02 2012-01-11 中国科学院大连化学物理研究所 High-temperature energy storage phase-change material and preparation and application thereof
JP2014165001A (en) * 2013-02-25 2014-09-08 Honda Motor Co Ltd Negative electrode active material for secondary batteries and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751086A (en) * 1985-07-26 1988-06-14 Alcan International Limited Aluminum anode alloy
JPS63318070A (en) * 1987-06-19 1988-12-26 Nippon Denso Co Ltd Lithium secondary cell
US20100279175A1 (en) * 2009-04-30 2010-11-04 Young Edgar D Secondary batteries with treated bentonite cathodes having enhanced conductivity
US20100279174A1 (en) * 2009-04-30 2010-11-04 Young Edgar D Secondary batteries with treated bentonite cathodes
US8445134B2 (en) * 2009-04-30 2013-05-21 Edgar D. Young Secondary batteries with treated bentonite cathodes having enhanced conductivity
US8551654B2 (en) * 2009-04-30 2013-10-08 Edgar D. Young Secondary batteries with treated bentonite cathodes
CN102312138A (en) * 2010-07-02 2012-01-11 中国科学院大连化学物理研究所 High-temperature energy storage phase-change material and preparation and application thereof
JP2014165001A (en) * 2013-02-25 2014-09-08 Honda Motor Co Ltd Negative electrode active material for secondary batteries and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3148293B2 (en) Non-aqueous electrolyte secondary battery
US5122375A (en) Zinc electrode for alkaline batteries
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPS63274058A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JPH0412587B2 (en)
JPH0441471B2 (en)
JPH0364987B2 (en)
JPH09204930A (en) Nickel hydrogen storage battery
JPH08321302A (en) Hydrogen storage electrode
JPH0421986B2 (en)
JPS6086759A (en) Nonaqueous electrolyte secondary battery
JPH0364988B2 (en)
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH0412585B2 (en)
JPH09259868A (en) Nonaqueous electrolyte secondary battery
JPS634554A (en) Organic electrolyte secondary battery
JPS59163757A (en) Nonaqueous electrolyte secondary battery
JPS62145650A (en) Nonaqueous electrolyte secondary cell
JPH0794176A (en) Hydrogen storage electrode
JP3362400B2 (en) Nickel-metal hydride storage battery
JPS6049565A (en) Nonaqueous electrolyte secondary battery
JPS59186276A (en) Nonaqueous electrolyte secondary battery
JPH0711957B2 (en) Non-aqueous secondary battery